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ABSTRACT

Opinion dynamics is a complex procedure that entails a cognitive process when it deals

with how a person integrates influential opinions to form revised opinion. Early research

on opinion formation and social influence can be traced back to the eighteenth century. The

original research focus was to study the conditions for people to aggregate information and

reach consensus. Recently, due to the rise of the World Wide Web more and more studies

tend to model opinion dynamics in large-scale social networks via computational methods.

Among those works, non-Bayesian rule-of-thumb learning models keep gaining popularity

due to their simplicity and computational efficiency. Unlike many non-Bayesian methods

that treat individual opinions on various issues as independent beliefs but overlook the con-

nections between knowledge fragments, we leverage from Bayesian approaches to consider

opinions as a product inferred from one’s knowledge-based system, where new knowledge

fragments are acquired through social interaction and learning experiences. We study how

an individual evaluates and adopts such knowledge fragments from others sources, both

visible and invisible, on the basis of the findings from well-established social theories.

A computational framework was developed to model opinion dynamics, in which we

applied a probabilistic model named Bayesian Knowledge Bases to represent an individ-

ual’s knowledge base. Opinion dynamics is studied by modeling opinion formation as a

process of knowledge fusion, learning the impact metric that estimates the reliability of

knowledge fragments, and identifying influential sources whose impact patterns are hid-

den. The contributions of this work can be summarized as 1) the development of a domain-

independent computational method to model opinion formation by emphasizing the depen-

dencies between knowledge pieces, 2) the capability to model different aspects of opinion

dynamics in one entire system, 3) the intuitiveness in representing opinions such that the

intents behind the opinion change can be readily captured, 4) the ability to characterize

the influences in a social community by realizing and enriching theories of social commu-
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nication, and 5) the flexibility of application on detecting and tracking hidden influential

sources.

iii



Acknowledgements

First, I would like to thank my advisor Prof. Eugene Santos, Jr. for providing me with

invaluable mentorship, guidance, and support. More than anyone else he has influenced

my view of the research process, and instilled in me the importance of aiming to produce

high-quality research with the potential for impact. He fostered my interest in Opinion Dy-

namics and provided me an inspiring environment with all the support, freedom, patience,

and encouragement I needed to achieve the work presented in this dissertation.

I would like to thank all members from the Distributed Information and Intelligence

Analysis Group. I count myself lucky to have been surrounded by a number of outstanding

researchers: Deqing Li, Fei Yu, Jacob Russell, Jeremy E. Thompson, Keumjoo Kim, et

al.. In particular, I offer a special thank to Deqing, Fei, Jeremy and Jacob for their time

and support in different stages of my PhD, especially when I reached bottlenecks in the

research. Over the years we have shared countless hours working together in the lab. They

are not only good colleagues, but good friends. I would also like to thank Ms. Louise A.

Cullen for helping me carefully proofread the thesis.

I feel fortunate to have had the opportunities to work closely with Prof. John Korah and

Prof. Hien Nguyen in our collaborating projects Cross-boarder and Metalearning. From

them, I have learned many research skills from writing to presentation to designing an ex-

periment. I would also like to thank my committee members Prof. George Cybenko, who

taught me modern modeling technologies through his classes, Prof. Mark Borsuk, who

gave me lectures and instructions on Bayesian approaches and modeling, and Prof. Hien

Nguyen, who provided me with valuable comments and advice on my thesis. I thoroughly

enjoyed the opportunities to collaborate with these exceptional researchers.

Most importantly, I am definitely lucky to have the support from my family. I especially

iv



thank my parents in China for the high standards they raised me with. Living on the other

side of the Earth complicates many things for a family and they have always stood by me.

I also would like to thank my boyfriend Mu Lin for his love and support irrespective of the

unpredictable nature of my work schedule and the uncertainty it brought. I do not think I

could have finished all this without them.

v



Contents

1 Introduction 1
1.1 A Framework for modeling opinion dynamics . . . . . . . . . . . . . . . . 6

1.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Literature review of opinion dynamics modeling using computational meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Backgrounds 21
2.1 Social Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Contact Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Opinion Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Bayesian Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Framework of Bayesian Knowledge Bases . . . . . . . . . . . . . . 26
2.2.2 BKB Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 BKB Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Social Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Opinion Formation 36
3.1 Opinion as a Reasoning Product . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Computational Approaches for Opinion Representation . . . . . . . . . . . 37
3.3 Model of Opinion Formation . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Nonlinearity in Opinion Formation . . . . . . . . . . . . . . . . . . . . . . 45

4 Social Influence Learning 51
4.1 General Impact Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Validation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Experiments on Synthetic Data . . . . . . . . . . . . . . . . . . . . 57

vi



4.3.3 Experiments on Real Social-network Data . . . . . . . . . . . . . . 64
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Hidden Influential Source Tracking and Detection 74
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Source Tracking and Detection Approach . . . . . . . . . . . . . . . . . . 78

5.2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.1 Evaluation on Synthetic Data . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Evaluation on Real Data . . . . . . . . . . . . . . . . . . . . . . . 100

6 Conclusions 114
6.1 Accomplishment and Findings . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Appendices 121
7.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4 Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



List of Tables

3.1 Correlation with significance . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Percentage of positively correlated interested trends . . . . . . . . . . . . . . . 50

4.1 Error comparison of two approaches in terms of different parameters . . . . . . . 59
4.2 Average similarity with the true factor weights . . . . . . . . . . . . . . . . . . 61
4.3 Selected Political Survey Questions and Possible Answers . . . . . . . . . . . . 67
4.4 Predefined probability values based on the survey answers . . . . . . . . . . . . 68
4.5 Average error comparison between two models . . . . . . . . . . . . . . . . . 70
4.6 Factor weights learned from two methods . . . . . . . . . . . . . . . . . . . . 70
4.7 Average error comparison between two contact networks . . . . . . . . . . . . . 71
4.8 Factor weights learned by the proposed approach from two communication means 71
4.9 Performance comparison with different initial settings . . . . . . . . . . . . . . 71
4.10 Average Error using Different factor sets (F = Friendship, C= Contact, OD = Opin-

ion Difference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Statistics of the distance between the true and learned probability distribution. . . . 91
5.2 p-value of paired sample t-test using different algorithms . . . . . . . . . . . . 91
5.3 Learning error of FFM v.s. two baselines with different diversity rate d . . . . . . 93
5.4 Learning error differences of FFM vs two baselines with different complexity rate r. 94
5.5 Learning error differences of FFM vs two baselines with different completeness

rate q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7 Two-level factorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.8 Statistics of the difference between each paired model . . . . . . . . . . . . . . 106
5.9 Major events happened during H1N1 pandemic. . . . . . . . . . . . . . . . . . 111

7.1 Distance measure between the true and learned probability distribution using dif-
ferent algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

viii



List of Figures

1.1 Prior opinion formation and evolution . . . . . . . . . . . . . . . . . . . . 9
1.2 Opinion evolution in a social environment . . . . . . . . . . . . . . . . . . 11
1.3 Complete framework of opinion dynamics . . . . . . . . . . . . . . . . . . 13

2.1 Example of a BKB fragment . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Example of BKB fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Example of a small contact network . . . . . . . . . . . . . . . . . . . . . 35

3.1 Sample BKB fragment from an intent framework modeling the real scenario 39
3.2 Comparison of opinion formation process . . . . . . . . . . . . . . . . . . 40
3.3 Partial residuals plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Social influence learning from Gu et al. [1] . . . . . . . . . . . . . . . . . 55
4.2 Comparison of two methods with respect to different parameters . . . . . . 60
4.3 Mean RSE difference between two models . . . . . . . . . . . . . . . . . 63
4.4 Convergence rate comparison between two methods given different con-

nection degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Learned causal dependencies between four political issues . . . . . . . . . 69

5.1 Multiple-source detection algorithm . . . . . . . . . . . . . . . . . . . . . 83
5.2 Comparison of impact tracking for FFM and two baselines with increasing T 88
5.3 Cross-correlation analysis with T = 10,50 and 100 . . . . . . . . . . . . . . 90
5.4 The aggregated performance for tracking multiple-hidden-source impact

trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Performances for new hidden source detection . . . . . . . . . . . . . . . . 99
5.6 Cross-correlation on dataset 1: Adults . . . . . . . . . . . . . . . . . . . . 104
5.7 Cross-correlation on dataset 2: CoverType . . . . . . . . . . . . . . . . . . 105
5.8 Cross-correlation on dataset 3: Color-based segmentation . . . . . . . . . 105
5.9 Example BKB fragment with belief and action . . . . . . . . . . . . . . . . 107
5.10 Cultural fragment for middle-aged population . . . . . . . . . . . . . . . . 109
5.11 Event fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.12 Posterior probability of illegal migration to US . . . . . . . . . . . . . . . 111
5.13 Detection results on event impact . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 BKB fusion from Santos et al.[2] . . . . . . . . . . . . . . . . . . . . . . . 122

ix



Chapter 1

Introduction

Opinions are subjective perspectives that evolve over time. Unlike phenotypic character-

istics that are mainly decided by our genes, opinions or beliefs1 are generally acquired

through learning experience [4]. Some of this learning results from the observation via

one’s own actions and experiences. Much of the learning, however, takes place through the

process of social interaction. As summarized by Acemoglu and Ozdaglar (2011) [5],

Learning is social because any given individual observes the behavior of or receives

information through communication with a small subset of society –those we may want

refer to as her social network, consisting of her friends, her coworkers and peers, her

distant and close family members, and a certain group of leaders that she listens to

and respects.

In fact, the process of interpersonal influence that affects individuals’ beliefs and opin-

ions lies at the heart of socialization, identity and decision-making. Such process also

serves as a guide to how people change their behaviors by taking into account the attitudes

and opinions of others with whom they interact [6]. Evidence of reliance on others’ opin-
1From Schwitzgebel [3], belief is the fact or proposition that an individual holds to be true. Opinions, in

contrast, include both personal beliefs and attitudes or judgments that are not founded on proof or certainty.
In our work, we assume that all opinions are supported by some facts or beliefs.
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ions in one’s decision can be found in many fields, from advertising with social cues [7] [8]

to the diffusion of political views [9]. The results from Bindel et al.[10] show that when the

influence from a social leader is strong enough, people may shift their opinions far from

their internal opinions.

Overall, the importance of how opinions are formed and changed via social learning can

never be overstated. Through the last few centuries the issue of whether a group of people

with diverse information will be able to aggregate information and reach a consensus has

been the focus of a great many efforts. In eighteenth century, Condorcet [11] observed

that a large group of people with each holding some correlated information is sufficient

for aggregation of information when everyone is providing true information. The work

of Galton [12] discovered that when a group of relatively uninformed individuals average

their knowledge they could guess the weight of an ox fairly accurately. An active line of

recent work in economic theory studied the formation of consensus from the point of view

of social networks. Friedkin and Johnsen [6] concluded that because of the changing social

structure the outcomes of the groups could vary from the mean of the initial opinion of a

group member. Golub and Jackson [13] suggested that opinions in a large society might

only converge to the true values when the influence of the most influential agent dimin-

ishes as the society grows. Considering the fact that consensus in the real world is usually

not reached [14], Hegselmann and Krause [15] extended the previous work by considering

some non-consensus cases. Specifically, they investigated several models to understand

when opinion formation will lead to consensus, polarization or fragmentation.

Despite these significant findings, to fully understand opinion dynamics through social

processes is never a trivial job. Individual knowledge acquired via various channels is an

essential ingredient in decision-making and opinion formation. It provides the foundation

for predicting the outcomes of alternative courses of action [16]. However, not everyone
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holds the same base of knowledge. It is often the case that when information is hard to

process or access due to incompleteness, one would shape their opinions by interacting

with others who hold views on the given issues [17]. A simple illustration of this is that it

is not hard for an individual to have opinions about the places they have not been to or the

food they have not tasted, as decisions can be simply made based on the information they

gained from others. On the other hand, other than self-directed learning where the knowl-

edge is extended by the results of experimentation and systematically monitoring [18], a

large portion of knowledge is gained in the process of social activities [19]. For example,

a person may decide not to buy a Japanese car after being told by her friend that a politi-

cal issue between Japan and her country have become severely strained, even though their

conversation had nothing to do with car-buying. Even if two people do not exchange views

on a specific problem, due to the causal relationships between knowledge fragments, the

newly acquired information from the conversation could influence their opinions toward

that problem. Lastly, the art of understanding personal opinions rests not only on the mea-

surement of people’s views but also on understanding the motivations behind those views.

When people go to the polls, why do some of them vote for one candidate over another?

Is it possible to change their views and by how much? Those questions cannot be simply

answered by looking at the statistics of participants’ responses. That is why the methods

based on the traditional opinion surveys are insufficient as they fail to capture the motiva-

tions behind them [20].

Before the age of information the problems of opinion dynamics studied by conven-

tional methods usually considered a small group of people due to limitations in commu-

nication. With the development of the Internet people now can exchange information and

ideas more freely and frequently. The scale of community, therefore, can be extremely

large such that the process of opinion dynamics can hardly be understood without a com-

putational model. There are some significant and insightful studies trying to apply com-
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putational approaches to model opinion dynamics. One direction of these works focuses

on discovering conditions and criterions for opinion formation [13] [21], while another di-

rection lies on inferring the influence patterns from contact data [22] [23]. In recent years,

the fashionable term of “Big Data” keeps gaining attention. Domain experts apply statis-

tical methods to discover patterns in data. Nevertheless, how useful is the “Big Data” is a

controversial topic. Its value comes from social patterns that can be derived by connecting

pieces of data. If not used properly, however, Big data interpretation can be problematic as

well. Aside from its ethical questions concerning the access of personal data, the dataset

itself is not necessary to be objective nor representative. As Bollier [24] explains,

As a large mass of raw information, Big Data is not self-explanatory. And yet the

specific methodologies for interpreting the data are open to all sorts of philosophical

debate. Can the data represent an ‘objective truth’ or is any interpretation necessarily

biased by some subjective filter or the way that data is ‘cleaned’?

Despite the success of FiveThirtyEight2 that correctly predicted the winner of the 2012

US Presidential race in forty-nine of fifty states, even Silver himself admits that the data-

driven prediction models are so highly domain dependent that the model, while performing

well in solving one problem, may fail dramatically in another [25]. In fact, it is very dan-

gerous to simply rely on a dataset without those limitations and bias being understood.

Therefore we want to focus on the philosophy behind the problem, i.e. how an opinion is

derived and how it is influenced by other sources.

To have a model address all of the above concerns is extremely challenging. However,

we believe that there are some fundamental rules that guide the whole process of opinion

dynamics. The overall objective of this thesis is to develop a framework to model opinion

2FiveThirtyEight is a polling aggregation website with a blog created by Nate Silver
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dynamics based on the idea that the procedure of opinion formation involves a cognitive

process when dealing with how a person integrates influential opinions to form a revised

opinion. The whole framework can be broken down to three parts. Firstly, we present

a computational opinion formation model (OFM) that quantifies individual’s opinions in

the process of knowledge fusion. The underlying hypothesis is that an opinion can be

treated as a product inferred from one’s knowledge base, where the knowledge base keeps

growing and updating through self-directed learning or social interaction. The intuition

is that there are connections between knowledge fragments. Modification of opinion on

one issue can influence the decision made on another. Though the whole picture of how

opinions are changed is still missing, we are affirmative that “influencing means” and “in-

fluencing source” are two main ingredients in the process of opinion dynamics. Moreover,

individuals always selectively accept or disregard new information, where the amount of

acceptance is decided by some mechanism(s) based on social influence. In the second part

of our framework, we identify certain social factors that can potentially affect how individ-

uals adopt others’ ideas. We then show how to learn the “influencing means” on the basis

of these factors from OFM. In the third part, we extend OFM to address the situation when

influential sources are “invisible”. In particular, we provide an approach that is capable of

detecting hidden sources and capturing the evolution of their impact levels.

Evaluation of the framework is another challenging task due to the scope of the problem

and the lack of ground truths in opinion formation. Alternatively, we evaluate the accuracy

of the opinion formation model with respect to its learning capability of social factors and

the robustness of capturing influencing sources with various inputs.

5



1.1 A Framework for modeling opinion dynamics

1.1.1 Motivations

As mentioned earlier, opinion formation is in essence a learning process. Over the past

few decades prevalent computational models have been focusing on how opinion evolves

in a social environment, in which the opinion is either simplified to an abstract number

or studied with respect to a specific scenario. Does this imply that the conversation or

experience regarding one particular issue has no impact on one’s opinion on other issues?

The answer should be no. Let us consider a scenario, say person A was thinking about

going cycling in the afternoon. He consulted another person, X. We are not sure who X

is, but we know two potential candidates: person B and person C. We also know that if A

talked to B, then B would say “the weather forecast says it is going to rain in the afternoon.”

and if A talked to C, C would say “Biking is bad for your knees.”. Regardless, A changed

his mind and stayed at home. So whom did A talk to? If we parse the words from B and

C literally, apparently C is more close to the topic “biking”, as B is about another issue

“weather”. However, from the perspective of knowledge, the question of whether to do an

outdoor activity is highly dependent on weather. This suggests that both B and C can be

X. What if we know that C got his information from an unauthenticated website, which

makes C’s impact much smaller? What if we know that the reason person A stayed at

home is because he knew there would be a football game? If this is the correct scenario,

maybe there existed another source of information? In tho example, we can keep adding

information and the answer can keep changing. As one can see from this scenario, opinion

dynamics is actually a complex procedure that entails a cognitive process when dealing

with how a person integrates influential opinions to form a revised opinion. We cannot

separate an individual’s opinion from his/her knowledge base [26]; we cannot overlook

the metrics that quantify the influences between people [27], and we have to be aware

of the hidden sources that may have individual’s opinion influenced subconsciously [28].
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All these findings motivate us to develop a comprehensive computational framework to

overcome the following limitations of existing computational efforts:

1. Key components in opinion dynamics are modeled separately. As a consequence,

the approach designed to address one aspect of the problem may not be applicable to

another.

2. The cognitive process has not been well adopted to model opinion dynamics compu-

tationally. So most of the current works are either domain specific or fail to explain

the findings from the well-established social theories.

The insight of this thesis is that we build our framework on the basis of the cognitive

process involved in shaping individual opinions and learning nature of opinion dynamics:

we treat opinion as a reasoning product from one’s context knowledge base where new

knowledge fragments are acquired through various types of learning experience. By doing

so, we manage to combine multiple components in opinion dynamics to a coherent system,

such that no matter what learning technique a component applies, they all share the same

core representation.

1.1.2 Framework

Building a model of opinion dynamics that is consistent with existing social theories and

capable of handling large problem scalability is challenging. However, we can always

simplify and extract the core parts of a hard problem and tackle it using a divide-and-

conquer strategy. We divide the whole framework into three parts. Each part corresponds

to one key component in opinion formation proposed by Acemoglu and Ozdaglar [5],

• Prior opinions

• Method of information processing

• Information sources

7



Prior Opinion

Opinion dynamics is a continuous procedure featured by a sequence of varying opinions.

Any method modeling opinion dynamics has to start with some type of initial opinions that

can be personal or public. In our work, the opinion type is determined by the knowledge

base from which an opinion is inferred, where the knowledge base can be elicitated from

either a single person or a population. There is a difference between the personal knowl-

edge base and group knowledge base. The knowledge base of a single person usually stores

the structure of one’s interrelated knowledge pieces. It can be used to infer one’s attitudes

or viewpoints regarding the issues related to a topic. In contrast, the knowledge base with

respect to a group of subjects captures the aggregation of common knowledge or beliefs

shared by the whole population. The knowledge base of this type can be learned from data

or be modeled from statistics. In the past few years, we have constructed knowledge bases

for modeling group intents in topics from cultural behaviors [29] to emergent behaviors

[30].

Figure 1.1 shows the relationship between opinions and knowledge bases. The initial

or prior opinion Opn0 is reasoned from the initial knowledge base KB0. Similarly, the

opinion at each time step Opnt is inferred from the corresponding knowledge base KBt.

