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Abstract: Healthcare situations are ever increasingly complex: team performance can easily 
deteriorate when medical procedures are delivered by teams composed of individuals having 
different intentions. In fact, medical errors resulting in catastrophic outcomes are often due to the 
confl icting goals, plans, or intentions among those individuals who make up teams. To improve 
patient safety, we propose a computational framework to model and simulate the healthcare 
professional’s decision-making processes. We also provide a methodology to evaluate team 
performance by analysing gaps among individuals whose goals are deduced from their perceptions 
and observations through intent inferencing. In particular, we focus on the dynamic changes in the 
healthcare professionals’ decision-making processes when the patient condition is changing over 
time, while accounting for the various healthcare providers’ individual differences. Understanding, 
analysing and aiding individuals to make better decisions for improving patient safety by providing 
a state-of-the-art computational approach is our ultimate research goal.
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patient’s care when they are separated by time, space or 
organisation. For instance, the diurnal distribution of errors 
follows the nurses’ daily shifts (Donchin et al., 2003). 
Consequently, this impacts team performance because 
individuals would interpret identical factual information 
differently and make varying decisions based on personal 
traits or self-interests. These discrepancies among individuals 
working as a team can lead to medical errors and adverse 
events, causing critical harm to patients. Therefore, it is 
worth investigating methodologies to measure and reduce the 
gaps among individual healthcare professionals. In addition, 
we are interested in how personal bias impacts the gap when 
patient status is changing dynamically.

Medical errors are planned activities that fail to achieve 
their original goal (Reason, 2000). These errors do not 
occur by chance and are not specifi c to a certain group of 
people classifi ed by gender, profession, age or experience 
(Taib et al., 2011). Although some of them are known to be 
preventable, they still lead to a signifi cant number of adverse 
events, resulting in severe injuries and deaths of patients. 
A study conducted with 74,485 patient records has reported 
that the median incidence of in-hospital adverse events was 
9.2%. Out of these adverse events, 43.5% were found to be 
preventable, whereas 7.4% of them led to deaths (Varies 
et al., 2008).

1 Introduction

Dynamic decision making arises in many situations 
including military (Visser, 2010), fi nancial (Merigo and 
Gil-Lafuente, 2010), sports (Johnson, 2006), and medical 
and other emergencies (Harding, 2004). When faced with 
these situations, humans—especially those under stress—
can make inappropriate or unfavourable decisions, resulting 
in irreversible and even catastrophic damage. In particular, 
healthcare professionals confront tremendous challenges in 
trying to make the right decisions at the right time due to the 
high complexity, great uncertainty, intensive time pressure and 
severe risk inherent in healthcare systems. For example, the 
complexity intensifi es when 

a the medical procedure and equipment are complicated,

b healthcare professionals from different departments are 
needed to work together for a particular treatment,

c an error rooted in one part of the healthcare system is 
propagated into another part of the system and

d the patient’s status is changing dramatically (Taib et al., 
2011).

The uncertainty grows over clinical information transferred 
among the multiple individuals responsible for the same 
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Team performance has been studied through clinical 
surveys, direct observation and technology-based analysis 
of real medical treatments (Jeffcott and Mackenzie, 2008). 
Clinical survey is the simplest way to analyse teams, commonly 
based on interviews or self-reports, but has limitations; 
it hardly captures the complexity of team behaviours in 
healthcare settings. This is due to the fact that an individual’s 
self perception may not match his or her behaviour as observed 
by others (Andersen et al., 2010). Direct observation can be 
the most useful tool to identify recurrent or interrelated factors 
in communication within teams delivering medical procedures 
(Zimmermann et al., 1994). Using technologies such as video 
or audio capture is particularly useful in collecting real-time 
data and is essential for reviewing and examining high-
risk surgical procedures for evaluating team performance 
(Mackenzie and Xiao, 2003). However, this is time consuming 
and requires signifi cant effort. Unlike these studies, which are 
based on static information, we focus on the dynamic nature 
of team performance, which changes depending on individual 
healthcare professionals adjusting their decisions appropriately 
according to changes in patient status over time, as well as 
those healthcare professionals’ personal preferences.

Previously, we had primarily applied our computational 
framework to model and simulate static instances, where 
patient condition was fi xed during the time period under 
consideration (Santos et al., 2012b). In that study, we 
modelled general and plastic surgeons’ decision-making 
processes and simulated medical error situations caused by an 
individual surgeon’s misunderstanding of another surgeon’s 
intent in delivering patient care, where the general surgeon 
had performed subcutaneous mastectomy, but had been 
advised to do simple mastectomy by the plastic surgeon. The 
miscommunication between two surgeons caused the patient 
to lose her natural nipple, which was different from what the 
patient had consented to at the beginning of the surgery. In 
more recent efforts (Santos et al., 2012a), we modelled and 
analysed a potential wrong-site surgery, which included a 
pre-operative nurse’s misunderstanding a patient’s tattoo 
as a surgical site marking. In that study, we analysed team 
performance by comparing gaps among individual team 
members, including an ophthalmologist, an anesthesiologist 
and an OR nurse and used it to recognise potential medical 
errors for a particular team. However, we only considered 
preoperative patient condition in this case, which does not 
fully represent the dynamic nature of real healthcare situations.

