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Abstract—Opinion dynamics is a complex procedure that 
entails a cognitive process when dealing with how a person 
integrates influential opinions to form a revised opinion. In this 
work, we present a new approach to model opinion dynamics 
by treating the opinion on an issue as a product inferred from 
one’s knowledge bases, where the knowledge bases keep 
growing and updating through social interaction. A general 
impact metric is proposed to evaluate the likelihood of a person 
adopting the opinions from others. Specifically, a set of 
domain-independent influential factors is selected based on 
social and communication theories, but the weights of these 
factors are missing. Though the opinions from different actors 
are not integrated linearly like traditional methods, we show 
that the factor weights can be efficiently learned via regression. 
We validated the effectiveness of our model by comparing 
against a baseline model on both synthetic and real datasets. 
The contribution of this paper lies with 1) a novel opinion 
dynamics model that emphasize the dependencies between 
knowledge pieces; 2) proof that the classical DeGroot model is 
a special case of our model under certain conditions; and, 3) to 
the best of our knowledge, this is the first work to try and 
uncover the mechanism that guides the selection of opinions in 
the real world by modeling opinion change. 

Keywords—opinion dynamics; opinion formation; 
knowledge fusion; influential factors;  

I.  INTRODUCTION  
The process of interpersonal influence that affects 

individuals’ beliefs and opinions lies at the heart of 
socialization, identity and decision-making. It also serves as 
a guide to how people change their behaviors by taking into 
account the attitudes and opinions of others with whom they 
interact [1]. Evidence of the reliance on others’ opinions in 
one’s decision can be found in many fields, from advertising 
with social cues [26] to the diffusion of political views [2]. 
Yet, despite its importance in various forms of social 
policies, to fully understand opinion dynamics through 
social processes is never a trivial job. Firstly, not everyone 
holds the same base of knowledge. It is often the case that 
when information is hard to process or access due to 
incompleteness, one would shape their opinions by 
interacting with others who hold views on the given issues 
[17]. Moreover, even if two people do not exchange views 
on a specific problem, due to the causal relationships 
between knowledge fragments, the newly acquired 
information from the conversation could influence their 
opinions toward that problem. For example, a person may 
decide not to buy a Japanese car after being told by her 

friend that a political issues between Japan and her country 
have become severely strained, even though their 
conversation had nothing to do with car-buying. In addition, 
the art of understanding personal opinions rests not only on 
the measurement of people’s views but also on 
understanding the motivations behind those views. 
Therefore, it becomes increasingly important to model 
opinion dynamics by considering diversity in individual 
knowledge bases, the dependencies between knowledge 
fragments, and the intentions behind the opinion change.  

On the other hand, a person will neither fully adopt nor 
completely disregard the opinions of other people, but takes 
into account the opinions of others to a certain extent in 
forming her own opinion. However, how an individual 
adopts the beliefs of others may vary in different situations. 
For instance, people are inclined to take the opinions from 
their close friends more seriously than from random people. 
Trust-based models have been well developed to measure 
the magnitude of trust between people or to provide 
recommendations in social networks [3][4][5].  However, 
social trust depends on a host of factors that can never be 
easily modeled computationally [3]. Moreover, even if a 
person trusts someone’s words, he may not want to change 
her opinions. In our work, we focus on how people view 
and adopt the opinions held by the people they have 
communicated with. Though how the knowledge bases are 
expanded and updated through social interaction seems 
complex, there may exist a core mechanism guiding the 
selection of opinions such that we can use it to control or 
predict future opinion dynamics. To uncover such 
mechanism, we start by considering several domain 
independent influential factors that have been shown to be 
highly related to opinion formation by communication 
scholars and social theories [19][10][21]. But, we show that 
our model is not restricted to these factors. Newly 
discovered factors can be easily incorporated into the model.  

Bayesian approaches have been widely used to represent 
opinions due to its ability at capturing causal relationships 
between variables [6][7]. For example, Garg et al. [6] 
introduces a Bayesian network (BN) [12] based divergence 
minimization framework to integrate opinions from 
different sources in order to solve the problem of standard 
opinion pooling. However, people’s knowledge-based 
system, is necessarily associated with some degree of 
incompleteness, which turns out to be problematical to BNs, 
as they require a completely specified conditional 
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probability table (CPT). BNs also require that information 
be topologically ordered which further restricts their general 
applicability to real-world situations. To overcome these 
limitations, we apply a probabilistic framework called 
Bayesian Knowledge Bases (BKBs) [9] to represent 
individual opinions due to its flexibility for modeling 
incomplete information and allowance of cycles at the 
variable level. BKBs have been extensively used to model 
complex intent-driven scenarios [7]. 