KBt is dependent (but not only dependent) on KBt−1. As a note, Opnt does not refer to a

single opinion but covers the opinions with respect to multiple issues, where the richness of

an Opnt is determined by the complexity of the knowledge base at that particular time. Full

details of the knowledge base representation and opinion reasoning process will be covered

in Chapter 2.2 and Chapter 3.

Information Sources

One critical component in opinion dynamics is influential sources. By interacting with

those sources, individuals can update their knowledge bases so as opinions in a certain

8



Figure 1.1: Prior opinion formation and evolution

way based on the received information. As we have discussed, some of the information is

gained through visible channels, such as online social interaction, whereas others can be

concealed due to various reasons. In this work, we assume that all communications take

place in a subset of social community, usually referred to as a social network. Each node

in the social network represents an actor. The information passed between actors is consid-

ered as knowledge fragments that have the same representation as the knowledge base. As

a note, we have no restriction on the size of a fragment. A fragment can be as small as a

single rule, e.g. “90% chance to rain”, or be as large as a fraction of one’s knowledge base.

In order to model learning experience gained from information sources besides interper-

sonal communication, we allow actors to be media sources as well. Then the link from one

news source to a person implies a media influence. To accommodate the dynamic nature of

a social community, the structure of a social network/influential network does not have to

be static, but can vary from time to time.
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We extend Figure 1.1 to Figure 1.2 for the purpose of reflecting the opinion change in

social networks. The knowledge base (KB) of an actor i is updated in a cycle. The ini-

tial opinions are inferred from her prior knowledge base KB0. Then, at each time step t,

she integrates the knowledge fragments sent from the actors/sources that she has interacted

with to form KBt in a certain fashion that will be covered shortly. Two types of sources

exist in the social environment, namely visible sources and hidden sources. However, only

the connections or interactions with visible sources can be tracked from the social net-

works, which makes it even harder to uncover the hidden sources that may have equal or

even greater influences on shaping people’s opinions. In Chapter 5, we will elaborate how

we can leverage from the opinion formation process to detect hidden influencing sources

meanwhile tracking the corresponding impact patterns by analyzing the opinion/behavior

change over time. Preliminary results have been published in [31, 32].

Method of information processing

As we mentioned earlier, social learning lies at the heart of an individual’s opinion for-

mation and it is one of the most common means for people to gain knowledge. When

new knowledge fragments are acquired through learning experience, instead of adopting

them completely, it is a natural expectation that one should fuse the new fragments into

his/her own knowledge base with some reliability/trust. Researches from social theories

have shown that how people adopt the opinions of others depends on various factors, from

relationship closeness [33] to personal and opinion similarity [34]. Although there is ev-

idence that social factors correlate with level of reliability, how those factors interact still

remains a mystery. In this thesis, to understand how social factors contribute to quantifying

the reliance on each of the information source, we design a general impact metric by com-

bining the influential factors in a linear fashion, where influential power associated with

each factor can either be manually assigned or be learned from data. Linear models have

been widely used in trust-based approaches due to its simplicity and intuitiveness [35, 8].
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Figure 1.2: Opinion evolution in a social environment
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After completing the information processing part, the whole framework of modeling

opinion dynamics is depicted in Figure 1.3. The figure only shows three social factors that

come into play to determine the impact metric: “friendship” based on the relationship net-

work, “opinion similarity” based on the overall opinion distance and “contact frequency”

based on the contact network. However, we will show that our model is not restricted

to these factors. Newly discovered factors can be easily incorporated into the model. If

we take a close look at the figure, “information processing” is actually the pivot of the

whole system. It bridges opinion change with social influence factors as well as informa-

tion sources. The impact from social factors and information sources will end up being

reflected in the changing opinions. This makes it possible to fulfill the impact metric and

capture hidden sources by computationally modeling the opinion change. In Chapter 4, we

show how the weight of each influential factor can be efficiently learned via analyzing the

opinion variation. Preliminary results have been published in [1].

1.2 Literature review of opinion dynamics modeling using

computational methods

In this section, we provide an overview of the popular computational methods of opinion

dynamics. Firstly, we discuss two traditional approaches to opinion dynamics modeling.

One is a Bayesian approach based on Bayesian updating of beliefs, and the other one is

a non-Bayesian approach based on reasonable “rules of thumb” on how people form their

opinions on the basis of social influences. Then, we introduce some recent works that aim

to study social influence and opinion dynamics using real data. We discuss their advantages

and limitations and show how those previous researches inspired our work.

Bayesian approaches have been widely used for managing uncertainty, and more re-
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Figure 1.3: Complete framework of opinion dynamics

13



cently, for opinion formation. The Bayesian learning approaches assume that “individuals

would update their beliefs optimally given an underlying model of the world” [5]. It was

first proposed to explain uniformity in economic social behaviors [36]. The idea is that

individuals should change their views to maximize their utility. Similar ideas have been

applied to Bayesian learning from observations of past sequential actions [37] [38] and

communication learning, in which individuals learn through communication other than the

observation of others’ actions [39] [40]. Despite the recognized success of these works,

they may suffer from some common limitations. Considering a situation where an indi-

vidual tries to shape an opinion about some social or political issues x, e.g. “whether the

political view advocated by a political party should be trusted” after observing some evi-

dence e. Then, Bayesian approaches postulate that the individual will update his / her prior

opinion following Bayes rule:

P (x|e) =
P (e|x) ∗ P (x)

P (e)
.

This equation implies that the individual has prior information on each possible value

of x and also understands what observation may appear given a certain opinion. However,

the requirement that the individual must have a complete set of priors is not innocuous.

Especially when the possible values of x is large. Similarly, the assumption that the indi-

vidual will have a reliable knowledge about the likelihood p(e|x) can also be problematic

when such information needs to be obtained from the behaviors/actions of others. Another

type of limitation is that much of the literature has not tackled the issue of learning taking

place in the context of a social network. The assumption that decisions are made without

taking into account the social network or any contacts a person may have is also unrealistic.

As the assumption that individuals should have a reliable model of the world can be

too restrictive and cause complexity issues, alternative approaches have been developed to

14



overcome such limitations. Gilboa and Schmeidler [41], for example, suggest an approach

for prior formulation based on “empirical frequency”. In this approach, individuals form

their beliefs about a situation or make decisions based on their experiences in similar situa-

tions in the past. Bayesian Networks (BNs) [42] are another type of models that have been

used in knowledge representation due to its sound theoretical foundations in probability

theory combined with efficient reasoning. For example, Garg et al. [43] introduced a BN

based divergence minimization framework to integrate opinions from different sources in

order to solve the problem of standard opinion pooling. However, the incompleteness in

people’s knowledge bases can become problematical to BNs, as they require a completely

specified conditional probability table (CPT). BNs also require that information be topo-

logically ordered which further restricts their general applicability to real-world situations.

The second class of opinion dynamics modeling is non-Bayesian approaches. How

individuals form their opinions are determined by “rules of thumb”, which are either mo-

tivated by social theories or have been justified to be capable of producing desirable prop-

erties. The work provided by French [44] became he pioneer of this model family. In his

work, individuals form their new opinions by averaging the opinions of other people with

whom they have communicated directly. After that, several non-Bayesian approaches were

developed in sociology and physics around the idea that “the opinions of each agent evolve

dynamically over time as a function of their neighbors’ opinions”. Most works in this area

are based on classical models of interacting particle systems motivated by statistical me-

chanics [45]. For instance, we have the first uses of the Ising model to describe the behavior

of laborers in a strike [46]; the voter model, where only one neighbor affects the agent at a

time [47] [48], and continuous opinion models like DeGroot [49].

The DeGroot Model is a simple but widely used model of belief and consensus forma-

tion over social networks. The DeGroot Model and its variations have been well exploited
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in the cooperative control literature for achieving collective behavior in a social environ-

ment [50, 51, 6]. The idea of this model is to replace the simple average function in French

[44] with a weighted mean in order to assess opinion pooling of a dialogue among experts.

Imagine that each person holds an opinion represented by a real number, which might be

a political spectrum, or a probability that i assigns to a certain opinion. Then, at any time

t >= 0, individuals in the defined network will update their opinions/beliefs represented

by a vector x(t) according to the following equation:

x(t+ 1) = A ∗ x(t)),

where A is a stochastic weight matrix that reflects the extent of influences between individ-

uals in a social network. Besides its simplicity and intuitiveness, another attractive feature

is that the analysis of consensus is straightforward as well. The sufficient conditions to

ensure the convergence can be easily derived from Markov Chain Theory. Despite the fact

that the weighting matrix in DeGroot is stochastic and static, and it overlooks the situations

when consensus is not reached, it still serves as a classic opinion formation model that can

be easily modified to incorporate social theories.

After DeGroot [49], many extensions have been proposed to overcome its limitations.

For example, Chatterjee and Seneta [52] modeled the phenomenon when the weights be-

tween two actors are modeled as a function of time. Krause [53] allowed each actor to only

take opinions from the ones whose opinions differ from his/her own within a bounded con-

fidence. However, many DeGroot-based models are still linear in the sense that the updated

opinions are calculated as a linear combination of the adopted opinions. Of course, having

a mathematical model does not mean that the updated opinion is always obvious and can

be determined from the model. Wu and Huberman [17] developed a model to predict the

evolution of a set of opinions by considering the structure of the social network. In their
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work, people update their opinion with a probability based on the opinion distribution in

her neighbors. However, they assume that the influences from each neighbor are the same,

which is hardly true in the real world. Most of these works are theoretical models where

the strong assumptions attached to these methods, such as fixed social structure [6], equally

distributed influence [17] or binary opinion dynamics [54, 55] restrict them to be only ap-

plicable to extremely simple scenarios.

Some recent efforts have been made on studying social influence using real data. For

example, “Influence Model” has been applied to model influence within social systems.

The influence model was first articulated in Basu and Choudhury [56] to describe the con-

nections between Markov chains in terms of the “influence” between them. The main idea

is that the distribution of an entity’s state or an opinion on a given issue at time t is a

combination of the pairwise transition probabilities from t − 1 to t with some “influence”

parameters. Pan et al. [22] extended it to model dynamical influence in human interaction,

where the dynamical parameters that characterize transition probabilities and the influ-

ences between entities can be learned from data. However, the influence model stands on a

hypothesis that every entity in a social community has the same transition probability dis-

tribution, the individual difference in shifts in the states/opinions, therefore is overlooked.

Another limitation of the existing methods is that most of them only consider single

opinion dynamics but overlook the connections between knowledge fragments [15, 57, 8].

As we mentioned earlier, it is necessary to capture and model such relationships so that

more insights on opinion dynamics can be derived via reasoning. All these works inspire

us to develop a framework to model different aspects of opinion dynamics in one entire

system. The foundation of the framework is that we treat opinions a product inferred from

one’s knowledge base, where the knowledge base keeps growing and updating via various

type of social learning.
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1.3 Contributions

The key contributions of this thesis include the following:

1. We provide a domain-independent computational model to study opinion dynamics.

(a) The model is built on individual knowledge-based system to capture the intents

behind opinion change.

(b) The model considers individual difference in knowledge bases.

(c) The model takes into account the dependencies between knowledge fragments.

(d) The model characterizes the influences in a social community by realizing and

enriching theories of social communication.

(e) The model provides a flexible platform where new influential factors can be

readily plugged in.

2. The results generated by the model are promising compared to the existing ap-

proaches.

(a) The performances are consistently promising in both synthetic and real data.

(b) The model is robust to different environmental settings.

(c) The model is compatible with classical approaches under a certain conditions.

(d) The model facilitates the validation of social influential factors.

(e) The results can potentially be used to predict and regulate future opinion changes.

3. The model can be used to detect and track hidden sources.

(a) The results show the capability of tracking influencing sources even when the

impacts are small.
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(b) Newly added hidden sources are detected more accurately than classical mod-

els.

(c) The results can be used to explain the role that external sources play in opinion

and behavior change in complex scenarios.

1.4 Outlines

This thesis presents a framework for modeling opinion dynamics. The rest of the paper is

organized as follows:

• Chapter 2 discusses background materials on social influence, Bayesian Knowledge

Bases and a brief description on social network.

• Chapter 3 overviews some popular computational approaches for representing an

opinion and formally introduces our opinion formation model.

• In Chapter 4, we introduce a general impact metric that estimates the reliability for

each adopted knowledge fragment based on a set of social influential factors. We

show how the impacts of each social factor can be efficiently learned based on the

OFM derived in Chapter 3 .

• Chapter 5 extends the OFM and introduces a new modeling approach called a Finite

Fusion Model for detecting and tracking hidden sources in a time-variant scenario.

The goal is to analyze the behavior change over time by detecting hidden influencing

sources and tracking the corresponding impact patterns.

• We conclude in Chapter 6 and describe a few limitations and potential future works.

1.5 List of Acronyms

• Knowledge Base KB
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• Opinion Formation Model OFM

• conditional probability table CPT

• Bayesian Knowledge Bases BKBs

• Bayesian Networks BNs

• conditional probability rules CPR

• causal rule set CRS

• Linear Programming LP

• Relative Squared Error RSE

• Dynamic Bayesian Networks DBNs

• Hidden Markov Model HMM

• Expectation-maximization EM

• Finite Fusion Model FFM

• Sequential Quadratic Programming SQP

• Gaussian Mixture Model GMM

• Mixtures of Bayesian Networks MBNs

• Receiver Operating Characteristic ROC

• standard std

• Waikato Environment for Knowledge Analysis Weka
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Chapter 2

Backgrounds

We provide background materials on social influence, Bayesian Knowledge Bases (BKBs)

and social network in this chapter. We first introduce the primary observations and findings

in social scientific studies that serve as the theoretical foundation of the social influence

learning (Chapter 4). Then, we provide the formal definition of BKBs and its reasoning al-

gorithms that are applied in this work to quantify each individual’s opinion values (Chapter

3, 4). Lastly, we give a brief description on the social network that is employed to define a

social influential environment.

2.1 Social Influence

Social influence lies at the heart of individual’s opinion formation. It has been explored in

many aspects. One branch of works is based on social network analysis. They consider

social influence as an ability to affect the diffusion process. Works fitted in this category

involve the study of diffusion patterns [58, 59], influential entities [60] and information

flow tracking [61, 62]. Computer simulation of interpersonal influence processes has been

employed to study the conditions leading to the massive information cascade. The findings

from Watts and Dodds [63] suggest that the large cascades of information are due to a few
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critical individuals whose opinions can be easily influenced other than the influentials1 .

However, the analogue with the real world is not exact the same. Influence in real world is

much more complex because the influential pattern concluded from one scenario may not

apply to another; social behavior can be strategic; and people have a free will to choose

whom they want to interact with.

In contrast, another angle in studying social influence channels its focus into the reasons

behind the social influence. For instance, Granovetter [64] presented threshold models of

collective behaviors to understand situations where outcomes are not intuitively consistent

with the individual preference. They explained the paradoxical phenomenon as rioting and

diffusion of innovation. Another topic of interest is social notions of trust. It defines a social

network about with whom we should share information and from whom we should accept

information. Trust-based models have been well developed to measure the magnitude of

trust between people and to provide recommendations in social networks [27, 65, 66].

A common practice to measure the extent of trust in most of the popular approaches is

via a simple scalar [67, 68]. However, social trust depends on a host of factors that can

never be easily modeled computationally [27]. One reason is that it has various forms

depending on the situational context of specific interactions. Moreover, it is often the case

that one may believe someone’s words, but refuses to change her mind. In this thesis, we

study and model social trust from a different angle. Specifically, we only focus on how

people view and adopt the opinions held by the people they have communicated with. The

extent of people’s willingness to adopt a new knowledge is characterized by a reliability

value that can be estimated via some assessment mechanisms. Considering that how an

individual adopts the beliefs of others may vary in different situations, we model reliability

as a function of social factors. We start by considering three domain independent influential

factors: relationship, contact frequency and opinion similarity, which have been shown to

1A minority people that have great influence on an exceptional number of their peers [63]
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be highly related to opinion formation by communication scholars and social theories. As

a note, our model is not restricted to these factors. Newly discovered factors can be easily

incorporated into the model (Chapter 4).

2.1.1 Relationship

Relationship characterizes the closeness between people, is a strong indicator of how likely

one may accept another’s opinion. It forms the social environment, e.g. family or friend

that people are willing to adjust their attitudes to conform to their group members [33]. For

instance, people are inclined to take the opinions from their close friends more seriously

than from random people. Rotter, in his work [69], conducted sociometric analysis to study

interpersonal trust. The results show that trust, as measured sociometrically, is positively

related to friendship.

2.1.2 Contact Frequency

The second factor we considered in the social influence study (Chapter 4) is the recent

contact frequency. Without frequent contact, even two close friends may differ so much

on their knowledge bases that one can hardly convince the other. Chong and Druckman

[70] proposed a theory of framing to identify the key parameters that determine how public

opinion is formed. One of their finding is that frequent communication allows one to deliver

her opinions more credibly to the public.

2.1.3 Opinion Similarity

Similarity has been used as a metric to evaluate the relationship between people in social

network analysis [71]. Instead of measuring the similarity of personal characteristics, such

as age and location, we measure the opinion-wise similarity, because the former one can

be highly correlated to the relationship. The work from Sniderman and Theriault [34]
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shows that individuals favored the idea that was consistent with their own values. Crandall

et al. (2008) developed techniques for identifying and modeling the online interactions

between social influence and selection. They addressed the problem via empirical analysis

of Wikipedia data. Their results suggest that the similarity between two individuals leads

to future interaction, and interaction leads to further similarity.

2.2 Bayesian Knowledge Bases

In this section, we introduce Bayesian Knowledge Bases (BKBs) - a rule-based proba-

bilistic model that represents possible world states and their (causal) relationships using

a directed graph. Instead of specifying the causal structure using conditional probability

tables (CPT) as in BNs, it collects the conditional probability rules (CPR) in an “if-then"

style. Figure 2.1 shows a graph structure of a BKB fragment, in which A is a random

variable with possible instantiations (or “states” in BNs terminology) {a1, a2}. Each in-

stantiation of a random variable is represented by an I-node, or “instantiation node", e.g.

A = a1, and the rule specifying the conditional probability of an I-node is encoded in an

S-node, or “support node" with a certain weight. For example, q7 corresponds to a CPR

which can be interpreted as: if A = a2 and C = c1, then B = b2 with a probability 0.5.

One benefit of this approach is that it allows for independence to be specified at the

instantiation level instead of the random variable level. Also, it does not require the full

table representation of the CPTs and allows for reasoning even with incompleteness. As

the BKB shows in Figure 2.1, the dependency relationship at the variable level implies that

variable B depends on both A and C. However, given the evidence of A = a1, B becomes

independent of C. This could happen in the real world when the role of a critical variable

can dominate some local dependency relationships between variables. In a BN, in order

to represent the probability distribution of B dependent on A and C, all CPT entries of
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P (B|A,C) are required to fill in, which could grow exponentially when the number of the

parent nodes is large. BKBs in contrast, only capture the knowledge that is available and

does not require a complete distribution specification.

Figure 2.1: Example of a BKB fragment

The other feature of BKBs is that they also allow cyclic relationships among random

variables. Imagine if the direction of some causal mechanism also depends on specific

states of the variables. Santos et al. [2] gives an example of BKB modeling of a political

election, in which the type of “race" may flip the causal direction between the belief of a

piece of evidence and the voting action.

We first provide a formal definition of BKBs [72], followed by the BKB fusion algo-

rithm [2] that allows us to merge multiple BKBs into one BKB without violating semantic

and probabilistic soundness. Lastly, we describe our previous work: BKB tuning algorithm

[73] which can be used to modify or correct a distribution without changing the structure.
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2.2.1 Framework of Bayesian Knowledge Bases

The formal definition of the graphical representation of a BKB is given below:

Definition 1. (Santos and Dinh [72]) A correlation-graph is a directed graph G =

(I ∪ S,E) in which I ∩ S = φ,E ⊂ {I × S} ∪ {S × I}, and ∀q ∈ S, there exists a

unique α ∈ I such that (q, α) ∈ E. If there is a link from q ∈ S to α ∈ I , we say that

q supports α.