In this paper, we consider the challenges that arise when the 
patient condition changes over time, which requires that the 
surgeons’ decisions must be adjusted accordingly. Therefore, 
we present a new methodology for dealing with this situation. 
To this end, we employ a knowledge fusion algorithm 
(Santos et al., 2011) designed to aggregate knowledge from 
multiple sources as a strategy for handling changes in patient 
conditions over time. In addition, the gaps among individual 
healthcare professionals’ intents are analysed to estimate team 
performance, which would contribute to improving patient 
safety by providing appropriate warnings and feedbacks to 
individuals for communicating better with their co-workers. 
Ultimately, we hope this study assists individuals to make the 

The well-known causes of these errors are human mistakes, 
failure of medical equipment and technology and systemic fl aws. 
Human errors cannot be fully prevented, but they do not lead to 
harm if the healthcare system is robust or error tolerant. However, 
healthcare systems sometimes have fl aws in their organisational 
processes and trigger errors regardless of individuals performing 
clinical actions (Reason, 2000). Strategies to fi x these system 
include the use of computational technologies, simplifying and 
standardising surgical protocols (Lansac et al., 2008), moving 
report systems from traditional handwriting to computerised 
documentation (Beach & Sions, 2011), minimising the number 
of handoffs in a system (Maughan et al., 2011), decentralising 
health information systems and decision-making processes 
(Xiao et al., 2010), developing clinical guidelines (Isern et al., 
2011) and increasing communications in multidisciplinary teams 
(Deering et al., 2011). For understanding and aiding humans at 
avoiding actions vulnerable to errors, tools to investigate and 
analyse human decision-making processes have been employed, 
including Markov chain analyses (Brothers et al., 2004), game 
theory (Wout and Sanfey, 2011), Bayesian inference (Pibouleau 
and Chevret, 2011), interactive decision trees (Turner, 2009), 
stochastic optimal matches (Kiesler and Auerbach, 2006), 
reinforcement learning (Yechiam et al., 2010), case-based 
reasoning (Ocampo et al., 2011) and fuzzy cognitive maps 
(Stylios et al., 2008). For medical equipment failure, medical 
institutions have developed special policies to ensure the safe 
and correct functioning of medical devices as well as to train 
and educate healthcare professionals in proper usage of medical 
machines. In addition, human-machine interactions have been 
explored through computational simulations (Mudumbai et al., 
2010).

Teams are essential for patient safety, though it is 
individuals who perform clinical actions. Most medical 
procedures are delivered by teams rather than individuals. 
For training healthcare teams, policies used for commercial 
and military aviation, such as Crew resource management 
(CRM) (Sundar et al., 2007) for focusing skills of fl ight 
crews, have been adapted, since both fi elds are similar in that 
the primary cause of many accidents is identifi ed as human 
error. CRM has been the foundation of many programmes 
supported by the US Department of Defense (DoD), 
taking an active role in improving the team performance 
of healthcare professionals assigned to different military 
treatment facilities (MTFs) to improve patient safety. One 
of the main goals of the DoD has been the development, 
implementation and integration of team training throughout 
the military health system (MHS), where team training 
has had a long history of success (Alonso et al., 2006). In 
such high-risk environments, any individual behaviour has 
the potential to result in the loss of multiple human lives 
or incur substantial costs. With regards to team behaviour, 
communication has been identifi ed as a major source of 
team errors. For example, communication breakdown 
was reported to cause 20% of adverse events inside an 
anesthesiology department (Jeffcott and Mackenzie, 2008). 
To improve communication for effective team performance, 
we focus on gap analysis through modelling and simulating 
individual healthcare professionals in this paper.
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between knowledge while the content of the relationships 
is enclosed in the nodes. The nodes can be classifi ed into 
two types: I-nodes and S-nodes. An I-node represents the 
states of random variables (i.e., how random variables 
are instantiated) while an S-node represents a specifi c 
rule associated with the information represented by two 
connected I-nodes. Therefore, a probability distribution is 
attached to S-nodes in general, as shown in Figure 1, where 
I-nodes are white and S-nodes are black. For instance, the 
knowledge that “if body temperature is high, then a surgeon 
determines hospitalisation as a potential care with the 
probability of 0.8” is encoded through two I-nodes and one 
S-node in Figure 1.

Figure 1 BKB fragment

BKBs introduce a more compact representation of 
knowledge than BNs by accommodating incomplete 
knowledge. This further enables BKBs to perform 
reasoning with lower computational complexity on average. 
Reasoning in BKBs can be performed in two ways; belief 
revision and belief updating. Belief revision computes 
the posterior probability of an event happening when the 
evidence is observed, where an event can be described by 
a world composed of a set of random variables instantiated 
accordingly. Through the chain rule, the joint probability of 
a world can be written as 

1
1
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where Ai = ai represents the ith I-node in the world and m 
represents the total number of random variables in the 
world. Belief updating seeks the posterior probability of 
a single random variable having relevant instantiation to 
evidence given, according to Bayes’ Theorem. Therefore, 
it is natural to result in tiny probability values from belief 
revision, since the values become smaller as more random 
variables are associated with the inference, which is the 
case of surgical intent inferencing due to the complexity 
of clinical decision-making processes. BKBs have been 
extensively studied with highly effi cient algorithms for 
reasoning (Rosen et al, 2004).

right decision at the right time by fully understanding given 
situations, including their co-workers’ intents for improving 
patient safety and healthcare quality.

This paper is organised as follows: our theoretical 
framework is founded on Bayesian knowledge bases (BKBs). 
As such, we will fi rst describe them, as well as the fusion 
algorithm, in detail in the following section. Next, we will 
introduce the idea of surgical intent modelling and gap 
analysis as a fundamental framework to model and simulate 
healthcare practices. After that, we will describe a post-op 
panniculectomy case with a few variations and present our 
empirical protocols as well as the results obtained. Finally, 
we will end this paper with our conclusions and discussion 
of future directions.