In our previous work, a Finite Fusion Model (FFM) was 
proposed for detecting and tracking hidden sources in a 
time-variant scenario given a sequence of belief 
distributions encoded as BKBs [11]. In this paper, we apply 
FFM to opinion dynamics modeling by incorporating a 
general impact metric. Specifically, a person forms her new 
opinion by aggregating the knowledge fragments absorbed 
from the people she interacted within a given period, where 
the impact of each communication is determined by the 
impact metric. We design the metric by combining the 
influential factors in a linear fashion such that the weight for 
each factor can be learned from data. We show that though 
opinions from different people are not linearly fused, the 
relationship between the opinion change and influential 
factors can be transformed into a regression problem and be 
solved efficiently. To demonstrate the effectiveness of our 
approach, we compare against a baseline model on both 
synthetic data and real data. A thorough analysis of the 
situations in which our approach becomes equivalent to 
classic opinion formation models is provided as well.  

II. BACKGROUND AND RELATED WORKS 

A. Related Works 
Opinion formation is a key process to understand and 

explain opinion dynamics. Works based on social influence 
network theory have made remarkable progress in showing 
how networks of interpersonal influence contribute to the 
formation of interpersonal consensus in complex 
circumstances [10][1][14]. One of the classical ways is to 
form people’s revised opinions through a weighted 
averaging of the influential opinions, where the weights 
between two actors on the network can be either static or 
time-variant [1][13][18].  However, most of these works are 
theoretical models where the strong assumptions attached to 
these methods, such as fixed social structure or simultaneity 
restrict them to be only applicable to extremely simple 
scenarios. Other approaches take into account some factors 
while leaving out others. For example, Tessone et al. [16] 
studies the effect of population size in opinion spread, but 
only focuses on consensus situations. Wu & Huberman [17] 
predicts the evolution of a set of opinions by considering the 
structure of the social network. However, they assume that 
the influences from each neighbor are the same, which is 
hardly true in the real world. In this work, the role of social 
network structure is not our focus. Many approaches to 
opinion formation consider single opinion dynamics but 

overlook the connections between the knowledge fragments 
[15][16][17][18]. In contrast, we treat the opinion as a 
product inferred from one’s knowledge base, where the 
knowledge base expands and changes through the 
communications. By doing so, we increase the flexibility of 
quantifying an individual’s opinions such that more insights 
on opinion dynamics could be brought out via inferring over 
the knowledge bases. 

In modeling influence in social networks, efforts have 
been made on characterizing the influence of each 
individual on information diffusion based on the social 
network structure and interpersonal interaction [27][24].  
However, different from these approaches whose main goals 
are to target the influential people that can persuade a great 
number of people in their society, we emphasize on finding 
the rules of how one adopts another’s opinion. In order to 
model the impact in a person’s opinion, we start by selecting 
a set of correlated factors: 1) Relationship, characterizes the 
closeness between people, is a strong indicator of how likely 
one may accept another’s opinion. It forms the social 
environment, e.g. family or friends that people are willing to 
adjust their attitudes to conform to their group members 
[19]. However, without frequent contact, even two close 
friends may differ so much on their knowledge bases that 
one can hardly convince the other. 2) The second factor is 
the recent contact frequency. Research from Chong & 
Druckman [10] shows that frequent communication allows 
one to deliver her opinions more credibly to the public. 3) 
Similarity has been used as a metric to evaluate the 
relationship between people in social network analysis [20]. 
Instead of measuring the similarity of personal 
characteristics, such as age and location, we measure the 
opinion-wise similarity, as the former one can be highly 
correlated to the relationship. Sniderman and Theriault [21] 
finds that individuals favored the idea that was consistent 
with their own values.  