For each S-node q in a correlation graph G, we denote PredG(q) as the set of I-nodes

pointing to q, i.e. PredG(q) = {α ∈ I|α→ q ∈ E} and DescG(q) as the I-node supported

by q, i.e. the α such that q → α ∈ E.

Definition 2. (Santos and Santos [74]) Two I-nodes, α1 and α2 are said to be mutu-

ally exclusive if there is an I-node R = v1 in I1 and an I-node R = v2 for which v1 6= v2.

Similarly, two sets of I-nodes I1 and I2 are mutually exclusive if there exists two I-nodes

α1 ∈ I1 and α2 ∈ I2, such that α1 and α2 are mutually exclusive. For example, the sets of I-

nodes {A = a1, B = b2} and {A = a2, B = b2, C = c1} are mutually exclusive. A state is

a set of I-nodes such that it contains no more than one instantiation of each random variable.

Definition 3. (Santos et al., [73]) A set of S-nodes R is said to be complementary if

for all q1, q2 ∈ R, DescG(q1) and DescG(q2) are mutually exclusive, but PredG(q1) and

PredG(q2) are not mutually exclusive. Variable v is said to be the consequent variable of

R, if for any S-node q ∈ R, DescG(q) is an instantiation of v.

We denote ρv as the set that contains all possible complementary sets of S-nodes w.r.t.

variable v, such that for any complementary set r ∈ ρv, v is the consequent variable of r.
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We also introduce Ψv to denote the subset of ρv that removes all complementary sets in ρv

that are a subset of some other complementary set, i.e. Ψv = {r|r ∈ ρv∧@r′ ∈ ρv, r ⊆ r′}.

For example in Figure 2.1, {q5, q6} is a complementary set w.r.t. variable B and ΨB =

{{q5, q6, q12}, {q7}, {q8}} Note that for a certain variable v in a Bayesian Network, the size

of Ψv goes exponentially with the number of its parent variables. However, since BKBs

only capture context-specific dependence rules, the size of Ψv can be considerably smaller

in real-world cases.

Definition 4. A set of S-nodes B is said to be a causal rule set (CRS) for the random

variable v if B contains all S-nodes pointing to the instantiations of v. As a note, each

S-node only belongs to one CRS.

For each complementary set r′ ∈ Ψv, r
′ is a subset of B. For example, the CRS for

variable B in Figure 1 is {q5, q6, q7, q8, q12}.

Definition 5. A Bayesian knowledge base (BKB) is a tuple K = (G,w) where G =

(I ∪ S,E) is a correlation graph, and w : S → [0, 1] such that

1. ∀q ∈ S, PredG(q) contains at most one instantiation of each random variable.

2. For distinct S-nodes q1, q2 ∈ S that support the same I-node, PredG(q1) and

PredG(q2) are mutually exclusive.

3. for any complementary set of S-nodes R ⊆ S, R is normalized:
∑

q∈R w(q) ≤ 1

wherew(q) is a weight function that represents the conditional probability of P (DescG(q)|PredG(q)).

The intuition behind these three conditions is that each S-node can only support one

I-node; two rules supporting the same I-node cannot be satisfied at the same time; and, to

ensure normalization of the probability distribution, every complementary set of S-nodes

should be normalized.
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Definition 6. The CRS B w.r.t. the variable v is called normalized if for any comple-

mentary set r ∈ ρv, r is normalized.

Theorem 1. Let B be the CRS of variable v, if for any complementary set r′ ∈ Ψv, r
′

is normalized, then B is also normalized.

Theorem 1 can be easily proved from the definition of Ψv, since any complementary set in

ρv is a subset of some complementary set in Ψv.

As in BNs, reasoning with BKB is also based on the calculation of joint probabilities

over the possible worlds. Here, a world is a subgraph of a BKB including at most one

I-node of each random variable and the associated S-nodes (a world is referred to as an

inference in [74]). For example in Figure 2.1, the dotted rectangle circles a world. As

proved in Santos & Santos [74], the joint probability of a world τ is just the product of

the weights of all S-nodes in τ , i.e.P (τ) = Π(q∈τ)w(q). The idea of a world plays an

important role in two forms of reasoning with BKBs, belief revision (also called max-

imum a posteriori or MAP) [74, 42] and belief updating. In belief updating, the goal

is to calculate the probability of a state of a random variable given some evidence, e.g.

P (Y = y|X1 = x1, X2 = x2, . . . , Xn = xn). As shown in Rosen et al [75], the joint

probability of a state θ = {X1 = x1, X2 = x2, . . . , Xn = xn} is a summation of the

probabilities of all possible worlds where θ is true, i.e. P (θ) =
∑

(τ∈Iθ) P (τ), where Iθ

represents the set of worlds containing θ. The worst-case complexity of reasoning with

BKBs is NP hard. Some approximation algorithms, e.g. stochastic sampling methods,

have been introduced to make the reasoning process more efficient [75]. However, given

that BKBs only captures the knowledge available, for real-world problems [76, 77, 78], ex-

act methods have been shown to be computationally feasible at least in terms of moderate
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size.

To better understand the role of each node in the probability calculation, an algorithm

used to compute the contribution of node q to the probability of state θ, represented by

cθ(q), was presented in [76], in which the contribution is defined as the sum of the proba-

bilities of the worlds including both θ and q.

Definition 7. cθ(q) =
∑

(τ∈Iθ∧q∈τ) P (τ).

Here, q is not restricted to just S-nodes. If it is an I-node, then the contribution measures

how much influence an event can have on a state.

2.2.2 BKB Fusion

One extension based on the BKB framework is BKB Fusion. Unlike BNs, multiple BKB

fragments can be combined into a single valid BKB using the BKB fusion algorithm [2].

The idea behind this algorithm is to take the union of all input fragments by incorporating

source nodes, indicating the source and reliability of the fragments. As such, all knowledge

is preserved and source/contribution analyses can be conducted to determine the impact of

various elements of source knowledge on reasoning results. Figure 2.2 shows an example

of the knowledge fusion, where two BKB fragments from actor 1 and actor 2 are fused

into one. A valuable property of knowledge fusion is that it considers the impacts from

multiple sources when constructing explanations for any evidence observed. For detailed

description of the BKB fusion algorithm, please refer to Appendix A.

2.2.3 BKB Tuning

Another useful extension named BKB Tuning was developed in one of our previous works

Santos et al. [73]. In this work, we proposed a method to tune a BKB. Specifically, we
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Figure 2.2: Example of BKB fusion

described how to explain and fix the conflict between the users’ expectation and system

answer by making a small change to the parameters. The optimal set of parameters is

determined by evaluating their sensitivity, which minimizes the amount of change. Both

single parameter and multiple parameters solutions are provided. We show that tuning a

system via multiple parameter changes has the same computational complexity as single

parameter changes. The problem of multiple parameter changes can be transformed into a

Linear Programming (LP) problem and efficiently solved.

BKB Tuning can be applied to tune the marginal probabilities of a BKB. This is ex-

tremely useful to modify or correct a distribution with the whole structure being main-

tained. As BKB subsumes BN, the tuning method is applicable to BN problems. Moreover,

tuning method can also be used for controlling reliabilities or weights of the knowledge

bases from different sources in knowledge fusion.
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The tuning problem is defined as: given a BKB, K = (G,w) and some evidence e

entered by the user, we determine how we can identify necessary changes to a set of S-

nodes such that the tuned BKB can enable P ′(v = v1|e) > P ′(v = v2|e), where P ′ is the

distribution after we apply changes on the rules (as compared to the original distribution

P ). Before we move on to the tuning algorithm, we would like to first introduce the formal

definition of sensitivity with respect to a single S-node and a CRS.

Definition 8. Given a BKB K = (G,w), let x be the weight of S-node q, the sensitiv-

ity of x on r(v|e) is a partial derivative:

S(x|v, e) =
∂r(v|e)
∂x

The ratio r(v|e) can be expressed in terms of x as:

r(v|e) =
P (v = v1|e)
P (v = v2)|e

=
P (θ1)

P (θ2)
=
αx+ a

βx+ b

which is a fraction of two linear functions on x. Then the partial derivative of r(v|e) on x

turns to be:
∂r(v|e)
∂x

=
ab− αβ

(βx+ b)2
(2.1)

The S-nodes with higher |S(x|v, e)| are more sensitive to the results, and thus more likely

to correct the system with small change.

Definition 9. Given a BKB K = (G,w), let ~x = [x1, x2 . . . xn] be the vector that de-

notes the weights of S-node in CRS B = {q1, q2 . . . qn}, the sensitivity of ~x on r(v|e) is a

partial derivative:

S(~x|v, e) =
∂r(v|e)
∂~x

Similar to the way we derive r(v|e) as a function of the weight of a single S-node, r(v|e)
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on ~x can be given by:

r(v|e) =
P (θ1)

P (θ2)
=
α1x1 + α2x2 + . . .+ αnxn + a

β1x1 + β2x2 + . . .+ βnxn + b

Then the sensitivity of ~x on r(v|e) is a partial derivative vector:

∂r(v|e)
∂~x

= [
∂r(v|e)
∂x1

,
∂r(v|e)
∂x2

, . . . ,
∂r(v|e)
∂xn

] (2.2)

The Euclidean norm of the partial derivative vector can be used to compute the sensitivity

value. The CRS with higher sensitivity value will cause larger changes to the results.

Two types of solution are provided in [73]. The first one is to tune a single S-node. The

idea is to transform the original problem into a set of conditions and find the solution set

to satisfy the conditions. The conditions to correct the system for S-node q are listed as

follows: 
∀R ∈ Ψv(q),

∑
q∈R w(q) + ∆w ≤ 1

w(q) + ∆w > 0

(αq − βq)∆w > b− a+ cθ2(q)− cθ1(q)

(2.3)

where

αq =
cθ1(q)

w(q)
and βq =

cθ2(q)

w(q)

In Inequalities 2.3, Ψv(q) collects the complementary sets in Ψv that contain q; cθ1(q) and

cθ2(q) are contributions of q in θ1 and θ2; a and b are two constants independent of w(q)

Since ∆w is the only unknown variable, the solution space can be easily found by solving

for the equality condition. Then, which S-node q to tune is decided by the sensitivity anal-

ysis.

The second type of solution is to tune CRS. Combining with normalization constraints
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of Ψv to find the solution of parameter changes over the CRS that satisfies P ′(v = v1|e)−

P ′(v = v2|e) > 0, the following conditions must hold:


∀R ∈ Ψv,

∑
q∈R w(q) +

∑
q∈R ∆w(q) ≤ 1

∀q ∈ B, w(q) + ∆w(q) > 0∑n
i=1(αi − βi)∆w(qi) > b− a+

∑n
i=1[cθ1(qi)− cθ2(qi)] = C0

(2.4)

where n is the number of S-nodes in B,

αi =
cθ1(qi)

w(qi)
and βi =

cθ2(qi)

w(qi)

Solving Inequalities 2.4 is treated as a LP problem using simplex algorithms, i.e. Min
∑n

i |∆w(qi)|,

such that the upper conditions hold. Similar to tuning one S-node, the CRS with the high-

est sensitivity to the results is selected for tuning. An example of how tuning algorithm is

applied More details about the tuning algorithm and associated properties can be found in

[73].

2.3 Social Network

Social networks play a fundamental role in the spread of information. Hot topics or rumors

used to be propagated among people in a “word-of-mouth” form. The rise of World Wide

Web accelerates the development of large-scale social networks and makes it possible to

diffuse information faster. Large online social medias include Twitter and Facebook . In the

last few decades, researchers from the social and behavioral science have made consider-

able efforts to analyze social networks. Much of these efforts can be attributed to the focus

of relationships between social actors and the patterns of these relationships [6, 79]. As the

goal of this thesis is not to develop new social network analysis techniques, we omit details

of these techniques. A thorough review of social network analysis methods is provided by
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Wasserman [80].

Recently, with the development of Internet, considerable attention has been devoted to

analyzing information on online social medias. For example, Gruhl et al. [81] and Lin et

al. [82] developed models to identify and track hot topics in online communities. Danescu-

Niculescu-Mizil et al. [83] studied how people’s attitudes are affected by online reviews.

Their results suggest that users tend to consider the reviews that agree with the average to

be more helpful.

The relationships encoded in social networks may be of many sorts from economic

to interactional. In this work, we focus on direct communications from one individual

to another, as direct communication is the most powerful and effective way for people to

convey their ideas and knowledge. Communication has various forms as well: face-to-

face conversations, email, phone, instant messaging, bluetooth file transfer, to name a few.

No matter what form a commutation takes, they all serve as channels to pass knowledge

fragments from one source to another. We assume that all communications take place in a

subset of social community, usually referred to as a social network. Each node in the social

network represents an agent. The information passed between actors is represented by BKB

fragments. In order to model learning experience gained from information sources besides

interpersonal communication, we allow agents to be media sources as well. Then the node

with no incoming edges indicates a media influence. Apparently, the structure of such

social network/influential network is not static, but varies in time. Figure 2.3 depicts an

example contact network, where links in different colors represent different communication

means.
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Figure 2.3: Example of a small contact network
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Chapter 3

Opinion Formation

That social influences alter individual’s opinions is a truism to which anyone can readily

consent. However, people do not shape opinions on an issue for no reason. To understand

opinion dynamics in a social community, it is crucial to study how opinions are formed and

how to quantify and represent opinions.

3.1 Opinion as a Reasoning Product

According to Damer [84], opinions, supported by arguments, should be viewed as the con-

clusion resulting from certain process of rational reflection on evidences. Moreover, studies

on cognitive processes have shown that arguments are inferred from one’s knowledge bases

[85, 86]. Thus, in this work, we assume that all opinions are accompanied by the reasons

that support them. In fact, though everyone is entitled to have her opinions, supported opin-

ions are considered more valuable when a person is evaluating a bunch of given opinions

[84]. Traditional models mainly focus on the process of opinion formation where opin-

ions are treated as independent values. Multiple opinions are integrated into one based on

some weighting strategies [49, 6, 15]. Then the question becomes how to assign weights

to each received opinion? Different weighting functions lead to different results, e.g. con-

sensus or polarization [15]. In recent years, more and more works start evaluating the trust
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between people in social networks based on homophily effects such as the similarity in

demographic features, e.g. age, gender, etc [27, 66]. The intuition is that individuals in

homophilic relationships share common characteristics that make communication easier.

However, to evaluate whether an opinion deserves acceptance, homophily only is not suf-

ficient. For example, a person trusts someone’s words does not necessarily mean that she

will want to change her opinions. In addition, traditional methods usually simplify the

problem by assuming that opinions are only formed via communication with others. How-

ever, what if an individual is temporarily isolated from others, can she change her opinions

as a result of self-learning, e.g. through observations of her own experience? The answer

is yes. The work from Gureckis and Douglas [87] suggested that self-directed learning is

an important factor as it optimizes the education experience and allows people to focus on

useful information. In a nutshell, in this work, opinions are treated as a reasoning product

from one’s context knowledge base where new knowledge fragments are acquired through

various types of learning experience [5].

3.2 Computational Approaches for Opinion Representa-

tion

A knowledge base (KB) usually refers to an information repository that stores knowledge

fragments. It is accompanied with a reasoning engine that enables effective retrieval of in-

formation and knowledge-based inference. Cognitive scientists have made efforts to struc-

ture individual knowledge-based system as interrelated argument pieces [26], from which

one can form her opinions via reasoning. For example, Zukerman [85] proposed a graphical

model to capture connections in context knowledge, where connections like causality and

conditional dependencies play an important role in reasoning process. On the other hand,

the knowledge-based system at any stage is necessarily associated with some degree of in-

completeness and uncertainty. This results in a natural expectation that a knowledge-based
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system should exhibit enough flexibility and intuitiveness for capturing knowledge in order

to make it easy and responsive for the knowledge engineers to build models/systems that

they can still understand, maintain, validate, update, and so forth. Bayesian approaches,

therefore, have been widely used for managing uncertainty, and more recently, for opinion

formation. Among those, Bayesian Networks (BNs) [42] keep gaining attention in knowl-

edge representation due to its sound theoretical foundations in probability theory combined

with efficient reasoning. For example, Garg et al. [43] introduced a BN based divergence

minimization framework to integrate opinions from different sources in order to solve the

problem of standard opinion pooling. However, the incompleteness in people’s knowledge

bases can become problematical to BNs, as they require a completely specified CPT. BNs

also require that information be topologically ordered which further restricts their general

applicability to real-world situations. To overcome these limitations, we apply a proba-

bilistic framework called Bayesian Knowledge Bases (BKBs) [74] to represent individual’s

knowledge base due to its flexibility on modeling incomplete information and allowance of

cyclic on variable level. BKBs have been extensively used to represent individual’s goals,

intentions, opinions and cultural influences [76, 29]. Figure 3.1 shows a sample BKB frag-

ment from an intent framework.

In sum, we consider opinions as a product inferred from one’s knowledge-based system,

where new knowledge pieces are acquired through social interaction and learning experi-

ences. To illustrate the differences between our method and the existing approaches, e.g.

DeGroot based models, we depict the comparison of our model of opinion formation with

them in Figure 3.2. To the best of our knowledge, this is the first computational framework

of opinions where opinion dynamics is modeled as an evolution of knowledge bases.

In this work, an individual fuses the knowledge fragments (represented by BKBs) re-

ceived from n sources into her prior knowledge base. Each fragment will be assigned with
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Figure 3.1: Sample BKB fragment from an intent framework modeling the real scenario

a reliability ri depending on how much the person wants to adopt it. Then, new opinions

are derived from the updated knowledge base. In contrast, traditional methods usually fo-

cus on quantifying opinion values on a certain issue first, and then integrate those opinion

values directly to form a new opinion (as circled by the blue rectangle box). The limitations

of such methods are threefold:

1. the dependencies and connections between knowledge fragments in a knowledge

base are lost after the opinion acquisition process. In other words, they assume that

different opinions on a given issue can be integrated independent of other knowledge

fragments and whatever changes in other fragments will not affect the decision made

on that given issue. Such assumption, unfortunately, is not true in the real world.
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(a) The proposed opinion formation model

(b) Existing opinion formation models

Figure 3.2: Comparison of opinion formation process
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2. As individual opinions are acquired in the first step, if modeling engineers want to

model opinion formation in terms of different issues, they must have a clear picture

of what opinions to collect in advance. However, the development of a knowledge-

based system is fundamentally an incremental process. The domain knowledge en-

gineers (subject matter experts) are inclined to start by selecting a subarea that they

personally understand well, and then continuously introduce new information to the

existing knowledge-based system as a basic cyclical process [88, 89]. Therefore, it is

important to endow the model with some flexibility by making the knowledge inte-

gration process domain-independent, such that opinions on other topics/domains can

be incrementally acquired from the updated knowledge base;

3. The third danger of the traditional design is that it is unable to explain where an

opinion change comes from. As shown in Figure 3.2(b), by looking at the updated

opinions only, it is impossible to decide if the change is due to the reliability variation

or the knowledge base expansion/update. In contrast, as opinions in our model are

reasoned from one’s knowledge bases that is represented by a probabilistic model,

we are capable of providing more insights on the reasons behind an opinion change

from inference activities. In Chapter 5, we will present an approach to track and

detect hidden sources by looking into the inconsistency in belief distribution.

3.3 Model of Opinion Formation

People do not like/dislike a thing for no reason. We treat all opinions as the reasoning

results from ones’ knowledge base. We assume that all knowledge fragments that serve as

input to our model are valid BKBs.
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From the concept of knowledge fusion, the individual knowledge base at time t (t =

[1 : T ]) can be viewed as an integration of the previous one and the knowledge fragments

acquired through the interaction. A valuable property of knowledge fusion is that it con-

siders the impacts from multiple sources when constructing explanations for any evidence

observed. Thus, the opinions inferred from the fused BKB are not a linear combination

of the original ones. The example in Appendix B shows that one’s integrated opinion is

actually a high-order polynomial function with the reliability of each knowledge fragment

being indeterminate.