2 Background

In general, individual team members are expected to perform 
their tasks with a continual understanding of surrounding 
situations that include other team members. Decisions are 
supposed to be based on the evidence available to those 
individuals, which is incomplete and uncertain in many 
cases. Therefore, it is natural for individuals to interpret those 
facts according to their own judgments. Furthermore, they 
sometimes anticipate the actions to be taken by other team 
members in line with their understanding of the behaviours of 
others. To model and simulate individuals’ decision-making 
processes, it is necessary to deal with all of these facts 
associated with the decisions made through a computational 
framework. To this end, in this section, we review three 
fundamental components of our research:

a modelling an individual’s clinical decision-making 
processes,

b aggregating new information into existing models while 
properly managing potential inconsistencies and

c inferring intentions of individual team members from 
the information observed, perceived and acknowledged 
by those individuals.

2.1 Bayesian knowledge bases (BKBs)
The knowledge relevant to clinical decisions can be described 
by BKBs (Santos, 2001; Santos and Santos, 1999). BKBs are 
an alternative to BNs (Bayesian networks), since BNs fail to 
handle cyclical conditions, cannot operate well unless they 
have a complete probability distribution and cannot be fused 
together consistently (Pearl, 1988). BKBs allow for fi ne-
grained dependent relationships among pieces of knowledge 
in a simple, probabilistically sound “if-then” format. BKBs 
are also founded on the fact that knowledge is incomplete and 
captures only the information that is known, without making 
any forced assumptions about the remaining knowledge. At 
the heart of BKBs is the ability to explain the reasoning/
decision-making that takes place.

The graphs depicting BKBs are composed of nodes 
and arcs, where the arcs denote causal relationships 
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his wound was closed and drainage was minor and on Date 
2, when major drainage was observed. These two fragments 
are merged into a bigger fragment in Figure 2(c), which 
represents all the information we have about the patient up 
to Date 2. In Figure 2(c), each S-node is parameterised with 
a source node indicating which fragment it comes from and 
currently equal reliabilities are assigned to the fragments. 
While the common I-nodes such as Wound=closed are 
merged, all S-nodes as well as the source nodes remain 
separated. During the inferencing of the fused fragment, the 
I-nodes representing patient conditions ((B)Wound=closed 
and (B)Drainage=major) instead of source nodes are set 
as evidence, such that all fragments that were fused earlier 
still contribute to the computation, if any. Therefore, 
the joint probability of the world in which Status_
change=N becomes P((B)Wound=closed|src_w=2)* 
P(src_w=2)*P((B)Drainage=major|src_d=2)*P(src_
d=2)*P((B)Status_change=N| (B)Wound=closed, (B)
Drainage=major, src_sc=2) *P(src_sc=2) = 0.5* 0.5* 
0.5* 0.5* 0.3* 0.5= 0.0094. In contrast, the world in which 
Status_change=slight, whose probability is 0.0156, is more 
likely to happen.

2.3 Intent inference
Healthcare team members’ decision-making processes can 
be simulated through individual intent inferencing based 
on BKBs. Intent can be defi ned as a combination of goals 
that are being pursued by individuals, beliefs that support 
the goals and actions that achieve the goals. In other words, 
the intent can be deduced by considering these components. 
We typically construct a behavioural model by optimising 
individuals’ behavioural patterns. Thus, we collect data 
through observation of individuals’ actions and environments 
and deliver the data to the model.

BKBs have been applied successfully in various domains, 
such as adversary intent inferencing and war-gaming, in which 
human intent was inferred through reasoning with BKBs 
(Pioch et al., 2009) (Santos et al., 2008) (Santos E. Jr. et al., 
2007). The instantiation of random variables is represented by 
i-nodes, which are classifi ed into the four types: axioms, beliefs, 
goals and actions. These are essential components associated 
with human intent. Axioms (denoted by (X)) represent what 
a person believes about himself; beliefs (denoted by (B)) 
represent what a person believes about others (including other 
people and surrounding situations); goals (denoted by (G)) 
represent what results a person wants to achieve; and actions 
(denoted by (A)) represent what a person will do to realise his 
goal. Axioms and beliefs may infl uence themselves or each 
other and both can contribute to goals (mostly sub-goals) and 
actions (Santos and Zhao, 2006) (Santos, 2003). Taking Figure 
2(b) as an example of an intent model, the surgeon’s evaluation 
of the patient’s status depends on the surgeon’s belief about the 
wound and drainage situations of the patient. If the patient’s 
wound is closed and her drainage is minor, it is more likely 
that there is a slight change in her status. In addition to this, 
intent inferencing can be used for other purposes as well: 
description of personal insights, prediction of future events and 

2.2 Bayesian knowledge fusion
The information represented in BKBs must be updated 
accordingly over time, whenever there is any change. When 
the patient’s condition is represented by BKBs, an algorithm 
to integrate the change of patient condition into existing BKBs 
is necessary. Originally, the fusion algorithm was devised to 
aggregate information provided by multiple experts while 
preserving the probabilistic consistency (Santoset al., 2009) 
(Santos et al., 2011). The algorithm to aggregate multiple 
BKBs cannot be straightforward, since the probabilities 
inside each fragment can become inconsistent when simply 
merged together. Here, a fragment means a single BKB to be 
fused. Therefore, a careful design strategy has been devised 
to handle potential disagreement among multiple fragments 
constructed from different sources (i.e., experts) in such a 
way that two special nodes are added to original BKBs when 
fused: the source node and the reliability index. Source nodes 
indicate which knowledge information comes from which 
fragment when fused, while the reliability index denotes the 
trustworthiness of the knowledge contained in a particular 
fragment. With these additional nodes, the inference process 
on the fused BKB can be realised and provide an explanation 
for evidence observed while keeping all of the probabilistic 
information contained in the BKBs consistent. The following 
is the fusion algorithm mentioned above.