B. Bayesian Knowledge-base 
In this work, we apply BKBs [9] to model a person’s 

opinion at each time period. BKBs are a rule-based 
probabilistic model that represents possible world states and 
their (causal) relationships using a directed graph. BKBs are 
an alternative to BNs by specifying dependence at the 
instantiation level (versus BNs that specify only at the 
random variable level); by allowing for cycles between 
variables; and, by loosening the requirements for specifying 
complete probability distribution. BKBs collect the 
conditional probability rules (CPR) in an “if-then” style. 
Each instantiation of a random variable is represented by an 
I-node and the rule specifying the conditional probability of 
an I-node is encoded in an S-node with a certain 
weight/probability. (Fig. 1 (right) presents an example BKB 
representing a fragment of one’s knowledge bases.) The 
opinion value on a given issue can be reasoned from the 
BKB. For example, the marginal probability of “vote for the 
demographic” quantifies one’s attitude on supporting the 
demographic.  
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C. Finite fusion model 
Santos et al. [11] proposes a Finite Fusion Model (FFM) 

to model the revised knowledge base influenced by hidden 
sources.  In the context of FFM, the knowledge bases of 
each source are represented by a BKB. People revise their 
knowledge bases by fusing the knowledge fragments from 
others using the BKB fusion algorithm [22]. The idea of the 
algorithm is to take the union of all input fragments by 
incorporating source nodes, indicating the source and 
reliability of the fragments.  Fig. 1 shows an example of the 
knowledge fusion, where two BKB fragments from actor 1 
and actor 2 are fused into one. A useful property of 
knowledge fusion is that it considers the impacts from 
multiple sources when constructing explanations for any 
evidence observed. Thus, the opinions/beliefs inferred from 
the fused BKB are not a linear combination of the original 
ones. Take Fig. 1 as an example, let  be the 
knowledge base for actor 1 and 2, and let  be the fused 
BKB. Then the probability of “Vote” in  becomes  

 
 

 does not equal the weighted average, i.e., 
 in most cases (some 

special cases will be discussed in a later section).  

 
 

Figure 1: Example of knowledge fusion with square blocks and ovals 
representing I-nodes and S-nodes, respectively 

 

III.  MODELS 
Without an explicit mathematical formulation, it is hard 

to analyze and understand the process of opinion dynamics. 

A. Opinion Formation Model 
People do not like/dislike a thing for no reason. We treat 

all opinions as the reasoning results from ones’ knowledge 
base. We assume that all knowledge fragments that serve as 
input to our model are valid BKBs. The example in Fig. 1 
shows that one’s integrated opinion is a high-order 
polynomial function with the reliability of each knowledge 

fragment being indeterminate.  For example,  
is a second order polynomial of and .  

From FFM, the individual knowledge base at time  
( ) can be viewed as an integration of the previous 
one and the knowledge fragments acquired through the 
interaction. We assume that everyone’s initial BKBs have 
the same structure, but different distribution. The trick is that 
if one’s BKB misses one part of the information, we can 
always treat the corresponding conditional probabilities as 0 
(The transformed BKBs are still valid). Given an actor 0 
whose initial knowledge base is ( 𝑖  denotes the 
knowledge base for actor  at time step ), let  represents 
the distribution of the BKB after fusing knowledge pieces 
from the people he contacted from  to , i.e. 

=fusion( , , … ). Then, the opinion on a 
specific issue , represented by the probability can be 
calculated from Bayes theorem:  

 
          (1) 

 
where  denotes the jth parent set of  and 

 is simply the weight of the jth S-node  
pointing to  in . Let  be the weight of the S-node q. 
Then, 
 

                (2) 

 

For each S-node ,  consists of all precedent I-nodes 
of . So  also contains the source node  
indicating where a particular piece of knowledge fragment 
comes from. Let  be the reliability of such a 
knowledge fragment and let . Since 
the sources nodes are independent of any random variables 
in a fused BKB, we have 
 

(3) 
 
After combining equation (2) and (3), we have 
 

       (4) 
 
Let  be the reliabilities for , 
then from [22], equation (4) can be rewritten into 
 

       (5) 
 
where  is the set of S-nodes pointing to  in . Let 

, then  
 

                           (6) 
where  
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In fact,  represents each actor’s view on  given the 
distribution of ’s the precedent variables being updated 
from to .  
 