The structure of a knowledge base indicates the causal dependencies between different

issues. For simplicity, we assume that everyone’s initial BKBs share the same structure, but

different distribution. The intuition is that people usually have common understandings on

the causal relationships of basic issues. For instance, whether to bring a umbrella depends

on the weather condition, not vice versa. However, we allow someone’s knowledge base

to be more complete than others. The trick is that if one’s BKB misses one part of the

information, we can always treat the corresponding conditional probabilities as 0, and the

transformed BKBs are still valid. This is guaranteed by the power of BKBs in modeling

incompleteness.

3.3.1 Mathematical Formulation

Given an actor 0 whose initial knowledge base is K0
0 (Ki

t denotes the knowledge base for

actor i at time step t), let p0t represents the distribution of the BKB after fusing knowledge

fragments from the people she contacted from t−1 to t, i.e. K0
t = fusion(K0

t−1, K
1
t−1, . . . , K

n
t−1).

Then, the opinion on a specific issue v, represented by the probability can be calculated
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from probability theory:

p0t (v) =
∑
j

p0t (v|paj(v)) ∗ p0t (paj(v)) (3.1)

where paj(v) denotes the jth parent set of v and p0t (v|paj(v)) is simply the weight of the

jth S-node qj pointing to v in K0
t . Let wt(q) be the weight of the S-node q at time t. Then,

Equation 3.1 becomes:

p0t (v) =
∑
j

wt(qj) ∗ p0t (paj(v)) (3.2)

wt(qj) = p0t (v|paj(v)) =
p0t (v, pa

j(v)))

p0t (pa
j(v))

For each S-node qj , paj(v) consists of all precedent I-nodes of qj . So paj(v) also

contains the source node srcj indicating where a particular piece of knowledge comes

from. Let rt(srcj) be the reliability of such a knowledge fragment at time t and let p̄aj(v)

be the collection of all precedent I-nodes of qj , except srcj , i.e. p̄aj(v) = paj(v)\srcj .

Since the sources nodes are independent of any random variables in a fused BKB, we have

p0t (pa
j(v)) = rt(srcj) ∗ p0t (p̄aj(v)). (3.3)

After combining Equation 3.2 and Equation 3.3, we have

p0t (v) =
∑
j

wt(qj) ∗ rt(srcj) ∗ p0t (p̄aj(v)). (3.4)

Let rit (i = [0 : n]) be the reliabilities for Ki
t−1 (i = [0 : n]), r0t is the normalized reliability

for actor 0 herself. Then from Santos et al. [2], Equation 3.4 can be rewritten into

p0t (v) =
n∑
i

rit
∑
qj∈σi

wt−1(qj) ∗ p0t (p̄aj(v)), (3.5)
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where σi is the set of S-nodes pointing to v in Ki
t−1. Take the BKB fusion in Figure 2.2 as

an example, let q1 and q2 be the S-node pointing to the I-node “Vote = Y” in actor 1 and 2’s

BKBs, respectively. Then in the fused BKB with new distribution p′, the probabilities of

p′(p̄a1(v)) and p′(p̄a2(v)) are identical and simply equal to p′(Interested in Politics = Y ).

So following Equation 3.5, the probability of p′(V ote = Y ) can be calculated as:

p′(V ote = Y ) = r4 ∗ 0.7 ∗ p′(Interested in Politics = Y )

+ r3 ∗ 0.9 ∗ p′(Interested in Politics = Y )

Let ρit =
∑

qj∈σi wt−1 ∗ p
0
t (p̄a

j(v)), then we simplified Equation 3.5 to:

p0t (v) =
n∑
i

rit ∗ ρit (3.6)

where
n∑
i

rit = 1

In fact, ρit represents each actor’s view on v in each of the input fragments given the

distribution of v’s the precedent variables being updated from p0t−1 to p0t .

So, what if p0t (v) represents the prior probabilities of the variables with no precedent

variables? From the fusion algorithm, the fusion of the prior probabilities is simply the

weighted average of each input prior, i.e.

p0t (v) =
n∑
i

rit ∗ pit−1(v) (3.7)

3.3.2 Discussion

Equation 3.6 and 3.7 are key findings for our computational framework. The importance

are threefold:
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1. As ρit is calculated based on the fact that the distribution of v’s parent variables being

updated to p0t , it takes into account the opinion changes appeared on the issues that

v is dependent on. Whatever happens on v’s related issues will be reflected on the

decision made on v. Moreover, if all variables are independent of each other, then as

shown in Equation 3.7, our model will become equivalent to DeGroot-based models.

This provides us the flexibility of modeling both simplified theoretical scenarios and

complex real scenarios.

2. Though the marginal probability of p0t (v) is in essence a high-order polynomial func-

tion of reliabilities (ρit is also dependent on the reliabilites), by following Equation

3.7, we manage to model p0t (v) as a “weighted sum” of the reliability values, where

the “weight” ρit can be easily calculated based on the inferencing results with respect

to the distribution of v’s precedent variables at time t. In the next Chapter, we will

show how this feature enables us to transform the social influence learning problem

into a regression problem and solve efficiently.

3. Similar to reasoning with BKB and BN, as p0t (v) is independent of any descendent

variables, the calculation of p0t (v) can be performed in a top-down manner, where the

prior probabilities are computed from Equation 3.7. The complexity of reasoning is

same as BKB.

3.4 Nonlinearity in Opinion Formation

The main difference between DeGroot-based models and our model is that their opinion

formation process is modeled linearly in the sense that the updated opinions are calculated

as a linear combination of the adopted opinions, whereas our approach formulates opinion

as a inferred product from a fused knowledge base that encodes the opinions from others in

a nonlinear fashion (as shown in the example in Appendix B). In this section, we conduct
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analyses on the real data collected from Wikipedia1 to evidently show the nonlinearity in

opinion formation.

Wikipedia is a collectively authored encyclopedia where users can interact and discuss

during the course of producing articles. To facilitate social interaction, each registered user

is given a talk page that she and other users can edit in order to discuss updates to various

articles on Wikipedia. We study how the interaction on Wiki’s talk pages affects people’s

interests, where interests are extracted from users’ edit history. Specifically, the interest on

a particular topic is characterized by the edit frequency to the articles that belong to that

topic. The intuition is that people tend to make more edits on the topics that they have

strong interests. Similar representation can be found in Crandall et al.[23], in which they

encode users’ interests into a vector of edit activities.

The data2 used in this study contains the complete edit history (all revisions, all pages)

of all Wikipedia since its inception till January 2008. We construct the social network from

Wiki talk pages as following: the nodes in the network represent wikipedia users and a

directed edge from node i to node j represents that user i has edited a talk page of user j at

least once. To reduce noise, we only select active users that have edit activities more than

10 times. The number of active users/nodes and edited pages are approximately 22000 (ac-

counts for 0.9% of total users) and 440000, respectively. Anonymous edits are discarded,

as they are recorded only by IP address that may reflect the activities of many users. Each

wiki page may belong to one or more subcategories. We ignore the edits with no category

information. We apply DBpedia Ontology 3.83 to map subcategories to 109 main topics,

e.g. person, animal, sport, etc., as we only focus on users’ interest on these main topics.

1http://en.wikipedia.org/wiki/Main_Page
2Datasets are available at http://snap.stanford.edu/data/wiki-Talk.html
3DBpedia Ontology is an open source cross-domain ontology. It is manually created based on the com-

monly used infoboxes in wikipedia. http://dbpedia.org/Ontology38
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To study how a user’s interests vary with the interests of others that he or she is con-

nected to, we track each user’s changing interests that are measured monthly from 2004 to

2008 January. For every two nodes (i, j) where there is an edge from i to j, we calculate

the correlation between their interest trends with respect to each of the topics that they have

discussed. Then we select 3 pairs with highest correlation to investigate the relationship

between their interest changes. The idea is that if i and j are not correlated, then i must

have little influence on j’s interest/opinion. For each pair (i, j), to show that j’s interest is

not linearly correlated with i’s interest, we perform a linear regression where j’s interest

value is the dependent variable and i’s interest value is the independent variable. Given that

j may be influenced by other neighbors, we depict the partial residual plot4 [90] in Figure

3.3. The correlations with significance are presented in Table 3.1, ordered by correlation

value.

Top correlated pairs Correlation p-value

1 (Geography) 0.8178 1.958E-05

2 (Technology) 0.7788 5.952E-06

3 (Sport) 0.6980 1.719E-04

Table 3.1: Correlation with significance

As shown in Table 3.1, all three pairs are significantly correlated. To understand how

often does an individual’s interest variation correlates with the ones they have interacted

with, we calculated the percentage of the investigated pairs whose correlation is signifi-

cantly greater than a threshold (with the p-value < 0.01). The percentage with different

threshold is depicted in Table 3.2. 68.9% of the test cases are shown to be positively cor-

related with each other, which supports our hypothesis that social interaction will affect

4partial residual is defined as the linear component of the partial regression between the response variable
Y and independent variable X plus the least-squares errors, i.e. eji = ei + ajXij . The partial residuals can
then be plotted versus Xj , where aj is the slope of the simple regression of eji on Xj .
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Figure 3.3: Partial residuals plot
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individuals’ interests/opinions over time. Moreover, our finding is consistent with the re-

sults from Crandall et al. [23]. They examined the interplay between social interaction and

interest similarity and show that in Wikipedia, people’s interests will become more similar

through communication.

The partial residual plot in Figure 3.3 shows that even when two interest trends are

highly correlated, the relationship is not linear. In fact, if one’s interest/opinion with respect

to topic x at time step t is a weighted average of his/her neighbors’ interests at previous

time step, then we should expect to see:

Pt(x) ∈ [min(Pt−1(x)),max(Pt−1(x))], (3.8)

where min(Pt−1(x)) and max(Pt−1(x)) are the min and max values of his/her neighbors’

interests at time t− 1. However, in Wikipedia, about 45% of the test cases actually violate

the above condition. Among those, 15% of the violation is due to the fact that none of

his/her neighbors have shown interests on x. This could be attributed to many factors: in-

complete information, hidden influential sources or emergent behavior. In sum, people do

not change their opinions as a linear integration of others’. The opinion formation process

in real world is a complex process that needs to be addressed by a flexible platform that is

capable of modeling different situations in one entire system.

Correlation threshold Percentage of investigated pairs
> 0.5 16.5
> 0.4 26.8
> 0.2 60.3
>0 68.9

Table 3.2: Percentage of positively correlated interested trends
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Chapter 4

Social Influence Learning

Social impact lies at the heart of individual’s opinion formation. People obtain new infor-

mation and update their knowledge bases through various learning. Among those, social

learning is one of the most common means for people to gain knowledge. As suggested by

Acemoglu and Ozdaglar [5], “social learning” takes place where people update their opin-

ions by observing others’ behaviors and experiences, by communicating with others about

their beliefs, or by absorbing information from media sources. In the process of social

learning, a person will neither fully adopt nor completely disregard the opinions of other

people, but takes into account the opinions of others to a certain extent in forming her own

opinion. However, how an individual adopts the opinions of others may vary in different

situations. For instance, people are inclined to take the opinions from their close friends

more seriously than from random people.

In modeling influence in social networks, efforts have been made on characterizing the

influence of each individual on information diffusion based on the social network structure

and interpersonal interaction [91, 60]. However, different from these approaches whose

main goals are to target the influential people that can persuade a great number of people

in their society, we emphasize on finding the rules of how one adopts another’s opinion.
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In this chapter, on top of the opinion formation model, we introduce a general impact

metric that estimates the reliability for each adopted knowledge fragment based on a set of

social influential factors. The individual opinion at each time step is computed from Equa-

tion 3.6 and 3.7. We show that though opinions from different people are not linearly fused,

the relationship between the opinion change and influential factors can be transformed into

a regression problem and be solved efficiently.

To understand the role of social influence in the formation of one’s opinions, we start

by considering three domain independent influential factors: friendship, recent contact fre-

quency and opinion similarity that have been shown to have influence on how one takes

other’s opinions in social communication theories [33, 70, 34] (Details about social influ-

ence are discussed in Chapter 2). However, we will show that our model is not restricted to

these factors. Newly discovered factors can be easily incorporated into the model.

4.1 General Impact Metric

Though there is evidence that reliability is correlated with these social factors, how do they

interact and contribute to a reliability value is needed to be addressed.To model and learn

the impact of each social factor computationally, we introduce a linear impact metric that

combines these factors in a coherent scheme. Linear models have been widely used in

trust-based approaches due to its simplicity and intuitiveness [35, 8].

At time t, let Xt(i, j) denote the relationship closeness between actor i and j from

actor i’s view, scaled from 0 to 1, where 1 is the closest and 0 means totally unknown of

each other. Let Yt(i, j) denotes the normalized contact frequency, i.e. number of contacts

with j divided by the total number of contacts with all others from time t − 1 to t and let
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Zt(i, j) denotes the opinion difference on the target issue, i.e. |pit−1(v) − pjt−1(v)|. Then,

the reliability rt(i, j) that actor i assigns to the knowledge fragment sent by actor j, can be

defined as:

rt(i, j) = αXt(i, j) + βYt(i, j) + γZt(i, j) + C (4.1)

where α, β, γ and C are unknown weights/coefficients that need to be learned.

Now, let us reconsider Equation 3.6 and 3.7:

p0t (v) =
n∑
i

rit ∗ ρit (if v has precedent variables)

p0t (v) =
n∑
i

rit ∗ pit−1(v) (otherwise)

We replace rit with Equation 4.1. Then, Equation 3.6 turns into

p0t (v) =
n∑
i=0

[αXt(0, i) + βYt(0, i) + γZt(0, i) + C] ∗ ρit

= (1−
n∑
i=1

[αXt(0, i) + βYt(0, i) + γZt(0, i) + C]) ∗ ρ0t

+
n∑
i=1

[αXt(0, i) + βYt(0, i) + γZt(0, i) + C] ∗ ρit. (4.2)
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Rearranging the terms, we get

p0t (v)− ρ0t = α
∑
i=1

Xt(0, i)(ρ
i
t − ρ0t )

+ β
∑
i=1

Yt(0, i)(ρ
i
t − ρ0t )

+ γ
∑
i=1

Zt(0, i)(ρ
i
t − ρ0t )

+ C
∑
i=1

(ρit − ρ0t ) (4.3)

Similarly, Equation 3.7 now becomes:

p0t (v)− p0t (v) = α
∑
i=1

Xt(0, i)(p
i
t−1(v)− p0t−1(v))

+ β
∑
i=1

Yt(0, i)(p
i
t−1(v)− p0t−1(v))

+ γ
∑
i=1

Zt(0, i)(p
i
t−1(v)− p0t−1(v))

+ C
∑
i=1

(pit−1(v)− p0t−1(v)) (4.4)

4.2 Parameter Estimation

Let n be the number of people in the social community under consideration. To model

opinion dynamics, we look into the opinions over a number of time periods. Let P =

{pi0, pi1, pi2, . . . , piT}(i = [1 : n]) be a sequence of belief distributions generated over T time

periods. Then, given the friendship network X and the contact network Y over time1, the

goal is to learn the factor weights α, β, γ and C from opinion change. Note, considering

that the measure is taken from each actor’s view, neither the friendship network nor the

contact network needs to be symmetric.

Now that we have shown how to model the opinion change as a function of influential

1Opinion similarity network Zt can be constructed from the opinion values at each time step.
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[α, β, γ, c] = Influential-factor-weights (P,X, Y )

1. A← ∅; H← ∅

2. k← 1

3. for every instantiation/state v; t = 1 : T ; actori = 1 : n

4. if v has no precedent variable

5. U(k)← pit(v)− pit−1(v)

6. dij ← pjt−1(v)− pit−1(v) (j = 1 : n, j 6= i)

7. else

8. U(k)← pit(v)− pit

9. dij ← pjt − pit (j = 1 : n, j 6= i)

10. end, if

11. A(k, :)← [
∑

j Xt(i, j) ∗ dij ,
∑

j Yt(i, j) ∗ dij ,

12.
∑

j |pit−1(v)− p
j
t−1(v)| ∗ dij ,

∑
j dij ]

13. k← k + 1

14. end for

15. [α, β, γ, C] = regression (U,A)

Figure 4.1: Social influence learning from Gu et al. [1]

factors (Equation 4.3 and 4.4) for one particular issue/I-node v. We apply the rule to all

possible I-nodes. As α, β, γ and C are only unknown parameters, we perform a linear

regression with p0t (v) − ρ0t being response variable (p0t (v) − p0t (v) for Equation 4.4) and

α, β, γ and C being independent variables. The complete algorithm can be described more

formally in Figure 4.1:

4.3 Validation and Evaluation

In what follows, we present results of experiments that were carried out on both simulated

data and a real world dataset. We start by introducing the baseline we compared with in the

55



experiments.

4.3.1 Baseline

The DeGroot model is one of the classical opinion formation models, in which one forms

her opinions by averaging over the opinions acquired through communication [49]. Specif-

ically, they represent the opinion on a given issue by a real number. At time t + 1, person

i adjusts her opinion on issue v by taking a weighted mean of others’ opinions. So if we

represent the opinion value by the probability of her support for that issue, then the process

can be formulated as:

pit(v) =
n∑
j

r(i, j) ∗ pjt−1(v)

where
n∑
j

r(i, j) = 1

Other variations of this model include the Friedkin-Johnsen model [6], which assumes

that a person would adhere to her initial opinion pi0(v) to a certain extent. Though there

are some other models in which the weight matrix may vary depending on time or opinion

itself [52], their opinion formation process is still linear.

To compare with our work, we modify the DeGroot model by assigning the weight

between agent i and j with the reliability value rt(i, j) generated by the impact metric

introduced in the last section. Then, the influential factor weights can be transformed into

a regression in a similar way to Equation 4.4. In fact, if there are no dependencies between

different variables/issues, then our approach will devolve into the classical linear model.
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4.3.2 Experiments on Synthetic Data

Data synthesis

To evaluate the effectiveness of our method, we first randomly generate an n-by-n friend-

ship network X . Then the contact networks Y = {Y1, Y2, . . . , YT} for every time step are

simulated based on the friendship network but with a certain deviation. In this experiment,

the deviation is set to be 0.2 at maximum. The assumption here is that close people tend

to be in contact more frequently. We also simulate each individual’s initial opinion dis-

tribution {p10, p20, p30, . . . , pn0} from m (m � n) predefined BKBs. At time t(t = 1 : T ),

we fuse one’s previous BKB Ki
t−1 with the BKB fragments from the people she contacted,

where the contacting information is gained from the Yt. The reliability for each fragment

is calculated using the general impact metric, where the factor weights are predefined for

simulation, e.g. [α, β, γ, C] = [0.4, 0.2,−0.2, 0.2].

Evaluation of Social Influence Learning

In the first experiment, we test the performance of our approach on learning the influential

factors through opinion dynamic modeling. Since the problem can be solved via regression,

we use Relative Squared Error (RSE) to measure the error rate of the regression model.

RSE works well when the errors of models are measured in different units. Let ui, u′i and

ūi be the real opinion change (simulated opinion values), the predicted change and mean

of the real values, then RSE can be defined as:

RSE =

∑
i (u
′
i − ui)2∑

i (ūi − ui)2

Also, to evaluate the prediction ability, we apply a 5-fold cross-validation on the regression.

With regards to the regression error We run multiple experiments to test our perfor-

mance in terms of different social network size, initial knowledge bases and network con-
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nection degree. In particular, we first increase the number of nodes in the friendship net-

work and contact network while maintaining other settings the same. We run each experi-

ment for 10 times. Table 4.1(a) shows the average RSE using our approach and the baseline

respectively. Then, we maintain the community size to 50 and vary the complexity of the

predefined BKBs from which we generate the initial opinion distribution by increasing the

number of the variables. By doing so, we test whether our method is capable of handling

complex knowledge bases. The results are presented in Table 4.1(b). Last but not least, we

measure the network connection degree as a summarized degree centrality. The connection

degree is formally defined as:

CD =

∑n
i=1 deg(i)

(n2 − n)/2
,

where deg(i) calculates the number of links that node i has. If the contact network is fully

connected, then CD equals to 1. The community size is set to 50 and the number of vari-

ables is set to 20. We show the regression error in terms of CD in Table 4.1(c).

