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Abstract— We are working on the problem of developing a 
flexible, generic metalearning process that supports 
algorithm selection based on studying the algorithms’ past 
performance behaviors. State of the art machine learning 
systems display limitations in that they require a great deal 
of human supervision to select an effective algorithm with 
corresponding options for a specific domain. Additionally, 
very little guidance is available for algorithm-parameter 
selection and the number of available choices is 
overwhelming. In this paper, we develop a flexible, large-
scale experimental framework for a metacontroller that 
supports explorations through algorithm-parameter space 
and recommend algorithm for a given dataset. First, we aim 
to facilitate an easy to use process to create a search space 
for algorithm selection by automatically exploring some 
possible combinations of algorithms and key parameters. 
Secondly, our goal is to come up with an algorithm 
recommendation by looking at the past behaviors of related 
datasets. Our main contribution is the implemented 
framework itself which is based on the use of a wide variety 
of strategies to automatically generate a search space and 
recommend algorithms for a specific dataset.  We evaluate 
our system with 40 major algorithms on 20 datasets from the 
UCI repository. Each dataset is represented by 25 data 
characteristics. We generate and run 7510 combinations of 
algorithm, parameters and datasets. Our experiments show 
that our framework offers a friendly way of setting up a 
machine learning experiment while providing accurate 
ranking of recommended algorithms based on past 
behaviors. Specifically, 88% of recommended algorithm 
rankings significantly correlated with the true rankings for a 
given dataset. 

Keywords: metalearning, experimental study, algorithm 
selection. 

I. INTRODUCTION 

Metalearning is the formal study of the best practices in 
machine learning [4] which enables the selection of 
optimal learning algorithms that best fit the search space 
of any given problem. Algorithm selection based on past 
performance is a very important task in metalearning, as 
shown in Rice’s metalearning model [15]. The problem is 
defined as “For a given problem instance x ∈ P, with 
features f(x) ∈ F, find the selection mapping S(f(x)) into 
algorithm space A, such that the selected algorithm α ∈ A
maximizes the performance mapping y(α(x)) ∈ Y” [16].
This problem is often viewed as a search problem with the 
search space being the sets of machine learning 
algorithms performing with a set of parameters on a 
specific dataset. Users often encounter many algorithms, 

each containing many parameters, which, in turn may 
have many values. This makes the search space intractable 
for a complete search. Also there is very little guidance 
available for algorithm-parameter selection. One 
algorithm can be good for a specific problem but can 
perform poorly on another problem. Without domain 
knowledge, users can easily spend significant amounts of 
time in a suboptimal solution. This argument is also 
supported by the No Free Lunch theorem, as indicated in 
[16] which suggested that we should understand more 
about the datasets and the algorithms in order to choose an 
appropriate algorithm for a specific dataset and the task at 
hand.  
 In this paper, we empirically study the algorithm 
selection problem by developing a flexible metalearning 
framework to assist users in choosing appropriate learning 
algorithms for a specific dataset. The novelty of our 
approach is the design of the framework which allows for 
a wide variety of combinations between learning 
algorithms, their parameters and datasets. This framework 
enables any users to set up the experiments easily and 
automatically explores the algorithm-parameter search 
space to find the most appropriate algorithms. Our generic 
framework is built upon the Weka foundation [8], but is
not tied to Weka. The framework is completely multi-
threaded and parallelized to support execution on clusters. 
We use this framework to rank and recommend 
algorithms. In our experiment, we evaluated 40 
classification algorithms categorized in six groups based 
on the way the classification is done (for example: using 
tree, rule or probability). Unlike previous algorithm 
recommender systems that focus on providing ranking 
based on uni-criterion evaluation, e.g. accuracy, we take 
both accuracy and running time into consideration while 
producing an algorithm ranking. Twenty datasets from the 
UCI repository [6] are used to assess the robustness of the 
system and in evaluating the recommended algorithm 
rankings. A series of recent studies have been conducted 
with regards to algorithm selection. For example, 112 
datasets and 8 algorithms are used in the study of Ali and 
Smith [1]. However, most of these efforts only consider a 
limited number of classic algorithms, such as Support 
Vector Machine (SVM) and rule-based algorithms, 
whereas in our work, we exploit more classification 
algorithms from six different groups. 
 Each dataset in our testbed is described by 25 data 
characteristics extracted using a tool called DCT [11]. We 
use a leave-one-out strategy for assessing the 
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recommended algorithm ranking. For each dataset in the 
testbed, we compute its similarity with all of the 
remaining datasets using the k-nearest neighbor (kNN) 
algorithm. Then we use the information of the algorithms 
performed on the nearest datasets to form a recommended 
algorithm list. The adjusted ratio of ratios (ARR) measure 
[5] is used to assess each algorithm performance. We 
compute the recommended ranking and the true ranking 
for each dataset, and then calculate the Spearman’s 
correlation over these two ranking values. A true ranking 
of algorithms for a given dataset is the order in terms of 
the performance of each algorithm on the particular 
dataset, where the performance is evaluated via the overall 
ARR measurement. Moreover, we assessed the ranking 
based on the differences in terms of the end user’s 
emphases. For example, machine learning practitioners 
may focus more on accuracy, whereas industry software 
developers may emphasize more on time. The results 
show that for all but one case, the recommended and true 
rankings correlated well with each other. More 
importantly, 88% of the recommended rankings are 
significantly correlated with the true ranking of algorithms 
for a given dataset. 

