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What is a reasoning model?

Not just what does someone think, but why?
— Knowledge about self and others
— Assumptions and how they’re justified
— Values and their cultural context
— Goals and why they’re sought
— Actions and their expected effects
— Dynamics of how agents react to each other

Reasoning models need:
— Representation. A system that captures an aspect of the world.
— Reasoning. A mechanism for deriving new knowledge from inputs.
— Grounding. A relevance to human interpretations of the world.



Reasoning models support stronger
operations planning

 Know yourself, your friends, and your enemies

— Model your adversaries to show what contingencies are credible and why. Get
inside their heads and act preventitively. Precisely inform psyops or
manipulate the situation to push their decisions your way.

— Model yourself to defend your reasoning. Spell out what you know, what you
want to achieve, and how your actions will get you there.

— Model your friends to improve cooperation. Coordinate terminology. Ensure
compatible goals and sound reasoning.

e Learn from the models you build

— Build reasoning chains to validate answers. Trace back to root causes and
influencing factors. Verify what is knowledge and what is conjecture.

— Fuse conflicting opinions and derive new insights from the synthesis.
— Ask “what if?”, plug it into the model, and see how the outcome changes.
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Ontologies model general domain knowledge
and its projection onto specific instances

 Ontologies model the terms and concepts that define a
domain, and use it to make inferences about specific cases
being considered. Use ontologies for...

— Coordinating terminologies to avert miscommunications.
— Contextualizing events and observations from other perspectives.
— Diagnosing scenarios using background knowledge.

e The theory Description Logic (Baader et al, 2007) is research’s
gold standard and the basis for most applications.

— Models a “semantic network”, a graph of how things and the concepts
that describe them are related.

— Reasoning algorithms infer new relationships by applying general
knowledge to case-specific knowledge.
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Bayesian Knowledge Bases model uncertain
variables and their interactions in domain instances

e Use BKBs for...

— Explaining and predicting intent — getting inside the adversary’s head.
— Decision support models — justifying what’s inside your head.
— Modeling interacting variables and the uncertainty behind them.

e BKBs are a sound model of probabilistic relationships between
variables. (Santos & Santos, 1999)

— Very fine-grained semantics work like networks of “if-then” conditional

probability rules. Inherently address incompleteness and cyclic
dependencies.

— Facilitates probabilistically sound fusion of knowledge from multiple,
potentially conflicting sources.

— Reasoning algorithm computes probabilities of variable states.



Bayesian Knowledge Fragment — part
of a BKB
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Bayesian Knowledge Bases in real-world
applications

War gaming

— Modeling the Twentynine Palms base commander in the DENY FORCE
scenario. (Lehman et al, 2005)

Adversarial reasoning

— Multi-agent simulation of soft factor interactions with the Dynamic
Adversarial Gaming Algorithm. (Santos et al, 2007)

Explaining opinion change

— Model of voter opinion throughout the South Carolina Democratic Primary
election campaign. (Santos et al, 2009)

Explaining complex historical events

— Recent project: modeling the 2006 rise and fall of the Islamic Courts
Union in Somalia.
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BKBs and ontologies are complementary...

Ontologies are efficient to work with because they are fluidly
reusable, but they can’t capture real-world uncertainty.
— Description Logic infers implicit knowledge, helping the knowledge
engineer build and validate the model.

— An ontology represents all possible states of the world without priority
or order, so they are used mostly for domain descriptions.

BKBs capture real-world uncertainty, but working with them
can create duplications of effort.

— Conditional probability rule semantics can capture subtle variable
interactions, like variables which only affect each other under certain
conditions, or distributions which are unintuitive with a completeness
assumption.

— BKBs’ mechanism for reusing implicated knowledge operates at a
coarse granularity, and it must be set up and controlled by a human.



...but difficult to coordinate

 BKBs and ontologies model different but potentially
overlapping aspects of a domain. Reconciling them or having
them work together is our question.

e Past attempts at making synthesis models using uncertainty
theories other than BKBs fell short.