From Tables 4.1 (a), (b) and (c) we can see that the error of using our method is consis-

tently smaller than the baseline. In addition, when there are more variables in the BKB, our

advantages appear to be more significant (Table 4.1 (b)). We plot the error differences in

terms of the number of variables in Figure 4.2 (a). The main reason is that a complex knowl-

edge system is always accompanied by strong dependencies between knowledge fragments.

The baseline model, however, fails to capture such dependencies, as it assumes that peo-

ple’s opinions on different issues are independent of each other. Moreover, we depict how

error evolves as connection degree increases in Figure 4.2 (b). As shown in the figure, the

error decreases as the connection degree gets closer to 1. Actually, a higher connection

degree will lower the impact from each of the neighbor. So the errors from the inaccurate

factor weights learning will be averaged out after fusing in a large portion of neighbors’

opinions.
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Network Size Proposed Baseline
10 0.0998 0.1347
20 0.0508 0.1019
30 0.1162 0.1358
40 0.0674 0.1509
50 0.0532 0.0840
60 0.1197 0.1684
70 0.0714 0.1361
80 0.0802 0.1389
90 0.0765 0.1359
100 0.1106 0.1390
Proposed vs Baseline p-value 2.8576E-05

(a) network size

Number of Variables Proposed Baseline
5 0.0613 0.1322
10 0.0814 0.1311
15 0.1177 0.1485
20 0.0361 0.0739
25 0.0329 0.1497
30 0.0573 0.1326
35 0.1034 0.1834
40 0.0742 0.2123
45 0.0995 0.3219
50 0.0501 0.2501
Proposed vs Baseline p-value 8.9047E-04

(b) number of variables

Connection degree Proposed Baseline
0.1 0.0594 0.1187
0.2 0.0637 0.1462
0.3 0.0679 0.1358
0.4 0.0572 0.0807
0.5 0.0388 0.0529
0.6 0.0356 0.0391
0.7 0.0194 0.0344
0.8 0.0201 0.0289
0.9 0.0118 0.1121
1 0.0056 0.0057
Proposed vs Baseline p-value 0.0100

(c) connection degree

Table 4.1: Error comparison of two approaches in terms of different parameters
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Figure 4.2: Comparison of two methods with respect to different parameters
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With regards to the coefficient similarity Another way to evaluate our learning perfor-

mance is to directly measure the similarity between the factor weights learned from two

methods against the true predefined weights. As the factor weights are represented by a

vector, we apply cosine similarity to measure the accuracy, i.e.

sim =
v1 · v2
||v1||||v2||

.

Table 4.2 reports the average cosine similarity with standard divination to show our learn-

ing capability. As we can see, our approach outperforms the baseline model, which gives

us confidence on using our results as a guide to control or predict future opinion dynamics.

Cosine Similarity Baseline Our Model
Mean 0.5867 0.7438
Std 0.0417 0.0684

Table 4.2: Average similarity with the true factor weights

Once we have the factor weights learned from the opinion trend, we can apply them

to study and even predict the future opinion dynamics. We conduct another experiment to

evaluate how close the opinion distribution trend simulated using the learned factor weights

are to the true trend. Details about this experiment can be found in Appendix C.

Convergence Analysis

As we discussed earlier, if there is no dependency between different issues or knowledge

pieces, then the way we transform the problem will become the same as the way we deal

with the baseline. However, it is not true in the real world, especially when the knowledge

bases evolve over time. To better understand the connections between our method and the

baseline and to answer whether our method is compatible with the classical model, we ex-

amine under what situation will our method produce similar results as the baseline.
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Lemma 1 If everyone’s initial BKBs share the same conditional probabilities, i.e. pi0(v|pa(v)) =

pj0(v|pa(v)), then our approach becomes equivalent to the baseline.

Proof, from Rosen et al. [75], for actor i, the probability on a given issue v can be

calculated as the summation of the probabilities of all possible inferences where v is true.

So at time t, we have:

pit(v) =
∑
τ∈Iv

pit(τ) =
∑
τ∈Iv

∏
q∈τ

wit(q)

where Iv represents the set of inferences containing v, w(q) is the weight of the S-node q.

Then, the aggregated opinion at time t+ 1 using baseline method will be:

pit+1(v)baseline =
n∑
j=1

γj ∗ pjt(v) =
n∑
j=1

γj
∑
τ∈Ijv

∏
q∈τ

wjt (q)

Considering that our opinion formation method is based on BKB fusion, for every I-

node in an inference, the weight of its supporting S-node in the fused BKB can be viewed

as the average over the weights of the corresponding S-nodes in the input BKB fragments,

i.e. w′it(q) =
∑n

j=1 rj ∗ w
j
t (q). So using our method, pit+1(v)becomes

pit+1(v)proposed =
∑
τ∈Iv

∏
q∈τ

n∑
j=1

γj ∗ wjt (q)

Given the condition that wit(q) = wjt (q), we can now derive:

pit+1(v)baseline =
∑
τ∈Ijv

∏
q∈τ

wjt (q) = pit+1(v)proposed
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Figure 4.3: Mean RSE difference between two models

To illustrate Lemma 1, we run an experiment by decreasing the deviations between the

conditional probabilities in each BKB. Figure 4.3 shows the mean error difference of using

two methods, where the error difference is defined as proposed_rse-baseline_rse. As we

can see, the differences between two methods shrink when the distributions of different

initial BKBs get closer.

So, what can we gain from lemma 1? In fact, in a closed social environment, if there

is no new information coming in, then both of our method and the baseline will lead to

opinion convergence, where the convergence rate highly depends on the social connection

degree. From Lemma 1, if people’s opinions are close to each other, e.g. converge to

certain values, then the advantage of our methods will diminish. (Note, our performance

will never be worse than the baseline.) We test the convergence rate by measuring the

normalized square of interpersonal opinion difference at each time step t, i.e.

ODt =
∑
i,j

∑
v

(pit(v)− pjt(v))2/n2V ,
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where V is the total number of states/issues in the BKB. We assume that everyone’s ini-

tial BKBs have different distribution. Then, to examine how the social connection degree

affects the convergence rate, we choose three different connection degrees: CD = 0.2, 0.5

and 0.8 and the results are plotted in Figures 4.4. As shown in the figure, the convergence

rate increases with the connection degree. This finding also explains why in Figure 4.2 (c),

the performance difference decreases when CD gets larger. Additionally, the opinions con-

verge to different values when the degree is low, e.g. 0.3. The fact is that different opinion

groups are formed when people only communicate with the people in a subgroup. More-

over, on closer examination of the convergence trend, we see that the opinions formed using

our method converge slightly faster than the baseline. The reason is that we do not form

opinions linearly but considers the relationships between variables. So the distribution

characteristics of higher-level variables could be propagated to the lower-level variables,

which speeds up the convergence.

In reality though, changes in people’s opinions are gradual [92]. Plus, people keep

absorbing new information from external sources and keep making new friends. So, it is

very unlikely at any point that people hold the same opinions, which makes the conditions

described in Lemma 1 hardly to satisfy. This finding is valuable. It makes our approach

more applicable to real-world problems.

4.3.3 Experiments on Real Social-network Data

To better understand the opinion dynamics in the real world, it is crucial to test our ap-

proach on a real dataset. In particular, we conduct our experiment on the adoption of

political opinions through social communication. People’s prospects on political issues,

especially voting behaviors can be influenced by various information sources, e.g. media

and social interaction. Madan et al. [9] studied how opinions about political candidates

and parties, and voting behavior, spread through a social network using mobile sensing
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Figure 4.4: Convergence rate comparison between two methods given different connection
degree.

data. The study was conducted among approximately 70 undergraduate students living in

the same dormitory. They built up a mobile sensing platform to collect the communication

data varies from Bluetooth signal transmission to phone call. The political opinions were

captured using three monthly surveys before and after the presidential election in 2008.

More descriptions about the data can be found in Madan et al. [9].

To model opinion changes on different issues, we select four questions from the sur-

vey. The questions and the possible responses are listed in Table 4.3. Then, we use Bayes

Net Toolbox2 to capture the causal dependencies between variables. The data we used for

structure learning contains survey results over three months. The assumption is that the

dependencies between those four common political issues are less likely to change. The

learned causal structure is depicted in Figure 4.5. As we expected, the candidate that a per-

son decides to vote for is highly dependent on her preferred party and how likely a student

2BNT is a toolbox for learning Bayesian network’s parameters and structure. Here we only use BNT to
learn the causal structure. https://code.google.com/p/bnt/
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is going to vote is dependent on how much interest he/she have in politics. Next, we convert

each of the questions into a binary state variable. For each student, her knowledge base is

built based on the learned causal structure. Then, the probabilities/opinions for every vari-

able/issue at each time step can be estimated from her survey answers. For example, if

one is very interested in politics, then her probability for “interested in politics = Yes” is

assigned to 0.9. Also, if one decides to vote for McCain, then her probability for “vote for

Obama = Yes” will become very low. The extracted I-nodes/states and example probability

values are listed in Table 4.4. In a later experiment, we will show that our results are not

sensitive to the predefined values.

Question Possible Answers

Interested in politics [Very, Somewhat, Not-at-all]

Preferred political party [Republican, Independent, Democrat]

Likelihood to vote [Not-vote, Not-sure, Vote]

Who to vote [Probably John McCain, Definitely John
McCain, Undecided, Probably Barack
Obama, Definitely Barack Obama]

Table 4.3: Selected Political Survey Questions and Possible Answers

Now that we have everyone’s opinion distribution over time, the next step is to generate

the friendship network X and contact network Y . Aside from the communication data and

political view data, Madan et al. [9] also provides a survey of the relationship that a subject

indicates she has with another, e.g. close friends or political discussant. We quantify the

friendship using a single value between 0 (stranger) and 1 (extremely close). As for the

contact network, we start with modeling only face-to-face contact using proximity data3,

where the weight between two nodes is calculated as the the normalized contact frequency

in a certain period. To reduce the noise from the situations that two students are physically
3Proximity data captures bluetooth transmission between cell phones. It indicates that two person are

within 10 meters at the time of the record [9]
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I-nodes Original Answers

Interested in politics = Yes
Very 0.9

Somewhat 0.4

Not-at-all 0.1

Preferred political party is Republican = Yes
Republican 0.8

Independent 0.5

Democrat 0.2

Vote = Yes
Not-vote 0.1

Not-sure 0.5

Vote 0.9

Vote for Obama = Yes

Probably John McCain 0.3

Definitely John McCain 0.1

Undecided 0.5

Probably Obama 0.7

Definitely Barack Obama 0.9

Table 4.4: Predefined probability values based on the survey answers

close to each other but on different floors, only the records with the probability of on the

same floor being greater than a threshold ζ are counted.

We test our approach on the real data and compare the results with the baseline. Table

4.5 shows the average error from cross-validation. As we can see, the error produced from

our method is significantly smaller than the baseline. Moreover, we analyze the learned

factor weights between two methods. As plotted in Table 4.6, the value of -0.0381 from

our method suggests a negative effect of the opinion difference factor, which fits well with

our expectation that people are more willing to take opinions that are similar to theirs.

In contrast, the baseline model produces a positive coefficient for opinion difference, but

negative weights for friendship and the contact frequency, which fails to agree with the

social theory findings. Also, the regression coefficients learned using the baseline model are
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Figure 4.5: Learned causal dependencies between four political issues

not statistically significant, which suggests that it is not appropriate to use those coefficients

to interpret the relationship between opinion change and social factors. Besides, in this

particular case, the influence of the friendship appears to be the highest , whereas the impact

from frequent contact is less significant. This indicates three things,

1. For the undergraduate students, their political views are more likely to be affected by

their close friends.

2. Two persons might be in proximity very often without communicating to each other

or even realizing the presence of each other.

3. Their opinions could be influenced by other communication means other than face-

to-face.

So, our next task is to apply our model on contact networks that are formed by alter-

native communication means. In particular, we compare with the contact networks built

from call data4 and SMS data5, respectively. Both networks are constructed in the same

4This data is collected based on the call log containing when and who has called whom.
5SMS data captures when and who has sent short messages to whom.
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Mean Error Std

Proposed 0.5432 0.0478

Baseline 0.6467 0.0698

Significance (p-value) Proposed vs Baseline 0.0021

Table 4.5: Average error comparison between two models

α β γ C

Weight p-value Weight p-value Weight p-value Weight p-value

Proposed 0.0768 0.0453 0.0134 0.109 -0.0381 0.0028 0.1234 3.41E-04

Baseline -0.1389 0.9576 -0.0001 0.6234 0.0142 0.2930 0.1138 3.82E-04

Table 4.6: Factor weights learned from two methods

way as proximity. The results in terms of regression error and learned coefficients are pre-

sented in Table 4.7 and 4.8. As we can see, the results of voice call (both error-wise and

learned coefficient-wise) are slighter better than the proximity, but the impact of frequent

phone call is still less than the friendship. Voice call is a strong indicator of the relation-

ship between two person. However, like proximity, phone call only accounts for a fraction

of one’s daily contact. Many people often socialize with non-friends who may never call

each other. The impact from SMS contact is the lowest among the three communication

means. The reason is that comparing to voice call, SMS is a more convenient and easier

way for people to communicate, especially when they are not friends at all. The statistics

from Time mobility poll6 suggests that 32% of all respondents would rather communicate

by text than phone. Therefore, a frequent contact with someone via SMS may not suggest

a strong social bond. Moreover, it is less likely for people to share their thoughts or get

influenced through SMS than face-to-face chat or phone call. Psychologist Sherry Turkle

believes that having a conversation with another person is an important process that teaches

people to think, reason and self-reflect[93].

6http://www.qualcomm.com/media/documents/time-mobility-poll-cooperation-qualcomm/
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Mean Error Std

Call network 0.4632 0.0415

SMS network 0.6128 0.0501

Table 4.7: Average error comparison between two contact networks

α β γ C

Weight p-value Weight p-value Weight p-value Weight p-value

Call network 0.0801 0.0198 0.0277 0.0943 -0.0312 0.0009 0.1467 7.19E-05

SMS network 0.0674 0.0581 0.0127 0.1590 -0.0416 0.0015 0.1278 1.41E-04

Table 4.8: Factor weights learned by the proposed approach from two communication means

Last but not least, we test whether our approach is sensitive to the predefined condi-

tional probability values. We maintain the order of the answers but vary its value. For

example, the probability of “very interested in politics” is always higher than “not at all”.

We randomly generate the predefined values and run experiment for 100 times. The mean

and standard deviation of the error are presented in Table 4.9. As we can see, the result of

our model is close to the one in Table 4.5, which suggests that no matter how we quantify

the survey answer, as long as the assigned probabilities can distinguish different levels of

likelihood, our approach is robust to variation in initial settings.

Mean Error Std

Proposed 0.5718 0.0577

Baseline 0.6830 0.0897

Table 4.9: Performance comparison with different initial settings

There can be tons of factors that determine how an individual takes others’ opinions.
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In this paper, we only consider three factors that we believe are playing an important role

in opinion dynamics. However, we show that our method is not restricted to those three

factors. Table 4.10, shows the results of using only two factors out of three. The error of

using factors “Friendship” and “Opinion Difference” appears to be smaller than the other

two combinations, which is consistent with the previous finding that contact frequency

is a weaker indicator of social influence. Moreover, it is not hard to see that our method

outperforms baseline in all factor combinations. Thus, even when new factors are available,

our method can be easily extended to accommodate new influential factors.

[F,OD] [F,C] [C,OD]

Proposed 0.4936 0.5901 0.6130

Baseline 0.6532 0.6203 0.7509

Proposed vs Base-
line (p-value)

3.404E-05 0.0025 6.325E-06

Table 4.10: Average Error using Different factor sets (F = Friendship, C= Contact, OD = Opinion
Difference)

4.4 Summary

Though how the knowledge bases are expanded and updated through social interaction is a

complex procedure, there may exist a core mechanism that guides people to adopt others’

opinions or to absorb new information. The goal of this chapter is to uncover the rules

behind opinion dynamics by starting with several influential factors that could affect the

selection of opinions. We illustrated how to formulate the problem using a mathematical

model and solve the factor weights via regression. We conducted multiple experiments on

synthetic data. The results validate the effectiveness of our approach over the baseline. A

thorough analysis and discussion is provided on the compatibility of our approach. Another
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main contribution of this part of work is that we tested our approach on modeling the

political opinion change using a real world dataset. The error produced by our approach

is significantly smaller than the baseline. Besides that, the factor weights learned from our

approach are also consistent with social theory.
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Chapter 5

Hidden Influential Source Tracking and

Detection

5.1 Overview

As we emphasized in a couple of previous chapters, a person’s beliefs are key elements

for inferring the meaning of opinions held by individuals and groups and for predictions

of future behaviors. These elements/perceptions, however, can be dynamic and affected by

external sources over time through social interaction or exposure to information, e.g. me-

dia messages [94]. Meanwhile, such influencing sources may have qualitatively different

effects depending on how likely an individual adopts the opinions of the sources, which

vary in different situations as well [95]. For example, in the context of socialization of

children, a child who has a strong bond with his family is inclined to take parental attitudes

and actions with full trust. In contrast, people only selectively accept the arguments and

views supported by online news sources, e.g. consumer review sites. Opinions adopted

with different reliabilities will differ in terms of their qualitative characteristics, and affect

a person’s subsequent behavior. Moreover, the impact trend of each influencing sources

may follow a certain pattern that can be used to make predictions. For instance, after an
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event breaks out, its social effect typically decays as time goes by [96, 76]. So a sudden

rise of the impact value is either indicative of a new event or a sign of anomaly. There-

fore, it is critical to understand the role that external sources play in opinion and behavior

change at each time period, such that we can provide more insights and explanations on

the observed changing-behavior and further answer the questions like: Why did the level

of illegal migration from Mexico to the US increase sharply after April 29, 2009? What

determinate factors make people want to escape from Mexico? Will that factor (continue

to) cause panic?

However, the characteristics of external sources that affect people’s opinions are rarely

open to the public due to a variety of reasons – private communications, what one randomly

reads or hears, and implicit social hierarchies, to name a few. Likewise, it is impossible to

track how people view and adopt the opinions held by each of the sources they have in-

teracted with. Such information can be concealed subconsciously when the influence is

subtle or the reliability is not quantifiable, whereas sometimes people will intentionally

conceal this information. For example, terrorists tend to protect criminal organizations by

hiding their connections with the group. Recently, statistical-based studies on detecting in-

fluencing sources that cause behavior change has begun to emerge, particularly in the area

of event detection and anomaly detection [97, 98]. However, even these advanced meth-

ods fail to distinguish whether one’s changing-behavior is caused by the new influencing

sources or the evolution with respect to the actual impact of some existing/internal sources.

In a complex real-world scenario, it becomes a significant challenge to have a model that is

compatible with state-of-the-art belief representation approaches, and still be able to detect

hidden sources and capture the evolution of their impact levels.

Anomaly detection has been applied to detect the presence of any observations or pat-

terns that are different from the normal behavior of the data. Approaches based on Bayesian
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Networks include detecting anomalies in network intrusion detection [99] and disease out-

break detection [100]. The typical approach in BN-based anomaly detection is to compute

the likelihood of each record in the dataset and report records with unusually low likeli-

hoods as potential anomalies. Different from these approaches whose main goals are to

achieve early detection and identify anomalous change in terms of a probability distribu-

tion [97], we focus on detecting the reasons behind the behavior change. Moreover, many

statistics-based anomaly detection methods only focus on detecting events whose patterns

are anomalous enough to be distinguishable from normal data. Furthermore, they overlook

the situation when certain external opinion sources that have subtle influences at present,

but may cause a butterfly effect later, as triggered by other events. It happens in the real

world when some less substantial events become the key clue for analyzing the future be-

havior change. We show that our work overcomes the above limitations by being able to

track influencing sources even when the impacts are small.