We apply the algorithm to deal with dynamic situations 
in healthcare practices where updated information on 
patient condition must be accounted for constantly and 
added to existing knowledge bases. For example, on Date 
1, the patient’s vital sign is stable and the patient status is 
not changed. As days go by, the patient starts to show high 
body temperature, abnormal respiratory rate, open wounds 
and major drainage, which results in a higher chance of 
abnormal vital sign and major status change. The new 
information is fused into the BKB of each healthcare team 
member as it occurs. An example of BKB fusion is shown in 
Figure 2. The two fragments in Figure 2(a) and Figure 2(b) 
respectively represent the patient condition on Date 1, when 
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safety, teams must be well coordinated and communication 
among members must be constantly strong. As a part of a 
computational methodology to model and simulate dynamic 
changes in healthcare practices, we use gap analysis as a way 
to evaluate the organisational intent towards improving team 
performance. With this approach, we can simulate medical 
cases and analyse team performance.

3.1 Surgical intent modelling
Surgical intent modelling was proposed to model and 
simulate the clinical decision-making processes of healthcare 
professionals. Through this, we aim to improve the healthcare 
team members’ understanding of surrounding environments 
and other team members’ intents (Santos et al., 2012B). 
Considering the fact that healthcare services involve 
multiple operations and a wide range of people who must 
make discrete efforts to accomplish their common goals, 
tailoring intent models for each healthcare team member is 
necessary. In particular, surgeons’ intent models are supposed 
to be the most sophisticated, since they have both the most 
responsibility and the greatest authority at the same time in 
clinical decision making. Surgical intent models are naturally 
expected to include the entire process of healthcare service 
from diagnosing to discharging the patient. However, it would 
be an intractable process to try to encompass every fi ne detail 
of the entire process. As such, we currently select the most 
relevant elements with the appropriate level of detail when 
building the models, as shown in Figure 3. A surgeon is 
supposed to make a pre-decision based on patient condition 
and self-interests. The pre-decision is confi rmed or modifi ed 
to post-decision depending on the surgeon’s competency, 
which is inferred from his personal experience, history of 
malpractice and complexity of the procedure to be taken 
up. Depending on the procedure chosen, the most probable 
action to take can be anticipated in reasoning through BKBs. 
In particular, the elements we choose for the intent models of 
surgeons are beliefs about the condition of the patient, axioms 
about the surgeon’s own capability in performing the medical 
procedure, goals regarding choice of procedures and actions 
that are taken to fulfi l the procedure. In addition, individual 
differences are implemented as axioms in our current study, 
since surgeons’ clinical decisions can vary depending on their 
professional and personal traits. For instance, surgeons with 
high fi nancial pressure and self-interest often choose medical 
treatment that is not the best for the patient’s health.

3.2 Individual differences
It is necessary to understand individual differences and 
similarities for modelling an individual’s decision-making 
processes in healthcare practices. We classify individual 
differences as either professional or personal and assume 
both of these infl uence individual competence in performing 
medical procedures.

3.2.1 Professional differences
Individuals are different due to their educational background, 
individual experience, history of malpractice, complexity 

diagnosis of current outcomes. Ultimately, it can assess earlier 
predictions by contrasting them with current outcomes and 
help enhance predicting accuracy by providing an explanation 
of current outcomes.

Figure 2 BKB fusion. (a) BKB fragment of patient condition on 
Date 1, (b) BKB fragment of patient condition on Date 
2, (c) fused BKB of patient condition

3 Evaluating team performance

In addition to individual intent modelling and inferencing, we 
address the collective intent of individuals in teams. Teams 
play a fundamental role in healthcare practices and their 
performances are crucial to patient safety. To ensure patient 
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than others. The formulation to compute gap values can be 
described as 

1 1

( ) | ( ) ( ) |
n n

i j

g x P i P j
= =

= −∑∑

where g(x) denotes the gap value of team x composed of n 
individual members in an arbitrary situation. P(i) denotes 
the likelihood of the world of an individual i, while P(j) 
represents that of another individual j in the same situation. 
The gap value can be computed and interpreted in various 
ways, but we interpret the gap value as a measure of team 
performance to deliver healthcare service in a safe and 
secure manner. Thus, a team having a large gap means that 
individual team members have a signifi cant discrepancy and 
the team performs badly.

4 Case description and experimental design

This section describes our validation processes dealing with 
both static and dynamic situations associated with a patient 
having a circumferential panniculectomy.

4.1 Case description
The case pertains to a middle-aged female who had a 
circumferential panniculectomy performed in an OSC 
(outpatient surgical centre) by a team including a general 
surgeon, a plastic surgeon and some nurses. The general 
surgeon was in charge of a hernia repair using mesh work 
and the plastic surgeon took care of the rest of the surgery. 
During the pre-op, the scrub nurse prepped the anterior side 
of the patient. After completing the anterior portion of the 
surgery (both the hernia and the panniculectomy), the patient 
was turned onto the prone position. In this position, the back 
was prepped and then the panniculectomy was completed, 
which may raise the risk of infection. A Foley catheter, which 
is commonly inserted at the beginning of the prep, was done 
in the middle of the operation prior to turning the patient over 
in this case. Either of the two: the timing for the prep or the 
placement of the Foley may have led to increase the risk of 
infection, since the Foley is placed at the beginning of the 
case and then a circumferential prep is done in general.