B. General Impact metric 
In the previous sections, we discussed the importance of 

each of the three factors: friendship, recent contact frequency 
and opinion similarity that may influence how one takes 
other’s opinions. Next, we propose a linear impact metric 
that combines these factors in a coherent scheme. Linear 
models have been widely used in trust-based approaches due 
to its simplicity and intuitiveness [23][26]. At time , let 

 denote the closeness between actor  and  from actor 
’s view, scaled from 0 to 1,  denotes the normalized 

contact frequency, i.e. number of contacts with  divided by 
the total number of contacts with all others from time  
to ,   denotes the opinion difference on the target 
issue, i.e. . Then, the likelihood of actor 
 adopting the opinions from actor , represented by  

can be defined as: 
 

   
 
where ,  and C are unknown weights/coefficients that 
need to be learned. We replace  with the upper formula. 
Then, equation (6) turns into 

 

 

 
 

Rearranging the terms, we get  

pt
0 (v)− ρt

0 =α Xt (0, i)(i=1
∑ ρt

i − ρt
0 )

+β Yt (0, i)(i=1
∑ ρt

i − ρt
0 )

+γ Zt (0, i)(i=1
∑ ρt

i − ρt
0 )

+C (
i=1

∑ ρt
i − ρt

0 )

           (7) 

 

C. Parameter Estimation 
Let  be the number of people in the group under 

consideration. To model the opinion dynamics, we look into 
the opinions over a number of time periods. Let 

 ( )) be a sequence of belief 
distributions generated over  time periods. Then, given the 
friendship network  and the contact network  over time, 
the goal is to learn the factor weights ,  and C from 
opinion change. Note, considering that the measure is taken 
from each actor’s view, neither the friendship network nor 
the contact network needs to be symmetric.  

     As shown in equation (5), an actor’s opinion  
depends on the distribution of ’s parent variables at time . 
So what if  represents the prior probabilities of the 
variables with no precedent variables? From the fusion 
algorithm, the fusion of the prior probabilities is simply the 
weighted average of each input prior, i.e. 

 

Similar to how we derive equation (7), we have 

pt
0 (v)− pt−1

0 (v) =α Xt (0, i)(pt−1
i (v)− pt−1

0 (v))
i=1

∑
+β Yt (0, i)(pt−1

i (v)− pt−1
0 (v))

i=1
∑

+γ Zt (0, i)(pt−1
i (v)− pt−1

0 (v))
i=1

∑
+C (pt−1

i (v)− pt−1
0 (v))

i=1
∑

 (8) 

 
So far, we have shown how to model the opinion change as a 
function of influential factors using equation (7) and (8) for 
one particular issue/I-node . We apply the strategy to all 
possible I-nodes. The solution of ,  and can be found 
via regression. 
      The complete algorithm can be described more formally 
as follows:  
 
Algorithm 1.  
[ , ] = Influential-factor-weights  

 
 
 for every instantiation/state ; ; actor 

4.        if   has no precedent variable 
5.                
6.               )   
7.       else  
8.                
9.                
10.       end if 
11.        
12.         
13.        
14. end for 
15. [ , ] = regression  

IV. EXPERIMENTS 
In what follows, we present results of experiments that 

were carried out on both simulated data and a real world 
dataset. We start by introducing the baseline we compared 
with in the experiments.   

A. Baseline: 
DeGroot model is one of the classical opinion formation 

model, in which one forms her opinions by taking an 
average over opinions acquired through communication [18]. 
Specifically, they represent the opinion on a given issue by a 
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real number. At time , person  adjusts her opinion on 
issue  by taking a weighted mean with weight  for 
the opinion of person  at time . So if we represent the 
opinion value by the probability she supports for that issue, 
then the process can be formed as: 
                            
where  
                                       
Other variations of this model includes the Friedkin-Johnsen 
model [1], which assumes that a person would adhere to her 
initial opinion  to a certain extent. Though there are 
some other models in which the weight matrix may vary 
depending on time or opinion itself [15], their opinion 
formation process is still linear.  

To compare with our work, we assign the reliability to 
each person using the general impact metric introduced in 
the last section. Then, the influential factor weights can be 
transformed into a regression in a similar way to equation 
(8). In fact, if there are no dependencies between different 
variables/issues, then our approach will devolve into the 
classical linear model. 