Probabilistic description logic’s precision decays during reasoning.

BN-ontology combinations contain an assumption conflict — BNs
require completeness, but DL does not.

Fuzzy and possibilistic semantic networks treat variable interactions
coarsely.



Bayesian Knowledge-driven Ontologies combine
ontologies’ reusability with BKBs’ richness

e BKOs contextualize case models in general knowledge, and make
inferences about the case from that context.
— First build a library of general domain knowledge, including uncertain
knowledge.

— Then build case models with just the specifics of the scenarios you want to
analyze. The reasoner automatically fills in all the relevant contextual
information from the domain library.

— Concentrate your domain experts on building the library. Analysts can
work with the case models.

e BKOs work by inferring new probabilistic rules from general
knowledge that admits uncertainty.
— BKO rules are conditional probability rules between DL assertions.

— BKO reasoning is an extension of DL reasoning to validly preserve
probabilities and dependencies in inferences according to BKBs’
semantics. The result of this reasoning is guaranteed to be a valid BKB,
and can be analyzed as such.
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Ontologies represent concepts and
their relationships

e Formal basis is Description Logic (Baader et al, 2007), a
decidable subset of first-order predicate logic.

e Define terminological (general) knowledge in terms of
concepts. Can make new definitions or use expressions in
terms of other concepts.

— Common expression operators: intersection, union, negation,
existential quantification, value restriction, more

— Ex: a backdoor intrusion could be defined as the intersection of the
concepts “malicious code” and “host integrity threat”:

Backdoor C Intrusion
Backdoor = Malicious_Code N Host_Integrity_Threat



Representation (cont’d)

e Define assertional (case-specific) knowledge in terms of
individuals described by concepts and linked by relational
operators called properties, AKA roles.

— Ex: Describing a particular kinetic attack’s weapon and delivery
method:

The_Attack € Kinetic_Attack
The_Attack hasWeapon Improvised_ANFO
The_Attack hasDeliveryMethod Truck_Bomb



Representation (cont’d)

e Powerful feature: concept constructors
— Can create new concepts as functions of existing ones and use them in
assertions.

— A property assertion inherently constructs a concept of individuals
with that same property and target. These can even be used in
constructor expressions.

— Ex:

The_Attack € (Kinetic_Attack N (hasWeapon Improvised_ANFO))
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Terminological reasoning makes
inferences about general knowledge

Can relate concepts with relationships of subsumption, disjointness,
and equivalence, then try to infer more relationships.

— Ex: Take “kinetic” and “informational” intrusions as disjoint concepts...

Kinetic = Informational

both subsumed by the more general “intrusion” concept, which is equivalent
to the “attack” concept.

Kinetic, Informational € Intrusion
Intrusion = Attack

Then infer that “kinetic” and “informational” are both subsumed by “attack”
as well.

— Kinetic, Informational© Attack



Assertional reasoning applies general
domain knowledge to describe an instance.

e Can describe individuals’ concept membership with sufficient and
necessary conditions.

— Sufficient conditions: if an individual meets these, it is described by that
concept.

— Necessary conditions: if an individual is a member of a concept, these are also
true for it.

e Uses the rule of universal instantiation: if something is true for the
general case, it’s true for all specific cases.

— If anindividual meets a concept’s sufficient conditions, it’'s a member of that
concept.

— If a concept has necessary conditions, infer that they are met by all the
concept’s individuals.

— Repeat until the ontology stabilizes.



Assertional reasoning (cont’d)

Ex: The bomb used in a kinetic attack used C4, so it is described by the
concept C4 Bomb (sufficient condition). C4 Bombs always come from an
Insider_Supplier (necessary condition), so infer that this particular bomb
implies the existance of an insider.