This paper is organized as follows: We start out with 
a review on the study of algorithm selection as applied to
classification problems in Section II. Section III details
the algorithm and configuration of our framework. The 
experimental setup section then describes our objectives, 
and details of our testbed including datasets, algorithms, 
measures and the procedure. Section V discusses the 
findings from our results. Lastly, we will present our 
conclusion and future work.  

II. RELATED WORK

The aim of metalearning in general is to assist users in 
selecting the best performance algorithms in an 
appropriate model to solve a specific problem. The main 
research questions are: (i) which features of a dataset 
significantly affect the performance of a learning 
algorithm; and (ii) which algorithms are the most 
appropriate to solve a given problem. Substantive effort 
has been put into extracting meta-features, where the 
objective is to capture certain relationships between the 
measured data characteristics and the performance of the 
algorithms. Among those, StatLog project [12] is a 
comprehensive empirical study that provided 16 valuable 
meta-features that were widely used by metalearning 
researchers for many years. A number of studies extended 
the range of features by incorporating the structural 
characteristics of models [13] and applying simpler and 
faster learners such as landmarkers [14].  

Regarding the selection of algorithms, one of the 
most comprehensive studies on meta-learning for 
algorithm selection is done by Smith-Miles [16]. Early 
meta-learning approaches such as StatLog, limit 
themselves to suggesting one or a subset of algorithms on 
a given problem. Brazdil et al. [5] extends StatLog by 
applying algorithm ranking rather than choosing the only 
best performance algorithm. The idea is to use a learning 
algorithm such as kNN to identify the similarity between 

datasets in the meta-feature space. Then the ranking of 
each algorithm was calculated based on its performance 
on the neighboring datasets. The adjusted ratio of ratios 
(ARR) which aggregates information concerning accuracy 
and time is used to compute the ranking for each 
algorithm. Another approach that supports multi-criteria 
ranking uses data envelopment analysis (DEA), which 
measures the efficiency by taking the ratio of total outputs 
to total inputs [2].

In 2004, Lai and Tsai. [10] conducted a study in 
which Naïve Bayes, term frequency inverted document 
frequency (TFIDF), kNN, and SVM are applied on the 
spam e-mail classification problem. It turned out that kNN 
did worst among these algorithms while the combination 
of Naïve Bayes and TFIDF gave better results than either 
alone. This study is of limited interest for metalearning, 
because of its narrow scope.  

Recently, several general-purpose data mining 
packages, e.g. Weka [8], have been developed to assist the 
development of machine learning applications. They 
incorporate user-friendly graphical interface to facilitate 
the set-up, execution and subsequent analysis, but 
generally offer no real decision support to non-expert end-
users. We build our generic framework upon the Weka 
foundation as it is an open source software consisting of 
an extensive collection of machine learning algorithms. 
From this, we further build and evaluate the flexible 
framework using ARR measures with characteristics 
extracted using DCT. Our main contributions are the 
flexibility of our implemented framework and the large 
number of classification algorithms. This framework 
allows us to add a combination of algorithm, parameter, 
dataset easily, automatically generates a search space and 
recommends algorithms for a specific dataset. 

III. FRAMEWORK

Our framework supports explorations through algorithm-
parameter space. The framework is completely multi-
threaded and parallelized to support execution on clusters. 
The key feature is an interface-based plug-in system 
which allows for easy integration of new algorithms. 
While the system follows most Weka conventions, it is a 
stand-alone system with no dependency on Weka code. 
The main components are shown in Fig. 1.  