B. Synthetic data 
1) Experimental Setup 

To evaluate the effectiveness of our method, we first 
randomly generate an n-by-n friendship network . Then the 
contact networks  for every time step are 
simulated based on the friendship network but with a certain 
deviation. The assumption here is that close people tend to 
be in contact more frequently.  We also simulate each 
individual’s initial opinion distribution  
from  predefined BKBs. At time , we fuse 
one’s original BKB with the BKB fragments from the 
people he contacted, where the contacting information is 
gained from the . The reliability for each fragment is 
calculated using the general impact metric, where the factor 
weights are predefined for simulation, e.g. [ , 

.  
 

2) Performance Evaluation 
In the first experiment, we test the performance of our 

approach on learning the influential factors through opinion 
dynamic modeling. Since the problem can be solved via 
regression, we use RSE (Relative Squared Error) to measure 
the error rate of the regression model. RSE works well when 
the errors of models are measured in different units. Let 

 and  be the real opinion change (simulated opinion 
values), the predicted change and mean of the real values, 
then RSE can be defined as: 

 
                 
 

Also, to evaluate the prediction ability, we apply a 5-fold 
cross-validation on the regression.  

We run multiple experiments to test our performance in 
terms of different social network size, initial knowledge 
bases and network connection degree. In particular, we first 

increase the number of nodes in the friendship network and 
contact network while maintaining other settings the same. 
We run each experiment for 10 times. Fig. 2(a) plots the 
average RSE using our approach and the baseline 
respectively. Then, we vary the complexity of the predefined 
BKBs from which we generate the initial opinion 
distribution by increasing the number of the variables. By 
doing so, we test whether our method is capable of handling 
complex knowledge bases. The results are shown in Fig. 2(b). 
Last but not least, we measure the network connection 
degree as a summarized degree centrality, i.e. 

 , where  calculates the number of links that 
node  has. If the contact network is fully connected, then  
equals to 1. We depict the regression error in terms of  in 
Fig. 2(c).  

From Figs. 2(a), (b) and (c) we can see that the error of 
using our method is consistently smaller than the baseline. In 
addition, when there are more variables in the BKB, our 
advantages appear to be more significant (shown in Fig. 
2(b)). The main reason is that a complex knowledge system 
is always accompanied by strong dependencies between 
knowledge fragments. The baseline model, however, fails to 
capture such dependencies, as it assumes that people’s 
opinions on different issues are independent of each other. 
Moreover, as shown in Fig. 2(c), the error decreases as the 
connection degree gets closer to 1. Actually, a higher 
connection degree will lower the impact from each of the 
neighbor. So the errors from the inaccurate factor weights 
learning will be averaged out after fusing in a large portion 
of neighbors’ opinions.   

Another way to evaluate our learning performance is to 
directly measure the similarity between the factor weights 
learned from two methods against the true predefined 
weights. As the factor weights are represented by a vector, 
we apply cosine similarity to measure the accuracy, i.e. 

. Table 1 reports the average cosine similarity 
to show our learning capability. As we can see, our approach 
outperforms the baseline model, which gives us confidence 
on using our results as a guide to control or predict future 
opinion dynamics.  

TABLE I.  AVERAGE SIMILARITY WITH THE TRUE FACTOR WEIGHTS 

 Baseline Proposed  
Avg Cos Sim 0.5867 0.7438 

 
3) Convergence Analysis 

As we discussed earlier, if there is no dependency 
between different issues or knowledge pieces, then the way 
we transform the problem will become the same as the way 
we deal with the baseline. However, it is not true in the real 
world, especially when the knowledge bases evolve over 
time.  To better understand the connections between our 
method and the baseline and to answer whether our method 
is compatible with the classical model, we examine under 
what situation will our method produce similar results as the 
baseline.  
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Figure 2.  Comparison of two methods in terms of (a) network size; (b) the complexity of the initial knowledge bases; (c) conneciton degree .  

Lemma 1, if everyone’s initial BKBs share the same 
conditional probabilities, i.e. , 
then our approach becomes equivalent to the baseline.  
 