The patient was discharged and went home on the day 
of the surgery. A visiting nurse took care of the patient on a 
daily basis. After a few days, the visiting nurse reported that 
the incision came open and began to drain. At the same time, 
the patient complained of increasing pain from the wound. The 
general surgeon suggested admitting the patient to the hospital 
when this was reported fi rst, but the plastic surgeon insisted on 
home care for a few more days. The disagreement between the 
general surgeon and the plastic surgeon was never resolved. A 
little over a week later, the two surgeons examined the patient 
separately on the same day, but still disagreed on the admission 
of the patient to the hospital. One day after two weeks, another 
plastic surgeon took over the case since the original plastic 
surgeon was out of town. The new plastic surgeon decided 

of procedures to take up during patient care, etc. As a 
consequence, their roles in the clinical decision-making 
processes and in delivering healthcare services are varied. 
For instance, surgeons have the greatest authority in clinical 
decision-making processes and make overall decisions 
associated with patient health, while nurses have more limited 
authority to manage patient care and make decisions relevant 
to wound care and pain management.

Figure 3 Skeleton of surgical intent model

3.2.2 Personal differences
Individuals with the same professional background can be 
varied in their personalities, some of which change over time 
very slowly while others are transient and do not last long. 
For example, extremely fatigued individuals do not remain in 
the same state for a long time, since the level of fatigue can 
change relatively quickly. On the other hand, the best-interest 
of individuals is more stable, though changes can occur 
over time. As sources of best-interest of individuals, patient 
health (PH), patient preference (PP), surgeon’s liability (SL), 
surgeon’s fi nancial benefi ts (SFB) and surgeon’s ego (SE) are 
considered, as shown in Figure 3.

3.3 Gap analysis
A medical situation is composed of various individuals and 
medical devices; medical errors occur when any of these 
elements does not function appropriately. In medical studies, 
gap analysis has been used as a way to assess individuals’ 
self-appraisal in communication (Calhoun et al., 2010). In 
our research, we use gap analysis to evaluate the performance 
of a team delivering healthcare services. Based on the 
probabilistic knowledge representation system used for our 
research, we compute gap values by comparing probability 
distributions of individual team members belonging to 
the same team. Since we believe individuals’ intents are 
well coordinated with the collective intent of the team in 
an effective team, we consider the team with the smallest 
gap value as the safest team with respect to medical errors. 
However, when some individuals make decisions confl icting 
with others and the collective intent of the team, this leads to 
deterioration in team performance. By comparing gap values 
obtained from different teams under the same situation, we 
can identify which team is more vulnerable to medical errors 
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make a decision that conforms to the patient’s desires. If a 
surgeon considers a patient’s health to be the highest concern, 
he makes a decision that can improve a patient’s health most. 
When surgeons seek to reduce liability as their primary 
interest, they make decisions that help reduce their future 
personal risks in case any adverse incident happens. Pursuing 
the surgeon’s fi nancial benefi t as a primary interest refers to a 
situation in which the surgeon makes a decision to maximise 
his individual or organisational income. Sometimes, a 
surgeon may be too anxious about trying out a new clinical 
procedure he/she has invented and put the highest priority 
on his/her ego by delivering it without full validation. In a 
real situation, a surgeon tends to pursue a mixture of these 
fi ve best-interests rather than any particular one. Thus, we 
hypothesise fi ve possible cases, in each of which individual’s 
best-interest is mixed with different types of best-interest, as 
described by the weights inside the parentheses. The weights 
that are not specifi ed explicitly are set at 0%. Except for the 
plastic surgeon, we assume the best-interest of other team 
members is patient-health at 100%.

4.3.1 Case 1
The plastic surgeon focuses on both satisfying a patient’s 
preference (refers to his preference on the care he will 
receive based on his economic situation, physical and mental 
condition and so forth) and the patient’s health during a 
decision-making process. The weights for the two types of best 
interests are roughly equivalent (patient preference=100%, 
patient health=80%).

4.3.2 Case 2
The plastic surgeon considers a patient’s health to be the 
most important factor when making a decision (patient health 
=100%).

4.3.3 Case 3
The plastic surgeon focuses on reducing his/her liability and 
improving a patient’s health. The weights for these two types 

to admit the patient immediately and pursued a follow-up 
procedure. By that time, the patient had already experienced 
a lot of pain, high temperature and drainage from the wound. 
During the follow-up procedure, it was confi rmed that the 
patient had an infection, which was resolved with further 
surgery and antibiotics. The original plastic surgeon should 
have admitted the patient immediately after the wound opened.

4.2 Selection of simulation points
For validating the applicability of our approach to the case, 
we selected fi ve critical time points within two weeks after the 
patient had the panniculectomy operation and was discharged 
from OSC. We simplifi ed this case because our framework 
is based on a discrete representation of information and the 
patient condition did not change so dramatically that we needed 
to model each actual day. As shown in Table 1, the patient 
condition worsened from Date 1 to Date 4 and recovered on 
Date 5 after both surgeons (general surgeon and the new plastic 
surgeon) agreed on readmitting the patient to hospital (“HOME” 
denotes the surgeon’s decision to discharge the patient from 
OSC and take care of her at home, while “HOSP” represents 
the surgeon’s decision to readmit the patient to the hospital).