Terminological Knowledge (general)

Concept C4_Bomb:
Sufficient condition(s): Bomb N (uses_explosive C4)
Necessary condition(s): has_source SOME Insider_Supplier

Assertional Knowledge (case-specific)

The_Bomb uses_explosive C4

Inferred Assertional Knowledge
— The_Bomb has_source SOME Insider_Supplier




Advanced DL features for our future work

 More sophisticated DL theories support more capabilities.
— Role hierarchies
— Role inclusion expressions
— Cardinality restrictions
— Etc.

e Some ontology systems depart from strict DL for more
flexibility.
— Role attributes: roles can be transitive, reflexive, disjoint, inverse...
— Role domains and ranges
— Often cannot guarantee decidability
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BKBs model variable interactions

Describes possible states of the world
with discrete random variables

Links rv states with conditional
probability rules (CPRs) to describe a
distribution over possible states of
the world. Rules are kept from
conflicting by ensuring their
conditions are mutually exclusive.

Incompleteness: conditional
probability distributions can be
partially undefined.

Represent intent as (B) Beliefs, (X)
Axioms, (G) Goals, (A) Actions.
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BKB reasoning computes probabilities
of combinations of variable states

Based on computing
probabilities of inferences.

— An inference represents one
possible state of the world.

— An inference is an acyclic chain
of rules, such that any rv
assignment is supported by only
one chain, and none of the rules
conflict.
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BKBs compute those combinations of
variables in three ways
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BKBs capture subtle cyclic relationships
that break other knowledge bases

e Can break cycles by having other variable states as additional conditions.
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BKBs can fuse knowledge sources and find new
insights in the fusion (Santos et al, 2009)

* Create a probability distribution of source reliabilities.
e Sources can have different reliabilities for different rules.

Naive union of fragments Source variables S, prevent
(1) and (2) puts CPRs in rules from conflicting because
conflict. Invalid. they give the rules mutually

exclusive conditions.



Fusion cont’d

Fusion can generate new inferences, and thereby new
explanations of the world.
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Fusion cont’d

e The fragments’ knowledge is meaningfully combined even
though they contain a conflict, and new insight into the
domain is gained.
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=d1 =d2
0.3 0.75

Fragment 1 Fragment 2
Source = Dr. Jones  Source = Dr. Smith




BKBs capture real-world complexity

e Correlation and causality

— Can build complex webs of variable interactions even in the presence
of incompleteness.

e Human intent

— Our beliefs-axioms-goals-actions framework is an intuitive breakdown
of intent.

* Decision processes

— BKBs depict the reasons for decisions and how they interrelate, then
verify that results are as they should be.
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Ontologies:
Description Logic (DL)

Uncertainty:
Bayesian Knowledge Bases
(BKBs)

Representation mechanism?

Network of lexical concepts and
their relationships. Contextual
grounding.

If-then conditional probability
rules linking variable states.
Permits incompleteness.

Reasoning mechanism?

First-order logical inferencing.
Finds implicit, inferrable
relationships and makes them
explicit.

Belief updating and revision
compute probability distributions
across variable states and world
states. Also, contribution analysis.

What do they capture?

General domain knowledge.
Terminologies. Cultural
perspectives. Snapshots of
worldviews.

Individual instances from a
domain’s possible behaviors.
Correlation and causality.
Decision processes.

Common applications?

Widespread. Ex: Averting
miscommunications in operations
planning. Bioinformatics. Semantic
web.

War gaming / adversarial
reasoning. Explanatory analysis of
events.

Limitations?

No uncertainty handling.

Only propositional contextual
grounding of variables. No first-
order reasoning with concepts.




What should the ideal synthesis do?

e We want a model that describes a probability distribution over
possible instances of a domain.

— Solve that problem of ontologies’, that they represent all possible states of the
domain simultaneously with no priority or weight.

e We want to be able to do DL reasoning under uncertainty.

— Infer uncertain conclusions from uncertain premisses. “If the premisses, then
(maybe) the conclusion.”

— An “uncertain conclusion from uncertain premisses” is really just a new CPR
with the premisses as its conditions.

e We want to make BKBs’ CPRs as fluidly reusable with general
knowledge as ontologies manage to be.