Proof, from Rosen et al. [8], for actor , the probability on a 
given issue  can be calculated as the summation of the 
probabilities of all possible inferences where  is true. So at 
time , we have: 

            
 

where  represents the set of inferences containing ,  
is the weight of the S-node . Then, the aggregated opinion 
at time  using baseline method will be: 

 

Considering that our opinion formation method is based on 
BKB fusion, for every I-node in an inference, the weight of 
its supporting S-node in the fused BKB can be viewed as the 
average over the weights of the corresponding S-nodes in the 
input BKB fragments, i.e. . So 
using our method,  becomes: 
 

       
 

Given the condition that , we can now derive:  
 
     
 

To illustrate Lemma 1, we run an experiment by 
decreasing the deviations between the conditional 
probabilities in each BKB. Fig. 3 shows the mean error 
difference of using two methods. As we can see, the 
differences between two methods shrink when the 
distributions of different initial BKBs get closer. 

So, what can we gain from lemma 1? In fact, in a closed 
social environment, if there is no new information coming in, 
then both of our method and the baseline will lead to opinion 
convergence, where the convergence rate highly depends on 
the social connection degree. From Lemma 1, if people’s 
opinions are close to each other, e.g. converge to certain 
values, then the advantage of our methods will diminish. 

(Note, our performance will never be worse than the 
baseline.) We test the convergence rate by measuring the 
normalized square of interpersonal opinion difference at each 
time step t, i.e. , where 

 is the total number of states/issues in the BKB. We assume 
that everyone’s initial BKBs have different distribution. 
Then, to examine how the social connection degree affects 
the convergence rate, we choose three different connection 
degrees:  and 0.8 and the results are plotted in 
Figs. 4. As shown in the figure, the convergence rate 
increases with the connection degree. This finding also 
explains why in Fig. 2 (c), the performance difference 
decreases when  gets larger. Additionally, the opinions 
converge to different values when the degree is low, e.g. 0.3. 
The fact is that different opinion groups are formed when 
people only communicate with the people in a subgroup. 
Moreover, on closer examination of the convergence trend, 
we see that the opinions formed using our method converge 
slightly faster than the baseline. The reason is that we do not 
form opinions linearly but considers the relationships 
between variables. So the distribution characteristics of 
higher-level variables could be propagated to the lower-level 
variables, which speeds up the convergence. 

 

 
Figure 3.  Mean RSE difference between our method and the baseline, i.e. 

diff=proposed_rse-baseline_rse  

      In reality though, changes in people’s opinions are 
gradual [25]. Plus, people keep absorbing new information 
from external sources and keep making new friends. So, it is 
very unlikely at any point that people hold the same 
opinions, which makes the conditions described in Lemma 1 
hardly to satisfy. This finding is valuable. It makes our 
approach more applicable to real-world problems.  
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                                      (a)                   (b)                               (c) 

Figure 4.  Convergence rate comparision between two methods given different connection degree (from left to right:  and 0.8)

C. Real data 
To better understand the opinion dynamics in the real 

world, it is crucial to test our approach on a real dataset. In 
particular, we conduct our experiment on the adoption of 
political opinions through face-to-face communication. 
People’s prospects on political issues, especially the voting 
behaviors can be influenced by various information sources, 
e.g. media and social interaction. Madan et al. studied how 
opinions about political candidates and parties, and voting 
behavior, spread through a social network using mobile 
sensing data [2]. The study was conducted among 
approximately 70 undergraduate students living in the same 
dormitory. They built up a mobile sensing platform to 
collect the communication data varies from Bluetooth signal 
transmission to location. The political opinions were 
captured using three monthly surveys before and after the 
presidential election in 2008. More descriptions about the 
data can be found in [2]. To model opinion changes on 
different issues, we select four questions from the survey. 
The questions and the possible responses are listed in Tab. 2.  
Then, we use Bayes Net Toolbox 1 to capture the causal 
dependencies between variables. The learned causal 
structure is {Interest_in_politics Likely_to_vote; 
Preferred_party  who_to_vote} (as partly shown in Fig. 
1). As we expected, the candidate that a person decides to 
vote for is highly dependent on her preferred party. Next, 
we convert each of the questions into a binary state variable. 
For each student, her knowledge base is built based on the 
learned causal structure. Then, the probabilities/opinions for 
every variable/issue at each time step can be estimated from 
her survey answers. For example, if one is very interested in 
politics, then her probability for “interested in politics” is 
assigned to 0.9. Also, if one decides to vote for McCain, 
then her probability for “vote for Obama” will be very low.  