There are some other techniques that attempt to handle changing belief networks. Meth-

ods based on learning Dynamic Bayesian Networks (DBNs) [101] have provided mecha-

nisms for identifying conditional dependencies in time-series data, such as for reconstruct-

ing transcriptional regulatory networks from gene expression data [102] and speech recog-

nition using Hidden Markov Model (HMM) [103]. Nevertheless, most DBN implementa-

tions assume for the sake of efficiency that the Markov property holds for the domain they

represent, which restricts knowledge engineering by requiring that the probability distribu-

tion of variables at time t depends solely on the single snapshot at time t−1. Thus, for real

world cases when the future outcomes are highly dependent on the hidden factors whose

prior information is not identified, we need another model that can easily express such ab-

stract temporal relationships. Process Query System (PQS) [104] is an advanced tracking

system designed to determine which processes produced which events. Unfortunately, its

detection strategy is based on the observable events generated by hidden states, which may
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not be available in our case.

Mixture models have been used in modeling opinions of populations. For instance,

Hill and Kriesi [98] apply a Finite Mixture Model to support their theory of opinion-

changing behavior, where the attitude of each of the group is represented by a distribution

and the mixed distribution is described by a weighted aggregation of n different distribu-

tions. However, the Expectation-maximization (EM) [105] based mixture decomposition

methods show propensity to identify local optima [106], which makes it also sensitive to

initial guesses. In addition, the separation of parameter estimation and component iden-

tification increases the probability of converging to boundary values when the number of

model components exceeds the true one [107]. These considerations led us to develop a

variant mixture model that is suitable for our problem of detecting hidden belief sources

by taking advantage of time-varying information, as well as loosening the requirement of a

predefined number of sources.

In this chapter, we introduce a new modeling approach called a Finite Fusion Model

(FFM) for detecting and tracking hidden sources in a time-variant scenario that consists

of a sequence of opinions encoded in BKBs. Specifically, we build FFM on the basis of

the opinion formation model introduced in Chapter 2, in which the formation of individual

opinion at each time period is treated as a process of aggregating opinion/information from

different sources. Then, FFM leverages BKB fusion to model the integrated belief distri-

bution by taking into consideration the impact of hidden sources. The latent parameters

that characterize the distribution of the underlying hidden sources and the corresponding

impact weights are learned via a constrained optimization problem.
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5.2 Source Tracking and Detection Approach

The goal of this chapter is to analyze the behavior change over time by detecting hidden

influencing sources and tracking the corresponding impact patterns. However, without a

sound theoretical foundation, the methods developed will simply be ad hoc. Before for-

mally introducing the model, we first explain several key observations that motivate the

model:

Observation 1. Studies on social influence have shown that one’s opinions will be affected

by external ideas through social interaction [108]. In many situations, a person will not ac-

cept these external ideas in total but only adopts the pieces that fit into her own situation [4].

Observation 2. The deeply ingrained opinion is the foundation of one’s behavior and should

not change dramatically within a short time [109]. This results in a natural expectation that

the impacts from other sources will sequentially affect one’s opinions.

5.2.1 Mathematical Formulation

Motivated by Observation 1, the individual opinion at time t, (t = [1 : T ]) can be viewed

as an integration of the previous opinion and certain opinions held by hidden sources that

contain both new sources and existing sources, where the integration of the opinions from

existing sources can be viewed as a reinforcement of their relative reliabilities/impacts.

Moreover, from the opinion formation model introduced in Chapter 3, individual opinions

can be treated as a reasoning product from one’s knowledge base that keeps updating by

fusing new knowledge fragments. So, in this study, we assume that the initial knowledge

bases and influential knowledge fragments that serve as input to our algorithm are repre-

sented by valid BKBs, where the influential knowledge fragments are acquired from hidden

sources. We also assume that all beliefs and opinions that serve as input to our algorithm are
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valid BKBs, where the influential knowledge fragments are acquired from hidden sources.

Let H = {h1, h2, . . . , hm} be the collection of all possible hidden fragments that could

potentially affect a person’s opinion across the time. The individual belief distribution pt,

encoded in the fused BKBKt, at each time step t is defined as a finite fusion of the previous

belief distribution pt−1 and m hidden fragments:

pt = fusion(pt−1, H,wt) (5.1)

where wt = [wt,1, wt,2, . . . , wt,m] is the impact vector representing the impact value of each

hidden source at time t. Note, wt,i = 0 means that the source hi has no effect at time t.

Then, for each of the I-node/state v in Kt, Equation 3.5 can be rewritten into:

pt(v) =

∑
qj∈σ0 pt−1(qj) ∗ pt(pa

j(v)) +
∑m

i=1wt,i
∑

qj∈σi hi(qj) ∗ pt(pa
j(v))

Zt
(5.2)

Zt = 1 +
m∑
i=1

wt,i

where σi is the set of S-nodes pointing to v in hi and σ0 is the set of S-nodes pointing to v

in Kt−1. hi(qj) characterizes the probability distribution for v conditioned upon v’s parent

paj(v), i.e. h(qj) = h(v,paj(v))
h(paj(v))

. Zt is a normalizer so that the weights of all sources for a

given random variable do not exceed 1.

5.2.2 Parameter Estimation

Given a sequence of belief distributions {p0, p1, p2, . . . , pT} generated over T time periods,

the goal is to learn the probability distribution for each of the hidden sources hi(i = 1 : m),

as well as its time varying impact wt,i(t = 1 : T ) with no prior knowledge.

79



Single-source Tracking

We start by solving a simpler problem when the behavior change across time is caused by

the evolution with respect to the impact of a single source h. We denote its impact values

across the entire time sequence by an impact vector ~w = [w1, w2, . . . , wT ]. Then, Equation

(7) can be simplified as:

pt(v) =

∑
qj∈σi pt−1(qj) ∗ pt(pa

j(v)) + wt
∑

qj∈σi hi(qj) ∗ pt(pa
j(v))

1 + wt
,∀t ∈ [1, . . . , T ]

(5.3)

As shown in Equation (8), the opinion value pt(v) depends on the distribution of v’s parent

variables at time t. So what if pt(v) represents the prior probabilities of the variables with

no precedent variables? Similar to how Equation 3.7 is derived , for pt(v) that represents

the prior probability of the variable with no precedent variables, the above equation simply

becomes:

pt(v) =
pt−1(v) + wth(v)

1 + wt
, ∀t ∈ [1, . . . , T ] (5.4)

To fully represent the joint probability distribution of hidden source h, we consider all

possible I-nodes in Kt. Let k be the number of states and let pti = pt(vi), then we have

pti =
αti + wt

∑
qj∈σi h(qj) ∗ βtij

1 + wt
,∀i ∈ [1, . . . , k] (5.5)

where

αti =


∑

qj∈σi pt−1(qj) ∗ pt(p̄a
j(v)) if v has precedent variables

pt − 1(v) Otherwise
(5.6)

and

βtij =

 pt(p̄a
j(v)) if v has precedent variables

1 Otherwise
(5.7)
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Note, pti, α
t
i and βtij are known values that can be efficiently inferred from the input belief

trend using the stochastic sampling methods introduced in [75]. The time complexity is

O(X), where X is the number of random variables.

Additionally, as each of the hidden sources is still a valid BKB, let R be a complemen-

tary set of S-nodes (Definition for complementary set is introduced in Chapter 2), then the

following property must be satisfied:

∑
q∈R

h(q) ≤ 1 (5.8)

Now, to leverage the time-varying knowledge, we propagate our modeling at a single time

step t to the entire series. The objective is to find the probability distribution for the hidden

source h that can best fit with the entire belief sequence. Let r be the total number of com-

plementary sets of S-nodes, we estimate parameters ~w and h via the following constrained

optimization problem:

[w∗, h] = arg min
~w,h

∑T
t=1

∑
i

exp[(1+wt)pti−ati−wt
∑
qj∈σih(qj)∗β

t
ij ]

2

s.t.
∑

q∈Ri h(q) ≤ 1,∀i ∈ [1, . . . r]

We apply Sequential Quadratic Programming (SQP) algorithm [110] to do the optimiza-

tion, as the linear algebra routines it uses are more efficient in both memory usage and

speed than the active-set routines.

Multiple Hidden Sources Detection

Next, we extend the problem by allowing a series of hidden sources affecting individual

opinions. According to Observation 2, we consider a simplified situation when there is at

most one piece of new information fused into the previous knowledge base at each time

step. In other words, two hidden sources will not have effect at the same time. This could
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happen when people adopt the attitude from the source whose opinion is most convincing

in a particular field of knowledge. Without loss of generality, let h1, h2, . . . , hm be a series

of hidden sources. Thus the task is to address the following problems: 1) detect when a

new source hi gets fused in, denoted by si; 2) learn its probability distribution; and, 3) learn

how its impact value varies after time si.

The last two problems can be solved in the same way as the single source tracking as

long as we know the moment a source shows effect. In fact, if there is no new source fused

in at time t, then the distribution of hidden source ht learned at time t should be similar to

ht−1, i.e.

pt ≈
pt−1 + wtht−1

Zt
,

given some wt. Otherwise, there is no way to transform pt−1 into pt by simply varying the

impact value of ht−1. In our previous work, Santos et al. [73] proposed a tuning algorithm

to adjust a knowledge-based system represented by a BKB such that the tuned BKB can

lead to desired behavior or distribution with minimal change. We apply the idea of tuning

in our work to calculate the minimum change required to tune pt−1 into pt with respect to

the source nodes of ht−1. Large change (greater than a threshold δ) indicates that a new be-

lief distribution has been fused into the current one. Additionally, instead of using just one

belief point pt to learn the distribution of the newly detected hidden source ht, we leverage

the time-varying information by using a subsequence of belief distributions starting from

time t to strengthen our estimation.

The detection algorithm can be described more formally as follows: The input is a

sequence of belief distributions {p0, p1, p2, . . . , pT}. The output consists of a set of detected

hidden sources distribution H = {h1, h2, . . . , hm}, the time varying impact for each of

the source Wt,i(i = 1 : m, t = 1 : T ) and the moment that the source shows effect

S = {s1, s2, . . . , sm}.
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Multiple-source-detection (p0, p1, p2, . . . pr):

1. H← ∅

2. i← 0

3. s[i]← 1

4. for t = 1: T

5. if i > 0

6. d = BKB_tuning(pt−1, pt, H[i− 1])

7. if d > δ

8. S[i]← t

9. else i← i− 1

10. end, if

11. subsequence = [ps(i), . . . , pt];

12. [h, w] = single-source-detection (subsequence);

13. H[i]← h :

14. for j = S[i] : i

15. W [i][j]← w[j − S(i)];

16. end, for

17. i← i+ 1

18. end, for

return [H, W, S].

Figure 5.1: Multiple-source detection algorithm

5.3 Experiments

In what follows, we present results of experiments that were carried out on both simulated

data and a real world scenario. We start by introducing two baselines we compared with in

the experiments.
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GMM: The first baseline is Gaussian Mixture Model (GMM) [106], one of the most sta-

tistically mature methods for mixture model clustering. GMM is a parametric probability

density function represented as a weighted sum of Gaussian component densities. To com-

pare with our work, we treat each component as an external opinion source and the mixture

coefficient/weight of each component as the impact. Parameters are estimated from train-

ing data using the iterative EM algorithm [105]. We randomly choose the initial value and

run the learning process 10 times to get the average result.

MBNs: As a general Gaussian density does not characterize the causal relationship be-

tween variables, to better represent the individual belief information, we apply Mixtures of

Bayesian Networks (MBNs)[111] in our experiment as the second baseline. MBNs gener-

alize BNs and several other important classes of models including mixtures of multivariant-

Gaussian distributions. Each mixture component in MBNs is a BN encoding a conditional-

Gaussian distribution, in which the variables may include both discrete and continuous

variables. Considering that the causal relationship in human belief systems is less likely to

change, we focus on learning the probability distribution of the component BNs and their

mixing weight. Since at any time step, there will be only one source fused into the previous

belief distribution, we set the number of components for both GMM and MBNs to 2.

5.3.1 Evaluation on Synthetic Data

Evaluation of our approach is challenging, as the data consisting of a human’s knowl-

edge bases and individual attitudes is usually inaccessible. Statistically designed sample

surveys have helped researchers to measure human opinions on a wide range of issues.

Nevertheless, they still suffer from the massive human effort required in the survey and

the methodology biases associated with the survey techniques. The work from Wiseman

[112], suggests that responses collected from a public opinion polling are dependent on

the method used to collect the data. If not designed carefully, respondents may provide
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socially desired responses even when they hold different views. Moreover, none of the

existing datasets contains a time-varying knowledge base influenced by the hidden sources

whose characteristics have been well captured. All of these limitations drive us to conduct

our evaluation with synthetic data. One of the main advantages of using synthetic data is

that it can be used to discover unexpected situations and certain quantifiable conditions that

may not be readily apparent or even available in real data. Although to enumerate all vari-

ants of human knowledge bases is not realistic, we still try to cover as many as possible by

tuning the factors that may affect a knowledge base. We apply randomness in all sampling

processes to eliminate the chance of a model favouring one pattern over ethers. Eventually,

we want to demonstrate that our method can achieve reasonable results regardless of how

a knowledge base is constructed.

Data Synthesis and Experimental Setup

To evaluate the effectiveness of our method, we simulate a person’s belief sequence {p0, p1, p2, . . . , pT}

from a set of predefined BKBs. For each experiment, we generate one’s initial belief p0 and

a series of hidden sources H = {h1, h2, . . . , hm} based on a belief template ptemp but with

different conditional probability distribution, where ptemp is represented by a BKB. A per-

son’s belief pt at time t(t = 1 : T ), then is the fusion of pt−1 and some hidden source

hi(hi ∈ H) with a randomly assigned hidden weight/impact wt. To compare with the two

baselines, at each time step t, we sample 1M records from the belief distribution pt as the

input dataset, denoted as Datat for both GMM and MBNs.

In order to compare with GMM and MBNs in terms of the ability to detect new sources,

we extend them with a statistics-based detection method. Similar to the way we derive the

multiple-source-detection algorithm, if there is no new source fused in at time t, then the

hidden distribution ht−1 learned at time t − 1 using two baselines should be similar to ht.

We borrowed the idea from [97] to calculate the likelihood ratio statistic:
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F (t) =
P (Datat|pt)
P (Datat|p′t)

(5.9)

where

pt =
pt−1 + wtht

Zt
and p′t =

pt−1 + wtht−1
Zt

It is not hard to find that a larger F (t) is achieved when p′t differs from pt, which

indicates that a new source has been fused in at time t. We calculate F (t) for all time steps

and treat the moments whose likelihood ratio is greater than a threshold ζ as detection

results.

Evaluation of single-source tracking

In the first experiment, we test the performance of our approach on tracking one single

hidden source h, i.e. pt = func(pt−1, h, wt). Both p0 and h are generated based on a 10-

variable ptemp (as shown in Figure 3.1). We choose three different numbers of time steps:

T = 10, 50 and 100 to examine how the length of belief sequence affects our tracking

performance. Figure 5.2 plots the impact trend detected using FFM, GMM and MBNs

respectively in terms of the number of time steps. To quantitatively measure the consistency

of the impact trend against the true values, we employ a cross-correlation score, which

measures similarity of two time series as a function of time-lag applied to one of them

[113]. As defined in [82], the normalized cross-correlation function between two series

x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn} is:

ρxy(k) =
E[(xt − µx)((yt+k − µy)]

σxσy
k = 1− n, . . . , 0, . . . , n− 1.

We run multiple experiments to test our performance on different initial belief p0 and

hidden source h. In particular, we gradually increase the size of the belief template ptemp in
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terms of the number of variables from 5, 10 to 20. Then, for each ptemp, we run experiments

on 10 randomly picked hidden source h. Figure 5.3 depicts the aggregated cross-correlation

curves, i.e. ρxy(k) = 1
30

∑30
i=1 ρ

i
xy(k), between each method with the true trend for the three

time series.

From Figure 5.2 and Figure 5.3 we can see that FFM always has the best performance.

The trend captured using FFM is pretty consistent with the true trend. MBNs outperform

GMM but not as well as FFM. The reason is that when some of the variables are highly

correlated, GMM is likely to converge to a local solution. MBNs on the other hand, char-

acterize the causal relationship between variables and overcome this restriction. However,

both MBNs and GMM suffer from the drawbacks of EM-based decomposition methods,

e.g. the requirement of a good initial guess. Moreover, both MBNs and GMM fail to track

the impact value when it is rather small. The reason is that general mixture models usu-

ally need large datasets. So when the mixing coefficient of a component distribution is

small, then the data corresponding to that distribution is not enough to learn its parame-

ters accurately. In contrast, as shown in Figure 5.2, even when the hidden impact values

are very small, our detection results are still accurate. This fact enables us to detect less

substantial influencing sources. Last but not least, the performance of FFM increases with

the number time steps, which indicates that our method is capable of improving detection

performance by leveraging time-varying knowledge. As FFM does not learn the impacts

of hidden sources for each individual time step, but optimizes through the entire altogether,

the overall runtime is much smaller than MBNs and GMM.

Moreover, we compare the distribution of a hidden source learned during the detection

process with the true one. Chan and Darwiche [114] proposed a distance measure between
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(c) T=100

Figure 5.2: Comparison of impact tracking for FFM and two baselines with increasing T
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(c) T=100

Figure 5.3: Cross-correlation analysis with T = 10,50 and 100

two probability distributions, where the distance is defined as:

D(p, p′) = ln max
w

P ′(w)

P (w)
− ln min

w

P ′(w)

P (w)
(5.10)

We apply this metric in our evaluation due to its ability to bound belief changes compa-

rable to KL-divergence. Table 5.1 shows the statistics of the distance between the learned

distribution and the true one over total 30 runs. We apply Student’s t-test to examine the

significance of the improvements of using FFM. The results provided in Table 5.2 suggest

that the distribution of the hidden source we learned is significantly better than both GMM

and MBNs.

10 steps Avg Min Max Std
FFM 0.5618 0.4125 0.6587 0.0636
MBNs 2.1324 1.6724 2.3678 0.1999
GMM 2.3145 2.0135 2.5431 0.1647
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50 steps Avg Min Max Std
FFM 0.5137 0.4074 0.6109 0.0689
MBNs 1.8934 1.6538 2.1546 0.1470
GMM 1.9723 1.8439 2.2768 0.1187

100 steps Avg Min Max Std
FFM 0.4742 0.4192 0.5308 0.0407
MBNs 1.9819 1.6938 2.2456 0.1547
GMM 2.1687 1.9437 2.3645 0.1845

Table 5.1: Statistics of the distance between the true and learned probability distribution.

p-value 10 steps 50 steps 100 stepts
FFM vs MBNs 4.1381E-5 1.6289E-6 5.8265E-7
FFM vs GMM 3.5809E-6 1.7764E-6 6.7676E-7

Table 5.2: p-value of paired sample t-test using different algorithms

Sensitivity Analysis

Since our testbed is simulated based on the predefined knowledge bases, e.g. initial belief

p0 and hidden source h, it is critical to understand how the diversity in the belief distribu-

tion, the complexity of the knowledge bases and the completeness of the hidden influential

fragments affect FFM’s performance. With limited real data on individual’s knowledge

bases, we conducted experiments on the synthetic data to test the robustness of our model

with respect to these parameters.

Diversity of the Hidden Fragment Distribution

As the characteristics of the hidden source is captured by analyzing the distribution change

of a person’s knowledge base between each time step, a follow-up question to ask is what

if the distribution of the hidden source is similar to one’s initial belief? In this section,

we evaluate how the diversity in the conditional probability distribution of the hidden frag-

ment affects the test results. In particular, we assume that p0 and h share the same BKB
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structure, but have different conditional probability distributions. To control the diversity

level, we define a diversity rate d ranging from 0 to 1 where d = 0 means that the hidden

distribution h is identical to p0 and d = 1 means h is totally opposite of p0. For example, if

the probability of p(A = 1) equals to 0.3 in p0, then in h, p′(A = 1) = 0.7 . Basically, for

every single rule x, d controls the difference between p(x) in p0 and p′(x) in h. We vary

the diversity rate r from 0.1 to 0.9, where 0.1 is marked as min and 0.9 is marked as max.