— This is actually the same capability as the bullet above, just turned around.
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Probabilistic Description Logic

Founded on Probabilistic Logic (Nilsson, 1986)

Expressive Probabilistic Description Logics (Lukasiewicz, 2008) is
representative of the field.

Assigns probability intervals to DL assertions.
— Ex: 0.7 £ P(Tweety is-a Bird) < 0.8
— Not very intuitive. Uncertainty on an uncertainty metric?

— Limitation: inferred probability intervals’ relative precision (width/mean) decays
during forward chaining. This cripples deep reasoning.

Ex: 0.7 < P(Tweety is-a Bird) < 0.8 RP: 0.1/0.75=0.13
0.9 < P(Birds can fly) < 0.99 RP: 0.09/0.945=0.095
- 0.7 * 0.9 = 0.63 < P(Tweety can fly) < 0.8 * 0.99 = 0.79 RP: 0.16/0.71=0.22



Bayesian Networks and Ontologies

e Founded on Bayesian Networks (Pearl, 1985)
— Restricted subclass of Bayesian Knowledge Bases that assumes complete
information.
— BNs require complete definition of “conditional probability tables” instead of
working with individual rules like BKBs.
e PR-OWL (Costa and Laskey, 2005), BayesOWL (Ding et al, 2005), and P-
CLASSIC (Koller et al, 1997) are representative works.

* Defines conditional probability tables using DL assertions as variables.
— DL does not have BNs’ completeness requirement. Using BNs restricts the
system’s expressiveness.
— There are notions we can represent in DL that don’t work in BNs even when
completely known.
— Ex: Model probability distributions of gas mileage for various airplane models.

What happens when one is a glider? Then any distribution, even context-
specific independence (Boutilier et al, 1996), is unintuitive.



Fuzzy Description Logic

Founded on fuzzy logic / fuzzy set theory (Zadeh, 1965)

Reasoning within fuzzy description logics (Straccia, 2001) is a
representative work.

Extends DL to allow partial membership in concepts.

— Coarse treatment of uncertainty with some information loss during reasoning.
Does not intuitively capture if-then interactions like probability theory.

— Ex: given the assertions
ainC:0.7 ainD:0.4 CinE:0.2 DinE:0.6

what is the membership of a in E?
max(min(0.7, 0.2), min(0.4,0.6)) =

Most of the numbers in the reasoning chain had no effect on the outcome.
We usually don’t think of causality as working this way.



Possibilistic Description Logic

Founded on possibility theory (Zadeh, 1978) which extends fuzzy logic.

A possibilistic extension for description logics (Qi et al, 2007) is a
representative work.

Models a DL assertion’s uncertainty as two fuzzy numbers, possibility and
necessity.

— Possibility: to what degree could the assertion be true? Necessity: to what degree
must the assertion be true?

— Mathematically, possibility and necessity are simply two fuzzy description logic problems
in parallel, with the axiom that possibility > necessity.

— As with fuzzy logic, this is a coarse treatment of causality.
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Two technical insights allow DL and
BKBs to merge

e Consider: for any individual a and any concept C, eithera € C
or a € =C. Two exclusive states... sounds like a variable.

— A state of the world in DL is an assignment of every individual to every
class or its complement.

— Can define a joint probability distribution over these atomic variables.
Equivalently, that distribution is over the ontology’s possible states.

— This is the overlap between BKBs and ontologies, and it is the
beginning of the answer to our question.

e Generalizing the rule of universal instantiation to its
probabilistic analog lets DL reason with uncertainty.

— “If P(X) = p for each member of a class, then P(X) = p for any particular
member of that class.”