Now that we have everyone’s opinion distribution over 
time, the next step is to generate the friendship network  
and contact network Y. Aside from the communication data 
and political view data, [2] also provides a survey of the 
relationship that a subject indicates she has with another, e.g. 

                                                             
1 BNT is a toolbox for learning Bayesian network’s parameters and 
structure. Here we only use BNT to learn the causal structure. 
https://code.google.com/p/bnt/ 

close friends or political discussant. We quantify the 
friendship using a single value between 0 (stranger) and 1 
(extremely close). Next, we model the face-to-face contact 
in a period between two students as a function of physical 
proximity counts and the detected interactions. 

TABLE II.  SELECTED POLITICAL SURVEY QUESTIONS AND POSSIBLE 
ANSWERS 

Question Possible Answers 
Interested in politics [Very, Somewhat, Not-at-all] 
Preferred political party [Republican, Independent, Democrat] 
Likelihood to vote [Not-vote, Not-sure, Vote] 
Who to vote [Probably John McCain, Definitely 

John McCain, Undecided, Probably 
Barack Obama, Definitely Obama] 

 
We test our approach on the real data and compare the 

results with the baseline. The first column in Tab. 4 shows 
the average error from cross-validation. As we can see, the 
error produced from our method is much lower than the 
baseline. Moreover, we analyze the learned factor weights 
between two methods. As plotted in Tab. 3, the value of  
from our method suggests a negative effect of the opinion 
difference factor, which fits well with our expectation that 
people are more willing to take opinions that are similar to 
theirs. In contrast, the baseline model produces a positive 
coefficient for opinion difference, but negative weights for 
friendship and the contact frequency, which fails to agree 
with the social theory findings. Besides, in this particular 
case, the influence of the friendship appears higher than the 
other two factors. This indicates two things. 1) For the 
undergraduate students, their political views are more likely 
to be affected by their close friends. 2) Their opinions could 
be influenced by other communication means other than 
face-to-face, e.g. online chat.   

There can be tons of factors that determine how an 
individual takes others’ opinions. In this paper, we only 
consider three factors that we believe are playing an 
important role in opinion dynamics. However, we show that 
our method is not restricted to those three factors. Tab. 4, 
columns 2 to 4 show the results of using only two factors 
out of three. It is not hard to see that our method 
outperforms baseline in all factor combinations. Thus, even 
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when new factors are available, our method can be easily 
extended to accommodate new influential factors.  

TABLE III.  FACTOR WEIGHTS LEARNED FROM TWO METHODS 

    C 
Proposed 0.0768 0.0134 -0.0381 0.1234 
Baseline -0.1389 -0.0001 0.0142 0.1138 

TABLE IV.  AVERAGE ERROR USING DIFFERENT FACTOR SETS (F = 
FRIENDSHIP, C= CONTACT, OD = OPINION DIFFERENCE) 

 [F,C,OD] [F,OD] [F,C] [C,OD] 
Proposed 0.0872 0.0893 0.0928 0.1063 
Baseline 0.6467 0.6532 0.6203 0.7509 

CONCLUSION 
In this work, we proposed a new approach to model 

opinion dynamics, where the individual opinions are treated 
as a product inferred from one’s knowledge bases. Though 
how the knowledge bases are expanded and updated through 
social interaction seems complex, there may exist a core 
mechanism that guides people to adopt others’ opinions or 
to absorb new information. We aim to uncover the rules 
behind opinion dynamics by starting with several influential 
factors that could affect the selection of opinions.  Then, we 
show how to formulate the problem using a mathematical 
model and solve the factor weights via regression. We 
conduct multiple experiments on synthetic data. The results 
validate the effectiveness of our approach over the baseline. 
A thorough analysis and discussion is provided on the 
compatibility of our approach. Another main contribution of 
this work is that we test our approach on modeling the 
political opinion change using a real world dataset. The 
error produced by our approach is much smaller than the 
baseline. Besides that, the factor weights learned from our 
approach are also consistent with social theory. 

In future work, more influential factors should be 
considered, where non-critical factors tend to have weak 
weights. However, incorporating more factors could generate 
lower errors, but cause overfitting as well. So, new factors 
should be added with a carefully selected penalty term.  
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