4.3  Design of fi ve cases representing personal 
differences

To validate our approach, we modelled fi ve possible medical 
situations, where the major differences were surgeons’ 
best-interests. In each case, we assumed a healthcare team 
composed of four individuals: general surgeon, plastic 
surgeon, visiting nurse and patient. For the panniculectomy 
case, we speculated on the role of the plastic surgeon in 
delivering the healthcare service and varied his best-interest 
by setting evidence differently while keeping other members’ 
best-interest fi xed. While varying the plastic surgeon’s best-
interest, we addressed fi ve categories: patient preference, 
patient health, surgeon liability, surgeon’s fi nancial benefi t 
and surgeon’s ego, as shown in Figure 3. If the plastic surgeon 
considers a patient’s preference as his fi rst priority, he will 

Table 1 Change of patient condition and decisions

Time Points Date 1 Date 2 Date 3 Date 4 Date 5

Specifi c Feb 6th Feb 8th Feb 17th Feb 18th Feb 23rd

Date
Patient Body temp = normal Body temp = normal Body temp = normal Body 

temp = abnormal
Body temp = normal

Condition
Pulse rate = normal Pulse rate = normal Pulse rate = normal Pulse rate = normal Pulse rate = normal
Blood
pressure = normal

Blood pressure = normal Blood 
pressure = normal

Blood 
pressure = normal

Blood
pressure = normal

Respiratory 
rate = normal

Respiratory rate = normal Respiratory 
rate = normal

Respiratory 
rate = abnormal

Respiratory 
rate = normal

Wound = closed Wound = closed Wound = open Wound = open Wound = closed
Drainage = minor Drainage = major Drainage = major Drainage = major Drainage = major

General HOME HOSP HOSP HOSP HOSP
Surgeon
Plastic HOME HOME HOME HOME HOSP
Surgeon
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information to the surgeons. For the visiting nurse’s BKB, the 
decision associated with the reporting of patient condition to 
the doctors is inferred. For the patient’s BKB, the patient’s 
satisfaction is derived from the outcomes obtained. Those 
BKBs for nurses and patients are very limited and not 
sophisticated enough to cover their entire decision-making 
processes, since this is beyond our current research interests.

To simulate the dynamics of the surgeons’ decision-
making processes, which is based on the patient condition 
changing over time, we used the BKB fusion algorithm 
(Santos et al., 2009). Through the experiments conducted, we 
validate that BKBs can represent the dynamics in medical 
decision making when the patient’s conditions are changed. 
The fragments of BKBs, which refer to the input BKBs in 
the fusion process, are relatively small and contain only 
partial information representing the information pertinent 
to changes. For instance, we developed a generic BKB 
representing a surgeon’s decision-making processes at Date 2 
by fusing two BKBs: one represents patient condition and the 
other contains the information consistent during the period, 
as shown by Figure 4. The left part of Figure 4 represents the 
patient condition at Date 2, which was obtained by fusing a 
BKB representing the patient condition at Date 1 and another 
BKB representing its change at Date 2. The right part of Figure 
4 contains the information consistent during the time period. 
Since we assume that the patient condition is accumulated 
over time, a generic BKB representing the surgeons’ decision-
making processes becomes more sophisticated as time goes. 
As a consequence, the left part of Figure 5 is more complex 

of best-interests are roughly equivalent (patient health=80%, 
surgeon liability=100%).

4.3.4 Case 4
The plastic surgeon focuses on reducing his/her liability 
and improving a patient’s health. The weight of liability 
is considerably larger than that of patient health (patient 
health=50%, surgeon liability=100%).

4.3.5 Case 5
The plastic surgeon has invented a new clinical procedure and 
is anxious to try it out, with the hope of becoming famous in the 
fi eld. Probably, he/she overestimates his/her own capability to 
handle the patient and employs the new procedure, which is 
not fully tested by other medical professionals. The weight of 
ego is considerably larger than that of patient health (patient 
health=50%, surgeon ego=100%).

4.3.6 Experimental validation
We used the BKB fusion algorithm to simulate the dynamic 
situations in the panniculectomy case. The generic BKBs 
for two surgeons are similar in most parts of their decision-
making processes and have minor differences due to their 
unique roles. In addition, we consider the visiting nurse and 
the patient as separate BKBs as well. Even though they are 
not active decision makers in the patient’s care, we assume 
they both play some roles through providing supplementary 

Figure 4 Surgical intent model at Date 2
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time period in general, we assume these attributes are static 
during the time period under our consideration. For example, 
a surgeon’s experience does not change during fi ve time steps 
or a two-week period. In addition, personal best-interest does 
not change within a limited time, although it may change 
over a longer time period (years or decades).

4.4.1 Professional differences vs. error probability
As for professional differences, we addressed individual 
experience, history of malpractice and complexity. One of our 
general assumptions is that less experienced individuals make 
mistakes more frequently than highly experienced individuals. 
Table 3 represents the results of experiments obtained through 
the surgeon’s BKB. The history of malpractice, experience 
and complexity are denoted as m, E and C, respectively 
and the two levels of history of malpractice, experience and 
complexity are presented as Low (L) and High (H). The 
“Ratio” in the last column indicates how much bigger the 
probability of an event happening defi ned by the 1st rank is, as 
compared to the probability of an event happening defi ned by 
the 2nd rank. Therefore, the 1st rank probability was divided by 
the 2nd rank probability to get the “Ratio.” As shown in Table 
3, when the complexity of the procedure is high, the surgeon 
is highly likely to change his decision from home care to OSC 
when his level of malpractice and experience is low, since 
the surgeon would like to ensure patient safety by keeping 
him and the medical equipment more readily accessible. 
However, the patient can be taken care of well through home 
care if the surgeon is highly experienced, but does not cause 

than that of Figure 4. Their beliefs about patient condition 
are changed according to the assumption given in Table 1. 
Since the best-interest of the general surgeon in each case 
is supposed to be the same (patient-health at 100%), the 
reasoning model realised for him is the same regardless of 
the case, although its realisation is different at each date. 
However, the best-interest of the plastic surgeon in each case 
is realised differently, according to the design explained in 
Section 4.3 and this was implemented differently by setting 
evidence according to the patient condition described in 
Table 1. Table 2 shows the overall scale of the generic BKBs, 
including the number of random variables, number of I-nodes, 
the average connectivity, the number of S-nodes (rules) and 
the average number of conditions for each rule contained.