Gory details (Santos & Jurmain, 2011)

Definition 5.1: For a domain description consisting of a finite
set of individuals {a; ... an} and a finite set of distinct atomic
classes {C; ... Cy} and their complements {—=C; ... =C,}, define
the domain’s state distribution as a discrete multivariate
probability distribution over the variables (referred to as aromic

variables) V; whose states are 1‘( ]) {a € G, a; € —|C}

The sample space of the state distribution 1s deﬁned as the
following cross-product:

Im

o= [T =[] Jorevone

=1 i=1 i=1




The reasoner simplifies that verbose
structure

e T/F atomic classes are the most expanded description of the
domain possible. We can sometimes simplify it.

e Ex: Adescription of a ball that can have any one of three
disjoint colors.

— Using atomic classes, this needs three variables of six states total.
— Instead, use a constructed variable of three states.




More gory details

Notation: A set of classes {C; ... C,}1s said to span a class D 1f
U{C,..C,}=D. {C; ... Cy} is said to be world-spanning if
u{C,..C }=T.

Definition 5.2: Let Q be a domain containing an individual, a,
and a world-spanning set of constructed or atomic classes
{C; ... C,}, and let the domain have a state distribution with
sample space Q. Then the set {C; ... C,}’s constructed variable
is a variable V over Q such thatr(V) ={a € C,...,a € C,}.



Asserting Knowledge

e Probabilistic equivalents of assertional (case-specific) and
terminological (general) axioms.

— Probabilistic assertional axiom: the probability of one individual’s
membership in a concept is p, given some other concept memberships
[or not — rules can be unconditional].

P(Vi, ={a; €B;_ }I[Vi, ={a;, €B jr..AV,_={a,_ €B,_}])=p

in-1J
Short form:
P(it; € BI [al; € Bh A ”'/\a*:‘.—: € B"!‘-‘i]) — ¥

— Probabilistic terminological axiom: any member of one concept has
some probability p of also being a member of another concept.
PXED|anyxeC) =p

e Cand D can be concept constructor expressions. Complex ones, even.
That’s the power of a PTA!



BKO example: Modeling Fish, Part 1

PAA: An individual tuna and an individual herring are both fish.

(1) Tuna, Herring € Fish

PAA: We are 99% sure we saw the tuna eat the herring.
(2) P(Tunaate Herring) = 0.99

PTA: If something ate a fish, we can be 90% sure it’s a predator of fish.

(3) P(x € Predator | any X € afe(ome Fisny) = 0.9

PTA: A fish that preys on other fish has a 30% chance of having parasites.
(4) P(x € Has Parasites | any x € Fish N Predator) = 0.3
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BKO reasoning has two stages

e First, logical reasoning.
— Reason on subsumption, equivalence, and disjointness as in
conventional DL.

— Reason on assertional information using the probabilistic rule of
universal instantiation. (This is that “automatic self-construction”

we’ve talked about.)
— Prune unsupported inferences.

 When all logical reasoning is complete, the result is equivalent
to a BKB.

— Can now perform belief revision, updating, contribution analysis, and
perhaps more, as desired.



BKO reasoning preserves conditional
probabilities and prunes unsupported rules

* Applying the probabilistic rule of universal instantiation:

— Generate instantiations of probabilistic terminological axioms.

* PTAs are not CPRs. But they do generate CPRs when applied to specific individuals.
Definition 5.5: The  instantiation of a PTA
T:P(x € D | any x € C) = p for an individual a is defined as
T|,:P(a€D|a€C) =p.

— This is where the domain library comes in. A big domain library,

instantiated on a case model, can yield a lot of PTA instantiations. This is
how contextual knowledge gets imported to an analyst’s case model!

* Pruning:

— In principle, BKO reasoning simply instantiates all PTAs for all individuals,
then removes any of them with unsupported conditions. This would
consume a lot of memory, so in practice it will check for a potential
support chain as it goes.



Modeling Fish, Part 2

Recall:
(1) Tuna, Herring € Fish
(2) P(Tuna ate Herring) = 0.99

(3) P(x € Predator | any X € af€(ome Fisny) = 0.9
(4) P(x € Has Parasites | any x € Fish N Predator) = 0.3

Instantiate PTAS:

(5) P(Tuna € Predator | Tuna are(ome risny) = 0.9

(6) P(Tuna € Has Parasites | Tuna € Fish N Predator) = 0.3

(7) P(Herring € Predator | Herring aresome Fisny) = 0.9

(8) P(Herring € Has Parasites | Herring € Fish N Predator) = 0.3

Problem: 5-8 don’t quite link up with 1-4. But the
connections are common sense.