Figure 1: Architecture of algorithm selection framework. 
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<?xml version="1.0" encoding="utf-8"?>
<tasks> 

<task name="My Task List" folds="10" out="results/flashmob_control1_new"> 
    <datasources> 

<data>anneal.arff</data> 
<data>arrythmia.arff</data> 
<data>audiology.arff</data> 
<data>autos.arff</data> 
<data>balance-scale.arff</data> 
<data>breast-cancer.arff</data> 

     </datasources> 
    <!-- Bayes algorithms --> 
    <algorithm value="weka.classifiers.bayes.BayesNet"> 
      <option tag="D"  type="bool" value="true" /> 
      <sub tag="Q” class="weka.classifiers.bayes.net.search.local.SimulatedAnnealing"> 
        <suboption tag="A" value="1" min="1" max="10" step="1" /> 
        <suboption tag="U" min="4" max="20" step="2" /> 
      </sub> 
      <sub tag="Q" value="weka.classifiers.bayes.net.search.local.K2"> 
        <suboption type="INT" tag="P" value="4" min="1" max="10" step="1" /> 
        <suboption tag="S" value="BAYES" /> 
        <suboption tag="S" value="MDL" /> 
        <suboption tag="S" value="AIC" /> 
      </sub> 
      <sub tag="E" value="weka.classifiers.bayes.net.estimate.SimpleEstimator"> 
        <suboption type="REAL" tag="A" value="0.5" min="0.1" max="0.6" step="0.1"/>
      </sub> 
    </algorithm> 

</task> 
</tasks> 

This framework takes a configuration file as an input 
in which the description for each task in an experiment is 
included. A task is a learning problem described by a set 
of strategies, the input datasets, and the output result set. 
A strategy is defined as a tuple of a machine learning 
algorithm, a set of parameters and its corresponding
values. If the set of parameters is ignored, the default 
parameters are used. Each parameter is described by type, 
tag, and values. Type can be numerical data type such as 
integer (denoted as INT), real values (denoted as REAL), 
boolean values (denoted as BOOL), or string. Tag 
represents the real name of the parameters. The values can 
be a single integer, real, boolean, string value or a range 
of values. We support numerical ranges of values by 
allowing the users to specify the lower bound value 
(denoted as min), upper bound value (denoted as max) and 
the step value (denoted as step). The system will 
automatically generate a loop through the values for a 
parameter. This feature distinguishes the framework from 
existing tools such as Experimenter in Weka where the 
users can only change a small set of parameters, as Weka 
does not support parameters with range values inside 
Experimenter. 

Each parameter, in turn, can also be another machine 
learning algorithm which has its own sub-parameters. Fig. 
2 shows an example of the configuration file which uses 
six small datasets from the UCI collection and BayesNet 
algorithm. A dataset is a collection of data organized in a 
certain format such as the ARFF format used by Weka. A 
dataset contains more than one instance in a specific 
domain such as labor, voting, census and so forth. An 
instance is defined as a row in a specific dataset which 
describes an observation of a known event in the past in 
that particular domain. 

We use our own XML format to describe this 
framework with corresponding tags to present task and 
strategy. Even though our XML configuration file format 
is similar to XML format of Predictive Model Markup 
Language [7] (PMML), it gives us the flexibility and 
autonomy of adding any new algorithms into our 
framework without having to depend on PMML. 

We provide a tool to convert a dataset from a non-
Weka format to ARFF format. Our framework also allows 
an easy integration with a non-Weka classifier. We 
provide an interface with six methods to set training 
instances, test instances and run the classifier.  

Figure 2: XML file contains description of learning algorithms. 

 The system is designed to allow for a wide variety of 
search strategies, via a callback interface. This 
architecture supports multiple strategies for algorithm-
parameter space on multi-threaded and multi-processor 
environment. The algorithm-parameter space is extremely 
large in most cases, it is impossible to perform an 
exhaustive search. Therefore, on each learning run 
instance, a callback is made to an evaluator which then
determines the next algorithm-parameter instance to 
search.   This allows the system to dynamically change the 
strategy in real time as the exploration progresses. In the 
current implementation, a simplistic simulated annealing 
approach is used.  Ideally, a configuration XML file 
provides the range of each parameter in order to limit the 
search space. The range is represented by the values 
which can represent the minimal and maximal values and 
the steps. However, the system will accommodate cases 
where this information is not provided.  The system 
samples several instances in the span of available 
parameters for a particular algorithm and then uses a hill-
climbing approach to refine the search, continuing past the 
best result in order to minimize the chance that a local 
maxima is used.  It is important to realize that this is a 
very simplistic first-cut approach to a search strategy, and 
is not meant to be optimal.  In future work, we plan to
incorporate a more sophisticated machine learning 
algorithm to guide the search. 
 In the recommendation process, we use two 
approaches to suggest algorithms to the end users. If we 
have prior knowledge of the performance of algorithms on 
a given dataset, then algorithms are ranked by computing 
their overall ARR.  
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ARR [5] is defined as: 
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running time of algorithm aj on the dataset di. AccD is the 
tradeoff coefficient between time and accuracy of a 
specific algorithm. If the user emphasized more on 
accuracy, the value of AccD is small. If the user 
emphasized more on running time, the value of AccD is 
big. This measure aggregates information concerning 
accuracy and time for each algorithm against another 
algorithm in a specific dataset. The overall ARR for each 
algorithm on a given dataset is computed by taking the 
arithmetic mean of all ARRs of that algorithm against  the 
remaining algorithms.  
 If we need to recommend algorithms for a new 
dataset which we do not have any prior knowledge, we 
will compute its similarity with the remaining datasets 
using the kNN algorithm applied on the data 
characteristics space. More detail is provided in Section 
IV. Although the system provides a recommendation for 
an algorithm-parameter set, extensive detailed output data 
from each run is recorded, supporting complex offline 
analysis or evaluation of output data though conventional 
machine learning algorithms. 