With the BKBs specifi ed above, we conducted two sets of 
experiments to examine whether the BKBs and their fusion 
approach can provide a true representation of reasoning 
processes. In static validation, we tested the BKBs on Date 
1, with varying professional and personal differences. In 
dynamic validation, we tested if the fused BKBs accurately 
represent the changes made in the decision-making processes 
with regard to the patient condition changes.

4.4 Static validation
The purpose of our static validation is to test if the BKBs 
constructed to represent individuals in a healthcare team 
can truly represent a wide range of individuals and their 
decision-making processes. Since the professional and 
personal attributes of individuals do not change over a short 

Figure 5 Surgical intent model at Date 3
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4.4.2 Personal differences vs. error probability
As personal differences, we address the best-interest of 
medical professionals, including surgeons and nurses. 
Table 4 demonstrates a few examples of how different types 
of interests infl uence the fi nal decision when the patient’s 
condition is not changed. As mentioned earlier. PP. PH. SL 
SFB and SE represent patient preference, patient health, 
surgeon liability, surgeon fi nancial benefi t and surgeon ego 
respectively, as explained in Section 4.2. Each row represents 
how a surgeon determines his/her procedure when his/her 
best-interest is set as evidence. For example, the fi rst row 
represents how a surgeon determines home care as the best 
procedure when his best-interest is patient preference.

4.5 Dynamic validation
Based on the static validation. we expanded the simulation into 
fi ve time periods to validate that the fused BKBs represented the 
dynamics of the panniculectomy case accurately. To this end, 
we conducted an additional set of experiments and computed 
gap values over time for each case we addressed earlier.

4.5.1 Dynamics of potential procedure
In the panniculectomy case, the only source of dynamics is the 
change of patient condition, such as the wound opening and 
the drainage and the potential procedure must cope with this 
change of patient condition. Therefore, we conducted a set of 
experiments to test if the procedure predicted by inferencing 

malpractice frequently, which is shown by the 4th row. If the 
surgeon has a high malpractice history, he would be more 
risk-averse and would likely change his decision from HOME 
to HOSP when the procedure is highly complex, even if he is 
experienced enough with the procedure, which is shown by 
the 8th row. The ratios in the fi rst, third and seventh rows are 
the highest, meaning that the surgeon is very deterministic 
about his decision. The similarity in the ratios is due to our 
limited implementation that these three cases all result in 
high competence.

Table 2 Size of surgeon BKBs over time

Time RVS. I-no. CON. S-no.(rules)

1 20 36 1.64 63
2 29 57 1.67 95
3 29 60 1.65 102
4 29 72 1.69 121
5 29 72 1.69 121

We designed individual surgeon’s BKBs in such a way that 
these three factors (i.e., experience, complexity and prior 
malpractice) infl uence individual competence on a specifi c 
clinical procedure (i.e., HOME and HOSP), just like the 
nurse’s BKB. However, we consider the patient’s BKB 
differently, since we assume that she judges her satisfaction 
based on either direct (her own) experience or indirect (other 
people she is associated with) experience, rather than the 
complexity or history of malpractice.

Table 4 Personal differences vs. error probability

Evidence
Best-interest

Target (Planned Procedure)

1st rank 2nd rank 1st rank prob. 2nd rank prob. Ratio

PP (HOME) HOME HOSP 1.30E−03 6.00E−04 2.17
PP (HOSP) HOSP HOME 1.30E−03 6.00E−04 2.17
PH HOME HOSP 2.50E−03 1.30E−03 1.92
SL HOME HOSP 2.70E−03 1.10E−03 2.45
SFB HOSP HOME 2.30E−03 1.50E−03 1.53
SE HOSP HOME 1.00E−03 3.00E−04 1.17

Table 3 Professional differences vs. error probability

Evidence Target (Planned Procedure)

Potential Procedure M E C 1st rank 2nd rank 1st rank prob. 2nd rank prob. Ratio

Home L L L HOME HOSP 1.81E−05 1.83E−07 98.9 0
Home L L H HOSP HOME 1.09E−05 7.32E−06 1.49
Home L H L HOME HOSP 2.71E−05 2.74E−07 98.9 0
Home L H H HOME HOSP 1.92E−05 8.24E−06 2.33
Home H L L HOME HOSP 2.13E−06 9.15E−07 2.33
Home H L H HOSP HOME 1.83E−06 1.22E−06 1.50
Home H H L HOME HOSP 2.01E−06 2.03E−08 99.0 0
Home H H H HOSP HOME 1.22E−06 8.14E−07 1.50
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2 and Date 3, as shown in Table 4, so the gap values were 
computed accordingly. Case 4 is a more severe case with 
respect to the patient’s safety, since this plastic surgeon was 
more biased towards his/her liability than patient health and 
insisted on home care despite the patient’s pain. The gap value 
became the biggest at Date 4, since the decisions made are far 
from the right decisions, except at Date 1. The decreasing 
gap value supported our assumption that the plastic surgeon 
would become sceptical of his decision because the patient 
condition worsened, as provided by the evidence. Case 5 is 
similar to case 1, since the plastic surgeon decided to perform 
his own clinical procedure and wanted to keep the patient 
in the hospital. Although the general conjecture of the gap 
value is similar to case 1, the values are different from 
those of case 1, since the probabilities obtained depend on the 
best-interests of the plastic surgeons.