Modeling Fish, Part 2 (cont’d)

(1) Tuna, Herring € Fish

(2) P(Tuna ate Herring) = 0.99

(3) P(x € Predator | any X € afe(ome Fisn)) = 0.9

(4) P(x € Has Parasites | any x € Fish N Predator) = 0.3
(5) P(Tuna € Predator | Tuna are(seme Fisny) = 0.9

(6) P(Tuna € Has Parasites | Tuna € Fish N Predator) = 0.3

L Dilomane £ Deadator Hoeene are b =00
8 PeHers Hars—Pasasites -Her Fish-A-Predater;—6-3
We must infer “bridging” axioms from semantic knowledge to explicitly
link 5-8 with 1-4:

(9) P(Tuna € afeome risny | Tuna are Herring A Herring € Fish) = 1
(10) P(Tuna € Fish N Predator | Tuna € Fish A Tuna € Predator) = 1

HPHerring Catermme oy THe g ate- A Fislh—+
12} P(Hers L Drad Hors: Bich A Hoss

Predatorr—+
(11)’s solution is not in the knowledge base. Pruning it renders (7)
unsupported, then (12), then (8).




What's left after pruning is a BKB

After logical reasoning, all general knowledge has been turned
into case-specific knowledge. It’s now redundant, so
eliminate it.

What's left is pure CPRs, and BKO theory’s formulation
guarantees they form a BKB. (Santos & Jurmain, 2011)

Reason on this BKO-generated BKB like any other!



Modeling Fish, Part 3

e Now the unpruned PAAs form a BKB.

(1) Tuna, Herring € Fish } Original o
(2) P(TunaateHerring) = 0.99 riginal case moae

(5) P(Tuna € Predator | Tuna ategome Fisny) = 0.9 } _ .
(6) P(Tuna € Has Parasites | Tuna € Fish N Predator) = 0.3 PTA instantiations

(9) P(Tuna € ate(some risny | Tuna ate Herring A Herring € Fish) = 1 } Brideine axioms
(10) P(Tuna € Fish N Predator | Tuna € Fish A Tuna € Predator) = 1 &Ins

1. 0.
Heming £ Fish % Tuna ate Herring

= Trme

/| Tuna e Fish

= True = Trme

Tuna € Fish n Predator

= True

Tuna afs some

Fish

= Tme

1 Tunae Predator

= Tre

Tuna e Has Parasites

= True
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BKO Theory Summary

Rich, flexible representation.
— Formally grounded CPRs, AKA probabilistic DL assertions
— Concept constructors facilitate easy expression of complex concepts.

Powerful reasoning.

— Logical reasoning can automatically assemble and fuse large amounts of
case-relevant information starting from a small seed.

— BKB reasoning facilitates several analyses for explaining complex variable
interactions.

Principled approach to instantiating any number of varied BKB
behavior models from the domain.

— Make small changes (various Twentynine Palms commanders)
— Make large changes (change from an air battle to a ground battle)



Next Development Steps

Additional theory development to incorporate advanced
ontology and BKB capabilities.

— Advanced ontology languages
— BKB fusion, sensitivity analysis, interfacing with social networks...

Optimization of reasoning algorithm

Software development.

— Representation language/format for domain libraries and case models
— Reasoning application



Far Future Applications

 Robotics

— Representation and reasoning with conceptual, uncertain, incomplete
knowledge could facilitate robots’ handling of more unpredictable
environments.

e Machine learning

— In theory, machines could learn conceptually by performing variance
analysis on their “memories” and adding the results to their
knowledge base as new conditional probability rules. But many
questions remain to be answered to make this happen.
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