We measure and compare the learning errors of FFM and two baselines for each different

d, where the error is defined as the averaged difference between the learned impact and

the true value. To be consistent and comparable with other experiment settings, we fix the

number of variables to 20, T to 50. The structure of h and p0 is randomly generated for

each run. We run experiments 10 times for each d and present the averaged results along

with the standard deviation in Table 5.3. As shown in the table, the error for FFM is con-

sistently smaller than two baseline models. The p-value indicates that the outperformance

is statistically significant. In addition, the error gets larger when the diversity rate is low.

The reason is that when the distribution of the hidden source is very similar to the initial

belief, it becomes difficult to accurately detect the hidden impact, as the varied opinion at

each time step is insensitive to the value of impact.

Complexity of the Knowledge Bases

Besides the impact from the diversity in the conditional probability distribution, the struc-

ture of the initial belief and the hidden source is another factor that may affect a model’s

tracking power. One main factor that contributes to the BKB structure is the causal de-

pendencies between variables, which decide the complexity of a knowledge base. We start

with the simplest knowledge base consisting of only a set of variables, but with no depen-

dencies between them. Then, we continuously increase the complexity of the knowledge

base by adding more dependencies. This process actually mimics the way people acquire
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Diversity Rate d FFM GMM MBNs

Avg Err Std Avg Err Std Avg Err Std

Max 0.0195 0.0152 0.1620 0.0256 0.0982 0.0194

0.5 - 0.75 0.0374 0.0128 0.1728 0.0182 0.1514 0.0276

0.25 - 0.5 0.0428 0.0210 0.1845 0.0166 0.1566 0.0139

Min 0.1019 0.0101 0.2329 0.0198 0.1837 0.0089

(a) Error with standard deviation

Significance (p-value) FFM vs GMM FFM vs MBNs

Max 1.9047E-09 2.2929E-12

0.5 - 0.75 9.8032E-09 3.2728E-07

0.25 - 0.5 2.9403E-07 2.6374E-07

Min 5.0498E-08 2.9412E-08

(b) Significance (p-value)

Table 5.3: Learning error of FFM v.s. two baselines with different diversity rate d

and store new knowledge in their brain. When people are new to a field, it is easy to pick

up some new entity names than figuring out their relationships. Specifically, we define a

dependency rate r ranges from 0 to 1. r = 0 means that all variables are independent of

each other and r = 1 means that the dependencies are at maximum. For example, given

n variables a1, a2, . . . , an, without loss of generality, let a1, a2, . . . , an be their dependency

order. i.e. ai will never be dependent on the variables after it. So r = 1, if and only if for

all i = 1 : n − 1, ai is a parent of aj(j = i + 1 . . . n). We fix the number of variables to

20, T to 50 but only tune the dependency rate r. For each possible link from ai to aj , we

randomly generate a value x from uniform distribution [0, 1] and add a link from ai to aj

only if x <= r. Similar to the previous experiment, we run our experiments 10 times for

each r.

To show how the advantage of FFM over two baseline models changes when r in-
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creases, we measure and compare their learning errors. The error differences between the

models are shown in Table 5.4. The result shows that no matter how a knowledge base is

constructed, our method consistently produces a better result. Actually, the advantage of

FFM becomes more obvious when the structure gets more complicated in the beginning,

then tends to converge after a certain value. Moreover, MBNs generally outperform GMM.

But when r is in the range of [0.25, 0.5], GMM produces slighter smaller error than MBNs

(highlighted in bold), which suggests that the advantage over MBNs converges faster than

GMM. Also, when there is little dependency, i.e. r = min, the differences between mod-

els is subtle. Because most of the variables are independent of each other, FFM becomes

similar to a mixture model.

Complexity rate r e_GMM - e_FFM e_MBNs - e_FFM FFM vs
GMM

FMM vs
MBNs

Avg Err Std Avg Err Std Significance
(p-value)

Significance
(p-value)

Max 0.309 0.039 0.292 0.042 8.23E-09 6.45E-09

0.5 - 0.75 0.295 0.037 0.286 0.035 2.47E-10 8.34E-09

0.25 - 0.5 0.262 0.031 0.264 0.053 1.22E-10 5.37E-06

Min 0.023 0.022 0.027 0.024 0.009 0.006142

Table 5.4: Learning error differences of FFM vs two baselines with different complexity rate r.

Completeness of the Hidden Sources

In order to be compatible with the baseline models, all of our previous experiments as-

sume that both of the initial BKB and the hidden influential fragments share the same

knowledge structure. This assumption generally does not hold in the real world, as people

usually transform the ideas or opinions from external sources into small knowledge frag-

ments and then fuse them into their own knowledge bases. Therefore, in contrast to the
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initial knowledge base, hidden sources at any stage are necessarily associated with some

degree of incompleteness. In this experiment, we fix the initial belief p0, but change the

hidden fragment from simple ones to complex ones in a similar way to the previous section.

Specifically, we apply a completeness rate q from 0 to 1. We select the variables and edges

in p0 with a probability q to construct h. The minimum structure in h is just a simple rule

(one S-node pointing to one I-node) and the maximum situation (q = 1) is when h has the

same structure as p0. Similar to the previous two experiments, we fix the number of vari-

ables to 20, T to 50, r of p0 to 0.2. The results from Table 5.5 suggest that FFM performs

consistently better than the baseline models, especially when the hidden sources are highly

incomplete comparing to the initial knowledge base. The reason is that when the hidden

source contains only a few rules (small q value), the overall distribution variation at each

time step will be too subtle for mixture models to learn the mixture weight. In contrast, the

essence of FFM guarantees that even when the knowledge fragment is incomplete, it can

still capture the impact change by focusing on the changed marginal probabilities.

Complexity rate q e_GMM - e_FFM e_MBNs - e_FFM FFM vs
GMM

FMM vs
MBNs

Avg Err Std Avg Err Std Significance
(p-value)

Significance
(p-value)

Max 0.073 0.026 0.086 0.031 1.08E-05 1.12E-05

0.5 - 0.75 0.103 0.023 0.142 0.029 3.46E-07 2.14E-07

0.25 - 0.5 0.217 0.078 0.250 0.098 1.10E-05 2.05E-05

Min 0.300 0.115 0.314 0.162 1.72E-05 1.73E-04

Table 5.5: Learning error differences of FFM vs two baselines with different completeness rate q.
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Two Level Factorial Design

To identify the main effects of the three factors and study how they interact to affect the

results, we apply a two level factorial design to analyze the effects of all three parameters:

diversity rate d, complexity rate r, and completeness rate q on the error differences between

FFM and two baseline models. Factorial Design [115] has been widely used due to its

statistical power to effect estimates. It provides contrasts of averages and show how results

vary with the factors. Each of the three factors is studied at two levels: min (coded as -)

and max (coded as +). We set min and max values to 0.1 and 0.9, respectively, as extreme

values like 0 and 1 may cause noise to the result. The factorial design results including

main effects and interaction effects are presented in Table 5.6. A couple of observations

can be found from the table:

1. The effect of q with low complexity rate is much smaller than with high complexity (

Table 5.6 (a), run(1, 5) vs run(3, 7)). The reason is that when the structure gets com-

plicated, the incompleteness will occur not only on the variable base but also on the

causal dependency base. Both of the incompleteness will harm the performance of

the baseline models. This observation also indicates that the effect of q is dependent

on the value of r, which is proved to be true in Table 5.6 (b), where the interaction

between r and q is rather high comparing to the other two pairs of interactions.

2. When q is small, MBNs are more sensitive to r changes than GMMs. The reason is

that the advantage of MBNs rests on the assumption that the probability distribution

of a belief is specified completely. So, when the assumption cannot be satisfied,

increasing the complexity of a BKB can only enlarge its learning error.

3. Compared to the other two factors, diversity has a notable positive effect, which is

consistent with the experiment results in the previous section. Additionally, its effect

is somewhat independent of the others as the interaction effects with r and q are both
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small. This finding is not surprising, as the effect of diversity is mainly determined

by the learning capability other than the structure.

Run number D (diver-
sity)

R (complex-
ity)

Q (com-
pleteness)

Err_GMM -
err_FFM

Err_MBNs -
err_FFM

1 - - - 0.125 0.099

2 + - - 0.184 0.134

3 - + - 0.185 0.178

4 + + - 0.254 0.229

5 - - + 0.121 0.091

6 + - + 0.182 0.135

7 - + + 0.175 0.164

8 + + + 0.210 0.175

(a) average error difference with different factor values

Average
Effects

Err_GMM - err_FFM Err_MBNs - err_FFM

Main effects
Diversity d 0.056 0.03525

Complexity r 0.053 0.07175

Completeness q -0.015 -0.01875

Two-factor interaction
d*r -0.004 -0.00425

d*r -0.008 -0.00775

R*q -0.012 -0.01525

Three-factor interaction D*r*q -0.009 -0.01225

Standard error 0.0048 0.0029

(a) calculated effects and standard errors for three factors: d, r, and q

Table 5.7: Two-level factorial design
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Figure 5.4: The aggregated performance for tracking multiple-hidden-source impact trend

Multiple-source Detection

Next, we examine the ability of our method to detect and track a series of hidden sources.

We set the number of time steps T to 70. For each experiment, we randomly select 7 hidden

sources from H and the belief sequence of a person is simulated similar to the first exper-

iment except that after every 10 steps, we fuse a different hidden source into the previous

belief distribution pt−1. The impact weight for each step is still assigned randomly. We

apply the detection algorithm described in the last section to capture the time that a new

hidden source shows effect and track its time-varying impact pattern at the same time. We

run experiment for 30 times in terms of different ptemp (similar to single-source tracking),

and Figure 5.4 reports the average cross-correlation curves to show our tracking capabil-

ity. As we can see, our approach is robust on tracking multiple hidden source impact trends.

To measure the accuracy of detecting new hidden sources, we apply an Receiver Op-

erating Characteristic (ROC) curve to examine each method’s tradeoff between its false

positive rate (proportion of the time steps that are falsely detected as new source activation
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Figure 5.5: Performances for new hidden source detection

time) and true positive rate in terms of different threshold values . A higher curve or a

larger area under the curve indicates a better detection performance. Figure 5.5 shows the

ROC curves for each of the methods respectively.

We can see that, FFM performs better than the other two baselines. The reason is that

the detection processes of GMM and MBNs depend only on the previous step, whereas

FFM takes advantage of the belief points with no new sources fused in to refine the previous

detected hidden source. The best tradeoff between true positive and false positive for FFM

is achieved when threshold ζ is set to 0.2. By taking a close look at our results, we find that

some miss-detected cases occur when the distribution of new hidden source is similar to

the previous one. Thus, our method treats them as the same one as their subtle difference

can hardly been captured without further information.
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5.3.2 Evaluation on Real Data

The results from our synthetic data suggest that when the variation of a knowledge base’s

distribution is caused by the fusion of a hidden knowledge fragment, our algorithm is ca-

pable of capturing the evolution of its impact and characterizing its distribution. Moreover,

our algorithm is insensitive to the complexity of the knowledge bases and has no require-

ment for the completeness of the influential knowledge fragments. To illustrate the appli-

cability of FFM to real world problems, it is necessary to conduct experiments on a dataset

collected in real scenarios. To the best of our knowledge, there is no other work trying to

solve the exact same problem as we do. Wong et al [100] applies a BN-based anomaly

detection approach on real emergency department data to test the performance of detection

for disease outbreaks. However, they aimed to achieve early detection on the distribution

variation without distinguishing the influential sources. Such a data set, unfortunately, is

not suitable for our purpose as there is no ground truth on the characteristics of the sources.

Another stream of work that attempt to handle changing belief networks are built on

top of DBNs, e.g. HMMs. They exploit time-series data to solve problems like speech

recognition and behavior analysis. However, DBN models require a strong assumption that

the observations at each time step must be dependent on one or more finite states. This

may not be the case in our scenario, where the distribution of variable v at the next state

is dependent on both the previous state and the hidden source whose prior information is

not available. Moreover, the focus of our approach is not to predict how a person’s knowl-

edge base looks like in the future, but to discover and characterize the hidden influential

sources based on the historical data, such that we can better analyze and explain this pro-

cess. Considering the difficulties of finding the changing knowledge bases by fusing other

knowledge fragments in the real world, we decided to evaluate our model’s performance

on real data in two steps. Firstly, we want to show that even when the knowledge fragments

are integrated in a linear mixture fashion, our method can still get comparable performance
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as the two baseline mixture models. Secondly, we illustrate one specific real scenario to

show how our method can be applied to epidemic spread analysis.

Mixture Data

To evaluate FFM’s tracking ability on the data that is compatible with our model, but also

captures the characteristics of particular problems, we decide to simulate our time-varying

belief distributions based on three real-world datasets: Adults, Cover type and Color-based

image segmentation. All datasets are collected from the UCI machine learning reposi-

tory [116]. The original use case for these datasets was classification. We leverage the

data, however to evaluate each algorithm’s capability at learning mixing components. This

idea was borrowed from Thiesson et al [111] who applied real classification dataset in the

evaluation of MBNs. For a detailed description of each dataset, please refer to Appendix D.

GMMs have been employed to perform tasks such as real-time color-based tracking and

segmentation as they are able to smooth over gaps resulting from sparse sample data and

provide tighter constraints in assigning object membership to color-space regions. Con-

sidering that many approaches based on GMMs have been focusing on cases where the

observed variables are continuous, MBNs, a more generalized mixture model, aim at being

compatible with both discrete and continuous variables.

Time-series Data Preparation In order to simulate a time-varying belief distribution

where the changes are caused by mixing instances from a hidden distribution, we select the

instances from each group/category in a certain proportion that is determined by an impact

value. As we assume that no prior information about the impact trend is available, we set

the impact weight at each time step to be independent of each other. In our experiment, the

impact value for the hidden source at each time step is obtained from a uniform distribution

over the range [0, 1]. As a note, the impact distribution is not restricted to uniform. For each
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generated impact series, we apply it on all three data sets, such that we can also compare

the performances resulted from different feature characteristics.

To test our model’s ability on single-source tracking, we select two classes from the

original datasets to mimic the initial belief distribution p0 and the hidden source distribution

h. For instance, in the Adult dataset, people with annual income > 50K and income

<= 50K exhibit two distributions (see Appendix D for the specific classes labelled as

class_1 and class_2). Without loss of generality, let the data from class_1: D0 and the

data from class_2: Dh represent p0 and h respectively. Then, at time t(t = 1 : T ), we mix

Dh withDt−1 in a certain proportion to formDt, where the proportion is a normalization of

the impact value at t. Again, take the Adult data as an example. Assume a person belongs

to the > 50K group and at t1, he or she is influenced by another person from the <= 50K

group with a normalized impact value equals to 0.2. Then, to generate N learning samples

for that time step, we will randomly select 0.8N instances from> 50K and 0.2N instances

from <= 50K to form the mixture data.

Model Learning To apply FFM on a series of mixture data, we first learn the causal re-

lationships between variables (except the category attribute) for both class_1 and class_2.

As every BN can be transformed into an equivalent BKB, we employ Bayes Net toolbox

to learn the initial structures. Then, the marginal probabilities of pt(v) and pt(paj(v)) in

Equation 5.3 can be estimated from the mixture data Dt using maximum likelihood ap-

proach. When we need to discretize the continuous features (currently, BKBs only accept

nominal features), we use the Discretize filter from Weka1 [117] on the default setting. As

MBNs and GMMs are designed for learning the components from mixture data, we apply

them directly to the mixture data at each time step to learn the impact.

1Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning software
written in Java
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Results We gradually increase the number of time steps from 5, 10, 20 to 50 and run

the experiments on each data set 10 times. The average results for the cross-correlation

analysis are shown in Figure 5.6-5.8. As one can observe from the figures, with only a

limited number of time steps, GMM produces slightly better results than FFM (Figure 5.8

(a)). But when the time series is long enough, e.g. over 10 steps. FMM will catch up by

leveraging the time-varying knowledge. Also, GMM’s performance is significantly worse

than FFM on categorical features (Table 5.8, data 1 and data 3), but not on numerical

features (Figure 5.8 (c) and (d)). Note that GMM presumes that all the data points are

generated from a mixture of Gaussian distributions. This assumption may not hold for

data sets 1 and 2. We apply Student’s t-test to examine the statistical significance of the

differences between the two models. The results are presented in Table 5.8, the p-value

is in bold if FFM performs worse than the control model. As we can see, for most of the

cases where FFM performs worse than the baseline models, the p-value indicates statistical

insignificance. The exception happens at the 5-step experiment in data 3, which suggests

that when we are limited to only a few time steps, FFM could underperform the baselines

significantly due to the reason we mentioned earlier. After all, FFM is not designed to

learn the components of a mixed distribution, but to characterize the hidden influential

source from analyses of the differences between the consecutive time steps.

Data 1

p-value FFM vs GMM FFM vs MBNs
5 steps 1.75E-05 0.204
10 steps 8.41E-04 0.106
20 steps 3.70E-06 0.003
50 steps 1.48E-06 7.84E-07

A Real Scenario Case Study

Now, we show how to apply our method to detect and track events that happened during

the H1N1 pandemic in Mexico.
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(a) Data1: 5 steps
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(b) Data1: 10 steps
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(c) Data1: 20 steps
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(d) Data1: 50 steps

Figure 5.6: Cross-correlation on dataset 1: Adults
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(a) Data2: 5 steps
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(b) Data2: 10 steps
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(c) Data2: 20 steps
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(d) Data2: 50 steps

Figure 5.7: Cross-correlation on dataset 2: CoverType
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(a) Data3: 5 steps
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(b) Data3: 10 steps
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(c) Data3: 20 steps
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(d) Data3: 50 steps

Figure 5.8: Cross-correlation on dataset 3: Color-based segmentation
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Data 2

p-value FFM vs GMM FFM vs MBNs
5 steps 6.87E-04 0.195
10 steps 8.51E-05 0.166
20 steps 1.03E-05 0.106
50 steps 8.77E-06 0.056

Data 3

p-value FFM vs GMM FFM vs MBNs
5 steps 0.008 0.061
10 steps 0.140 0.151
20 steps 0.221 0.176
50 steps 0.324 0.261

Table 5.8: Statistics of the difference between each paired model

Background In one of our previous works, Santos et al. [29] conducted a Cross-Border

Epidemic Spread project to study why and under what circumstances would people be

driven to cross the border both legally and illegally with respect to epidemic spread. In

order to understand such human behavior as well as capturing actors’ intent, we modeled

actors’ beliefs and subsequent actions by incorporating their background, history, educa-

tion and experience with related issues, i.e. culture elements in a knowledge-based system.

As described in Santos et al. [29]: Culture affects actors’ beliefs, goals and decisions, and

thus is critical to properly represent the entirety of influences affecting actors’ decisions.

Including cultural influences in the model allows analysts the power and freedom to fully

represent their intuitions, and to explore the model for explanations to emergent behaviors.

As the culture information is inherently uncertain and incomplete, we represented the in-

tent of actors or entities using their cultural traits modeled probabilistically in BKBs. Each

cultural fragment represents a certain aspect of an actor’s goals, intentions, opinions and

cultural influence. Then, multiple fragments can be fused into a single BKB to represent

the actor’s overall behavior.
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Figure 5.9: Example BKB fragment with belief and action

To distinguish an actor’s action from his belief, we treated “Actions” as another type of

variables (denoted as ‘A’) in the BKBs to represent the possible strategy or actions adopted

by the actor or entity to achieve their goals. All “Beliefs” variables (denoted as ‘B’) can

influence other beliefs and actions, but can only be influence by other beliefs. In contrast,

actions can only influence other actions, but not beliefs. Figure 5.9 shows a representative

BKB fragment with the hierarchy of beliefs and actions.

