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Semantic Networks / AKA Ontologies

e Complex networks of concepts and their relationships in a domain
— Asserts knowledge with subsumption (is-a) and relational operators (has-a)
— Exist formally as description logic (Baader et al)

* Foundation of the effort to develop a “semantic web”
— Embed deep contextual information in web pages

— Search the web not just with keywords, but with general concepts and
relationships

DataTypaProperty

DeliveryType

range

DataTypeProperty

hasShipmentCaost

Class

DataTypeProperty Description

DataTypaProperty
isDemaged

DataTypeProperty
didRecieveMerchandise

range

ObjectProperty

DataTypeProperty
isRefundable

Location

o vy +| e [ g iy =

Img sources: http://mas.cmpe.boun.edu.tr/project/files/DomainlevelOntology.jpg, http://www.flickr.com/photos/saldatoccio/2623536667/



The Problem: Uncertainty

Uncertainty is the existence of multiple conflicting possible instantiations (i.e.
states) of a domain. The differences that distinguish domain instantiations are
called variables.

11: QA
12: Q2B
13: Q=>C
14: Q—2>A,B

The number of instantiations is exponential with respect to the number of
variables. How can we narrow it down? We need to reason about the
variables.

We need a model of uncertainty that captures the interactions between
variables.



Uncertainty Representation

e Uncertainty can be modeled through various theories:

— Fuzzy logic models partial membership in classes. It measures ambiguity, such
as “is the glass half full or half empty”.

— Possibility theory uses two metrics, possibility and necessity, to model
uncertainty. It measures the level of “surprise” at a result.

— Probability theory is the foundation of statistics. Its formulation is based on
modeling outcome frequencies of repeated events, such as die rolls. It can be
used to model degrees of belief and “if-then / what-if” variable interactions.

 We select probability theory for its strong capture of variable
interactions.



Probabilistic Semantic Networks:
State of the Art

e Two approaches dominate: those using probabilistic logic
(Nilsson, 1986) and those using Bayesian Networks (Pearl,
1985). These approaches are fundamentally limited.

— Probabilistic logic represents probability as bounds on an interval, so
the frameworks using it experience a decay in relative precision over
the course of reasoning as inferred probabilities move toward zero and
one.

— Bayesian Networks require complete definition of all variable
interactions, so the frameworks using them must represent knowledge
at a coarser granularity than conventional semantic networks.

e We want a powerful, fine-granularity probability theory for
our framework.



Solution: Bayesian Knowledge Bases

e BKBs (Santos & Santos, 1999) are a generalization of BNs to admit
incompleteness.

— Fine granularity: represent knowledge as sets of “if-then” conditional
probability rules among propositional variable instantiations.

— Powerful reasoning: belief updating and revision like in BNs, but allowing for
incompleteness.
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Fig. 2.2, A BKB fragment from fresh-water aguarium maintenance knowledge-base as a
directed graph.

Img source: Santos, Eugene, Jr., Santos, Eugene S., and Shimony, Solomon Eyal., "Implicitly Preserving Semantics During Incremental Knowledge
Base Acquisition Under Uncertainty," International Journal of Approximate Reasoning 33(1), 71-94, 2003.



Bayesian Knowledge-driven Ontologies

Synthesis of semantic networks and BKBs

— Represent knowledge as conditional probability rules with description logic
assertions as arguments. Ex:P(a€C|b € D)= 0.6. These rules can be

propositional (AKA assertional) or predicated (AKA terminological).

Sets of these rules define a probability distribution over the possible
instantiations of the domain.

— We use description logic’s reasoning functions to generate propositional rules from
predicated ones.

— We use BKBs’ reasoning functions to calculate marginal probabilities for domain
instantiations.

Powered by two insights:

— Generalizing the rule of universal instantiation to its probabilistic analog allows
description logic to validly propagate uncertainty through its reasoning process.

— Distilling the propositional knowledge from a BKO makes a BKB.



Key Formulation Excerpts

Notation: A probabilistic assertional axiom (PAA) is a conditional probability rule of the form
P(Z|{Y,... Y,}) = p where Z and {Y,... Y.} are propositional description logic statements and p€&
[0,1] is the conditional probability of Z given {Y,... Y }.

Notation: A probabilistic terminological axiom (PTA) is a statement of the formP(s €D |s€C) =p
for any classes C and D and a probability p€ [0,1] that any given individual s known to be a
member of class C is also a member of class D.

Theorem: The probabilistic rule of universal instantiation states the following: let “a” be a
specific individual. Let Cand D be classes. LetY,... Y, be classical assertional axioms. Given a
probabilistic assertional axiomP(a € C| Y; ... Y, ) = p and a probabilistic terminological axiom
PseD|seC)=q,inferP(aeD|a€eC) =q.



Computing Domain Instantiation Probabilities

e Start by reasoning over the model using the probabilistic rule of universal
instantiation. Generate all inferrable propositions.

* Once all predicate reasoning has been done, the distilled propositional
knowledge in the BKO describes a BKB. We can then perform BKB
reasoning tasks:

— Belief updating computes the marginal probability of a target variable
instantiation.

— Belief revision computes the marginal probabilities of domain instantiations.

e Both tasks can also be used to answer “what if” questions by setting
evidence in the BKB, i.e. by temporarily holding some variable
instantiations as true.



Potential Applications

e Semantic web

— BKB’s “Fusion” mechanic (Santos, Wilkinson, and Santos, 2009)

applied to BKOs would facilitate ontology merging, a current major
focus of semantic web research efforts.

e Robotics

— Representation and reasoning with conceptual, uncertain, incomplete

knowledge could facilitate robots’ handling of more unpredictable
environments.

e Machine learning

— Along-term goal. In theory, machines could learn conceptually by
performing variance analysis on their “memories” and adding the
results to their knowledge base as new conditional probability rules.
But many questions remain to be answered to make this happen.