Table 5 Dynamics of potential care

Case Time

Target (Potential Procedure)

1st

rank
2nd

rank
1st rank
prob.

2nd rank
prob. Ratio

1 1 HOSP HOME 6.70E−06 1.98E−06 1.35
2 HOSP HOME 1.32E−06 6.04E−07 2.19
3 HOSP HOME 8.23E−07 3.52E−07 2.34
4 HOSP HOME 2.22E−08 8.40E−09 2.64
5 HOSP HOME 1.49E−08 6.62E−09 2.25

2 1 HOME HOSP 2.49E−06 1.33E−06 1.87
2 HOSP HOME 2.27E−06 1.51E−06 1.50
3 HOSP HOME 1.88E−06 4.70E−07 4.00
4 HOSP HOME 5.54E−08 7.24E−09 7.65
5 HOSP HOME 2.49E−08 1.65E−08 1.51

3 1 HOME HOSP 2.68E−06 1.14E−06 2.35
2 HOME HOSP 2.64E−06 1.81E−06 1.46
3 HOME HOSP 1.65E−06 1.50E−06 1.10
4 HOSP HOME 4.44E−08 3.92E−08 1.13
5 HOSP HOME 2.49E−08 1.65E−08 1.51

4 1 HOME HOSP 2.68E−06 1.14E−06 2.35
2 HOME HOSP 2.64E−06 1.13E−06 2.34
3 HOME HOSP 1.65E−06 9.40E−07 1.76
4 HOME HOSP 1.96E−07 1.39E−07 1.42
5 HOME HOSP 2.99E−08 1.28E−08 2.34

5 1 HOSP HOME 1.34E−06 9.90E−07 1.35
2 HOSP HOME 1.32E−06 6.04E−07 2.19
3 HOSP HOME 8.23E−07 3.52E−07 2.34
4 HOSP HOME 2.22E−08 8.40E−09 2.64
5 HOSP HOME 1.49E−08 6.62E−09 2.25

The biggest gap was obtained from case 5 at Date 1, as 
shown in Figure 6. Considering communication breakdown 
among team members in healthcare practices, the team’s 
performance would deteriorate most when the plastic surgeon 
was very arrogant and insisted on his/her opinion, regardless 
of other co-workers. The small gap obtained from case 1 
supports our belief that considering patient preference more 
than patient health would be less harmful than the egoistic 
plastic surgeon. However, this offset can be adjusted by 
designers who build up individual BKBs. As shown by the 
experiments conducted, our computational framework has 

changes appropriately according to the patient condition. 
Table 5 shows the results of the experiments obtained by 
varying the patient condition described in Table 1 and the 
best-interest of the plastic surgeon according to the design 
in Section 4.3. The scale of the joint probabilities becomes 
smaller as the time proceeds, because more information 
pertinent to patient condition is fused in.

4.5.2 Gap analysis in panniculectomy case
For using gap values as a measure of team performance, we 
made some basic assumptions regarding individuals’ beliefs 
about others. We assumed that all healthcare professionals’ 
best interests are patient health at 100%. Based on this 
assumption, we hypothesised that there is no gap among 
team members if all of them put their best-interests towards 
patient health at 100%, which was described by case 2 in our 
study. Another assumption is about comparing probability 
distributions after reasoning through BKBs. Since comparing 
probability distributions obtained from BKBs representing 
different individuals would not make any sense, we set 
baselines with the probability distributions obtained from 
BKBs representing individuals having their best-interests 
towards patient health at 100%, since we believe that those 
intents are what others expect. To compute the gap of 
a certain team, we summed up all gap values obtained by 
comparing one’s probability to choose a certain decision 
with the probability expected by others. Consequently, the 
team described by case 2 had no gap, as shown by Figure 
6, because all team members set their best-interest towards 
patient health at 100%.

Case 1 describes a team where the plastic surgeon’s best 
interest is divided into patient preference and health. In 
this case, he/she insisted on readmitting the patient to the 
hospital constantly from Date 1. At fi rst, we examined the 
most probable decision made by that plastic surgeon at Date 
1, which was “HOSP”, as shown in Table 5. Since this is the 
most probable decision of that plastic surgeon at that time, but 
not the decision expected by others, we compared it with the 
probabilistic distribution expected by others with the same 
evidence given. For instance, the gap (5.10 E-07) shown 
in Figure 6. was obtained by comparing two probability 
distributions; one represents the probability expected by 
others (2.49 E-08) and the other represents the probability of 
that plastic surgeon’s choosing “HOME” (i.e., 1.98 E-06) at 
Date 1. Although we compared the probabilities of the nurse 
and the patient as well, only the probabilities determined by 
the plastic surgeon made a difference here, since we set the 
best-interests of the other individuals towards patient health 
at 100%, as explained in Section 4.2. Although the surgeon’s 
motivation is not ideal, his/her decision turns out to be good 
for the patient from Date 2, since the patient condition gets 
worse and she needs to be hospitalised again.

In case 3, the plastic surgeon insisted on home care, since 
he cared about his liability more than patient health. However, 
when the patient condition got worse, he changed his decision 
to readmit the patient to the hospital at Date 4. The decisions 
made by case 4 were not the right (ideal) decisions at Date 
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a team composed of individuals, all of whom have the same 
best-interest towards their own fi nancial benefi ts at 100%, may 
not have any gap, indicating vulnerability to medical errors, 
though the team is far from the ideal for patient safety.
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