The original goal of this project was to show the effectiveness of our ability to explain

outcomes produced by the model. We built our intent-driven model based on the simulated

pandemic scenario in Mexico. As the initial groundwork for the simulation, we chose to

model the Mexican population and focus on changes in their border crossing behaviors and

intent. By building BKB cultural fragments to represent various sectors of the Mexican

populace, we constructed the model fed by inputs from a set timeline representing various

other events and actions/decisions taken by other actors in the scenario, such as the Mexi-

can and US governments, and international organizations such as the European Union (EU)
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and the WHO. In total, a team of researchers used information from dozens of newspaper

articles, news websites, government and non-governmental organizations, open sources

and general knowledge, to build 23 BKB fragments and 22 random variables. The condi-

tional probabilities assigned in the BKBs represent the subjective view of the researcher,

informed by the data sources. However, when statistical information was available, it was

used to generate the probabilities.

The Mexican populace was modeled by two main demographic details: age and loca-

tion. Age was broken down into three groups that corresponded well with reported vulnera-

bility to H1N12: young (0-17), middle-aged (18-64), and old (65+). These breakouts were

relevant because there was a widespread belief that the middle-aged group were dispropor-

tionately vulnerable, which would likely affect their decisions and behavior. Consequently,

we expect the behavior for the middle-aged group to be markedly different from that of

the other two age groups. A cultural fragment for the middle- aged group (given in Figure

5.10) represents the commonly held view that H1N1 was more lethal for this group3. Note

that the probability values represent the intuition of the SME that built the BKB, based

on his/her expertise, experience and available facts. We also implemented a high-level re-

gional model, dividing the Mexican state into three geographic areas: the north, the south,

and the interior. We subsequently modeled the H1N1 epicenter as located in the interior, as

the earliest outbreaks were reported in the Federal District of Mexico and San Luis Potosi4,

both in central Mexico. To incorporate diverse behaviors of the Mexican population, we

built BKB fragments to represent cultural influences of demographic examples of typical

Mexicans, such as middle-aged and interior, or elderly and north. At the same time, we

fused in fragments representing individual details, such as region of residence in relation

to the epicenter of the outbreak. All of these cultural and individual details can influence

2http://www.who.int/csr/disease/swineflu/notes/h1n1_vaccine_20090713/en/ index.html
3http://www.suite101.com/content/who-needs-an-h1n1-swine-flu-shot-a187205
4http://www.who.int/csr/don/2009_04_24/en/index.html
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Figure 5.10: Cultural fragment for middle-aged population

decision making.

Once a representative individual is created by fusing relevant cultural fragments, we

fused in BKB fragments representing events from the scenario timeline (shown in Table

5.9). An example of an “event fragment” (given in Figure 5.11) represents the event E6 in

the timeline when the availability of the vaccine led to a change in belief that healthcare

is more effective. There are 16 time steps in the simulated scenario from April 12th to

December 5th in 2009. The fused BKB at each time step is a fusion of cultural fragments

and event BKBs with the reliabilities that are predefined by the researchers.

Of primary interest are the changes in the migration patterns. Figure 5.12 shows peo-
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Figure 5.11: Event fragment

ple’s intent variation to migrate to US illegally, which is represented by the probability of

variable “illegal migration to US” inferred from the fused BKBs at each time step.

Event Detection using FFM The whole intent system is constructed through the fusion

of cultural BKB fragments that are created based on sources such as demographic infor-

mation and news articles. When a major event occurs, the intent system will fuse the event

BKB and update its probability distribution adaptively to reflect an individual/group’s be-

lief change caused by the event. As the occurrence of an event will change people’s beliefs

and subsequence behaviors, the characteristics of these events and their impact patterns are

key to analyzing people’s reactions. We apply FFM on a series of belief distribution gener-

ated from the fused BKBs in [29] to detect the implicit events without any foreknowledge.

Furthermore, we show how our approach can be used to analyze behavior of populations

during H1N1 and their propensity to escape to neighboring countries, e.g. illegal migration
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Figure 5.12: Posterior probability of illegal migration to US

to US.

Date Event Description

E1 4/24 WHO sends experts to Mexico

E2 4/27 EU advises European not to travel to Mexico

E3 4/29 WHO raises the pandemic level from 4 to 5

E4 5/1 Government shut down most parts of the country

E5 7/13 Businesses and government have reopened

E6 10/5 More vaccine is available

Table 5.9: Major events happened during H1N1 pandemic.

Again, let us look at the probability variation of “illegal migration to US” during pan-

demic period. As plotted in Figure 5.12, after H1N1 outbreak was detected on April 12th,

there is a slight decline since April 24th, followed by a peak on 27th. The panic drops

slowly till July 13st, then it increases a little bit on July 13th and starts to fall till the end.

So, what happened during this period? What’s the cause behind the fluctuation? To

answer these questions, we apply FFM to detect and track the implicit events. Figure 5.13
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displays our results, where five out of six events (comparing to the timeline in Table 5.9) are

successfully detected. As we can see, the behavior fluctuation that happened at each time

step is not necessarily caused by the breakout of a new event, but mostly from the variation

of the event impact. The only event that we fail to detect is E3. Actually, both “EU advises

European not to travel to Mexico” and “WHO raises the pandemic level” made people be-

lieve that H1N1 is contagious and even deadly, which increases the desire to escape the

pandemic. Furthermore, E3 happened only two days after E2, so our method treats them as

the same event as they affect people’s belief in a very similar way.

We also analyze the learned distribution of each event so as to gain more insights. The

distribution of the first event we detected suggests an increase in the probability of “be-

lieve healthcare is effective”, which becomes the main reason that lowers the fear level

and migration behavior. This observation matches perfectly with the fact that “WHO sends

experts to Mexico on April 24th” helps control the panic. Likewise, the breakout of the

event on July 13th causes a temporary increase on people’s belief regarding the contagious

nature of the disease due to reopened business, which encourages migration behavior for a

short period.

Moreover, on closer examination of the impact trend, we see that the impact of each

event keeps declining after breakout. This explains why the probability of migration has an

apparent decline on April 24th, but slows down on April 25th. Actually, event impact has

been modeled as a function of days after an event occurs [76], i.e. wij = 1
j−i+1

. Our results

fit with this pattern as well. As shown in Figure 5.13 the influence of event 3 decays close

to a small value after 30 days. Thus, it is reasonable to believe that the moderate increase

of the tendency to migration on July 13th is mainly caused by the event 4 individually as it

has been over a month since all previous events.
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Figure 5.13: Detection results on event impact
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Chapter 6

Conclusions

We have developed a framework for modeling opinion dynamics based on human knowl-

edge bases and reasoning patterns. Different from the mainstream opinion formation meth-

ods that treat individual opinions on various issues as independent beliefs, we consider

opinions as a product inferred from one’s knowledge-based system, where new knowledge

fragments are acquired through social interaction and learning experiences. Our underlying

opinion formation model provides a computational foundation for quantifying individual

opinions in the process of knowledge fusion. It subsumes existing opinion formation mod-

els in the sense that it is capable of capturing the connections between knowledge frag-

ments, but is also compatible with prevalent social theories of opinion formation. After

describing the opinion formation model, we introduced a general impact metric to mea-

sure the reliabilities of the influential knowledge fragments. We characterized the social

influence on the basis of a set of domain-independent social factors. We also ensure that

the impact metric exhibits enough flexibility that newly discovered influential factors can

be readily incorporated into the model. Lastly, on top of the opinion formation model,

we derived a Finite Fusion Model (FFM) to detect hidden influential sources and capture

the evolution of their impact levels. To the best of our knowledge, this is the first com-

putational framework of opinions where opinion dynamics is modeled as an evolution of
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knowledge bases. The primary advantage of such design is that we managed to model

multiple components in opinion dynamics in a coherent system, such that no matter what

learning techniques a component applies, they all share the same core representation. In

the rest of this chapter, we will elaborate the main achievements in each component and

discuss limitations and future works in the last section.

6.1 Accomplishment and Findings

In this section, we present the contributions of our framework for modeling opinion dy-

namics. In particular, we list the accomplishments and findings we gained with respect to

each chapter.

1. Opinion Formation (Chapter 3)

(a) We provided a computational model to measure individual opinions from a se-

quence of changing knowledge bases. It takes into account the connections be-

tween knowledge fragments. So any change happened to the opinion regarding

one issue will be reflected in the decision made on other related issues.

(b) We identified the nonlinearity nature of opinion formation. To evidently show

that individuals do not adopt the opinions from others in a linear fashion, we

conducted analyses on the real data collected from Wikipedia and focused on

how the interaction on Wiki’s talk pages affects people’s interests. The results

show that one’s interested topics will be influenced by the people they have

communicated with. However, the particular updating process is complicated

that can hardly be modeled as a linear integration of others.

2. Social Influence Learning (Chapter 4)

(a) We extended the opinion formation model to study social influence by incorpo-

rating a general impact metric. The influence of each fused knowledge fragment
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is measured based on certain social factors. We started with several influential

factors that have been shown to be related to process of opinion selection.

(b) With the sound mathematical formulation, we show that the impact of each

social factor can be efficiently learned via regression methods.

(c) We conducted experiments on synthetic data with respect to different parame-

ters. The results validate the effectiveness of our approach over the DeGroot

model.

(d) We provided a thorough analysis and proved that the classical DeGroot model

is essentially a special case of our model under certain conditions.

(e) We tested our approach on modeling the political opinion change using a real

world dataset. The results of our approach are consistent with prevalent social

theories. To the best of our knowledge, this is the first work to try and un-

cover the mechanism that guides the selection of opinions in the real world by

modeling opinion change.

3. Hidden source tracking and detection (Chapter 5)

(a) We presented a new approach to detect hidden sources of influence, as well

as capture and characterize the patterns of their impact with regards to belief-

changing trends.

(b) We made several intuitive observations about opinion change, and propose a

variant mixture model FFM that is specifically tailored to handle all the con-

straints.

(c) The latent parameters that characterize the distribution of the underlying hidden

sources and the corresponding impact weights are learned via a constrained

optimization problem.

(d) Experimental studies on synthetic datasets show that our approach outperforms

the classic Gaussian Mixture Models and Mixture Bayesian Networks.
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(e) We applied sensitivity analysis in terms of the diversity in the belief distribution,

the complexity of the knowledge bases, and the completeness of the hidden

influential fragments. The results validated the robustness of our approach.

(f) We applied our method on a real pandemic scenario. We demonstrated the ef-

fectiveness of our model in capturing the intentions behind the opinion change,

and further showed that our approach can be used to better analyze and explain

the behavior of populations.

6.2 Limitations and Future Work

In this section, we summarize the limitations of our current framework and discuss some

possible directions that we can pursuit in the future.

6.2.1 Limitations

One limitation of this work exists in the accuracy of knowledge elicitation. Although in-

dividual knowledge bases can be constructed based on one’s preferences and answers to

various survey questions, to accurately extract how people feel without bias is hard in the

first place. Like the real data we used in the Social Evolution experiment, political opin-

ions and participations during presidential election are collected via 4 surveys over several

months. Even with advanced survey techniques, manual retrievals of individual beliefs or

attitudes are still time consuming and labor intensive. Moreover, when the amount of data

to be processed is too large, the manual efforts may not scale and have difficulty producing

consistent results. Recent years, automatic elicitation techniques have been developed. For

example, Sentiment Analysis have been used to determine the attitude of a speaker or a

writer with respect to some topics or the contextual polarity of a sentence/document. Nev-

ertheless, these techniques rely on the assumption that people have conveyed their ideas

explicitly in words and all expressions can be accurately interpreted through natural lan-

117



guage processing. This apparently, can hardly be satisfied in a free online communication

environment.

Another limitation of this work is that people may change their opinions via other chan-

nels that are not being monitored. Although we can detect hidden sources from the incon-

sistency in opinion change, more information is needed to understand how reliabilities are

assigned to the knowledge fragments sent from those hidden sources.

6.2.2 Future works

In this work, we concluded that opinion formation is in essence a process of knowledge ex-

pansion and revision. Individuals selectively take into account the information they gained

through social communication, and then revise their opinions via knowledge-based infer-

ence. Yet, there is still space for improvement on opinion formation, hidden source tracking

and detection, BKB learning, and opinion propagation.

Analyses on opinion formation The convergence analysis illustrates the situations when

opinions tend to converge to a stationary state. However, whether they will reach a con-

sensus or disagreement leading to polarization or even more general opinion fragmentation

still needs to be carefully studied. Additionally, only three social factors are studied in the

real dataset due to the scope of the problem and the lack of ground truths in social commu-

nication. However, some online social networks, like Facebook1 and Twitter allow users to

provide demographic information. The likeness on demographic features may also affect

whether a piece of information merits our acceptance.

1Facebook is an online social networking service, where users can post images, update status and ex-
change messages,with their friends. http://www.facebook.com
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Hidden source tracking and detection The current FFM model assumes that there is at

most one piece of new information (from hidden source) fused into the previous knowledge

base at each time step. In reality, multiple sources may have influence on one’s opinion at

the same time. This happens when there is no single convincing source for a particular

fragment and the final knowledge/belief system is formed by integrating all possible expla-

nations. So our next step is to expand our approach by allowing multiple sources to affect

the same part of the belief network.

BKB learning In this work, individual knowledge-based system is represented by BKBs.

Currently, we do not have a methodology to learn a BKB fully automatically. Most of

the BKBs in our research projects are constructed based on the statistics from authorized

sources by our domain experts. However, since BKBs subsume BNs, any knowledge bases

representable by BNs can be transformed into a BKB. To automatically build a BKB, one

can always start with some small knowledge fragments and apply BKB fusion and BKB

tuning to integrate them into a large knowledge base. Both BKB fusion and BKB tuning

can be done automatically.

Opinion propagation Another possible direction of our future work is to study opinion

propagation. Understanding of opinion propagation is necessary as it sheds light on how

information flows and how the spread patterns can be affected. Different from existing

information diffusion works whose main goal is to study how information reaches nodes,

opinion diffusion takes one step further to discuss the possibility of adopting an idea. The

problems that need to be addressed are twofold:

1. Social scientists have shown that besides network structure, the pattern of opinion

diffusion may also depend on other factors. For example, Romero et al. [118] find

that the way of opinion spread on different topics varies significantly and Buchan

et al. [119] suggest that females scored slightly but consistently higher on scales

of trust than male. Therefore, to fully understand each factor’s role and how those
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factors contribute to the opinion propagation, we plan to conduct analyses on the

individual difference in both prior knowledge bases and reaction to other opinions.

2. The second task to tackle is to investigate which communicatee contributes most to

one’s opinion change. Such contribution relies not only on the reliabilities assigned

to her neighbors but also on the information or knowledge pieces sent by them. Fur-

thermore, if we can identify how the variation of one’s reliability affects the opinion

formation, we may find a clue of guiding and facilitating social policies. We plan

to apply contribution analysis to measure the impact of each contributors and ap-

ply sensitivity analysis to quantify how changes in the reliability of a communicator

influences one’s opinion on a given issue.

Comprehensive Model In the current framework, hidden source detection and the so-

cial influence learning are modeled separately. Although they share the same method of

information processing, further efforts are needed to integrate them into one comprehen-

sive model, such that the parameters that characterize social factor weights and hidden

source distributions can be learned at the same time. Moreover, the interactions with hid-

den sources indicate an implicit contact network that should be combined with the explicit

contact network to enrich the social influence learning.
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Chapter 7

Appendices

7.1 Appendix A

The method for fusing BKB fragments [2] can be described as follows. The input is a set

of n BKB fragments, {K1, K2, . . . , Kn} where Ki = (Gi, wi, σi, r(σi)). Each fragment Ki

has an information source represented by σi, and r(σi) is the reliability of source σi. The

output is a new BKB K ′ = (G′, w′) with G′ = (I ′ ∪ S ′, E ′), that is the fusion of n input

fragments. For an I-node a in some fragment, let Ra be the random variable of which a is

an instantiation. The fusion algorithm is depicted in Figure 7.1

7.2 Appendix B

We show that the opinions inferred from a fused BKB are not a linear combination of the

original ones. Take Figure 2.2 as an example, let K1,K2 be the knowledge bases for actor 1

and 2, respectively. After fusion, K1 and K2 are merged into a fused BKB K ′. Originally,
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Bayesian-Knowledge-Fusion {K1,K2, . . . ,Kn} :
Let G′ = (I ∪ S′, E′) be an empty correlation graph

1. For all fragments Ki with i← 1 to n

2. For all S-nodes q ∈ Si

3. Let α← DescGi(q)

4. Let the source I-node for q be s = (SRa = σi)

5. Add q, all nodes connected to q in Gi, and the corresponding edges to G′

6. Add s to G′ along with an S-node supporting it

7. end for

8. end for

9. Let ρ be a normalizing constant

10. For all S-node q′ supporting some source node s

11. Let w′(q′)← r(s)/ρ

12. end for

13. return K ′ = (G′, w′)

Figure 7.1: BKB fusion from Santos et al.[2]
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the probability of “Vote” in K1 is:

p1(Vote = Y) = p1(Interested in politics = Y)

∗ p1(Vote = Y | Interest in politics = Y)

= 0.6 ∗ 0.9 = 0.54.

Similarly, the probability of “Vote” in K2 is:

p2(Vote = Y) = 0.3 ∗ 0.7 = 0.21.

Then the probability of “Vote” in the fused BKB K’ becomes:

p1(Vote = Y) = [r1 ∗ p1(Interested in politics = Y

+ r2 ∗ p2(Interested in politics = Y)]

∗ [r3 ∗ p1(Vote = Y | Interest in politics = Y)

+ r4 ∗ p1(Vote = Y | Interest in politics = Y)]

= (r1 ∗ 0.3 + r2 ∗ 0.6) ∗ (r3 ∗ 0.9 + r4 ∗ 0.7)

However, if we integrate the information by weighted averaging the probabilities of

“Vote” in K1 and K2, then p′(V ote = Y ) should be equal to:

p′linear(Vote = Y) = r3 ∗ p1(Vote = Y)

+ r4 ∗ p2(Vote = Y)

= 0.54r3 + 0.21r4

Apparently, p′(V ote = Y ) does not equal to p′linear(V ote = Y ) in most cases (some

special cases are discussed in Chapter 4).
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7.3 Appendix C

With the learned factor weights using two methods, we can recreate the opinion trend over

time. The procedure is the same as the generation of the synthetic opinion distribution, ex-

cept the predefined factor weights are replaced with the learned weights. Then we measure

their probability distribution distance with the synthetic data using the metric in Equation

5.10 from [114].

We run our experiment for 10 times and the results are provided in Table 7.1. As shown

in the figure, the mean distribution distance of our approach and the baseline model is

[0.0513, 0.0671], with p-value equals to 0.0009. This result suggests that the recreated

opinion trend from our approach is closer to the true synthetic trend.

Distance Proposed Baseline

1 0.0655 0.0927

2 0.0641 0.1029

3 0.0364 0.0679

4 0.0326 0.0310

5 0.0582 0.0840

6 0.0693 0.0737

7 0.0235 0.0270

8 0.0202 0.0235

9 0.0541 0.0628

10 0.0892 0.1052

Average 0.05131 0.06707

Table 7.1: Distance measure between the true and learned probability distribution using different
algorithm

124



7.4 Appendix D

The descriptions of the three datasets we used in Chapter 5 are listed as follows:

1. Dataset 1: Adults1 This data consists of 13 features (6 continuous and 7 categorical)

extracted from two types of income group: >50K and <= 50K per year. The total

number of instances is 48842. The original goal is to determine whether a person

makes over 50K a year based on the consensus information. In our experiment,

>50K and <=50K groups are labelled as class 1 and class 2.

2. Dataset2: Cover type2 This data consists of 54 features (10 continues and 44 cate-

gorical). The original goal is to predict forest cover type from cartographic variables

only (no remotely sensed data). The total number of cover type is 7 which is deter-

mined from US Forest Service (USFS) Region 2 Resource Information System (RIS)

data.

3. Dataset3: color-based image segmentation3 This data consists of 19 continuous fea-

tures and 2310 instances in total. The instances were drawn randomly from a database

of 7 outdoor images. The images were hand segmented to create a classification for

every pixel. Each instance is a 3x3 region. In our experiment, we select 2 classes:

window (class 1) and grass (class 2) to generate the mixture data.

1https://archive.ics.uci.edu/ml/datasets/Adult
2https://archive.ics.uci.edu/ml/datasets/Covertype
3https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
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