IV. EXPERIMENTAL SETUP 
 The goals of this evaluation are twofold. First, we 
want to test the robustness of our implemented 
framework. Secondly, we assess the ranking of algorithms 
and compare the recommended ranking with the true 
ranking.  We choose the classification problem to study in 
this experiment because this is a popular machine learning 
problem with well-established testbeds, procedure and 
measures.  

A. Testbeds 
We use forty algorithms which are categorized into six 
groups based on the ways a classifier can be constructed. 
These groups are Bayes (probability-based algorithms),
functions (logic-based algorithms), lazy (distance-based 
algorithms), rule (rule-based algorithms), tree (tree-based 
algorithms) and a miscellaneous group. The list of 
algorithms is presented in Appendix 1. Twenty datasets 
from the UCI [6] repository have been used to evaluate 
the robustness and recommendation ranking of the 
framework. 
 Each dataset is represented by 25 data characteristics 
extracted using DCT tool [11]. These characteristics 
include general measurements such as number of features, 
number of instances; measurements of discriminant 
analysis applicable for numerical attributes such as fract
and cancor, and information theoretical measurements for 
symbolic attributes such as class entropy, joint entropy. 

The list of datasets and some general characteristics are 
shown in the TABLE I.  For more details, please see [11]. 

TABLE I. DATA CHARACTERISTICS OF TESTBED. 

 We assess each strategy using twelve measures that 
are commonly used to assess machine learning 
algorithms. They are accuracy, running time, true positive, 
true negative, false positive, false negative, precision, 
recall, F-measure, specificity, information score, and root 
mean square error. Accuracy is defined as the ratio 
between the number of correctly classified instances over 
the number of all classified instances. Running time is 
defined as the difference between the ending and starting
of the classification process. True positive is the number 
of correctly classified positive instances. True negative is 
the number of correctly classified negative instances. 
False negative is the number of incorrectly classified 
negative instances while false positive is the number of 
incorrectly classified positive instances. Precision is the 
ratio between the total number of correctly classified 

Collection Features Symbolic 
Features

Numerical 
Features

Instances Classes

Anneal 39 32 6 898 6

Arrythmia 280 73 206 452 16

Audiology 70 69 0 226 24

Autos 26 10 15 205 7

Balance-
scale

5 0 4 625 3

Breast-
cancer

10 9 0 286 2

Car 7 6 0 1728 4

Cmc 10 7 2 1473 4

Credit-
rating

16 9 6 690 2

Cylinder 40 21 18 540 2

Diabetes 9 0 8 768 2

Glass 10 0 9 214 7

Horse-
Colic

23 15 7 368 2

Ionosphere 35 0 34 351 2

Iris 5 0 4 150 2

Labor 17 8 8 57 2

Segment 20 0 19 2310 7

Sonar 61 0 60 208 2

Splice 62 61 0 3190 3

Vote 17 16 0 435 2
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positive instances over the number of instances while 
recall is the ratio between the total number of correctly 
classified instances over the total number of positive 
instances. F-measure is computed as: 

 
' − *��+-�� = .∗/02�$3$45∗62��77

/02�$3$45�62��77      (2) 
 Specificity is the percentage of negative instances 
that were predicted as negative. Information score is 
defined by [9] represents the prior information that is 
needed to correctly classify instances minus the residual 
information. Finally, root mean square error (RMS) is 
computed as the square root of the mean of the square of 
the differences of the predictions and the actual class of 
all instances.  

B. Procedure 
Our system automatically builds a set of strategies and 
performs classification on a specific dataset. We choose 
10-fold Cross Validation (CV) to evaluate the algorithms, 
as it is a commonly used approach in machine learning for 
evaluating algorithm configuration. Basically, we partition 
the original dataset into 10 sub-sets, one of which is used 
for testing while the remaining nine sub-sets are used for 
training. The CV process is then run ten times and the 
twelve measures described above will be recorded and 
aggregated to produce a single measure for this strategy 
on this dataset. We refer to this step as the learning 
algorithm step. The results from this step contains the 
name of the dataset, name of algorithm, parameters and 
values of corresponding parameters, and the values of
twelve measures described in subsection A for all 
combinations of the strategies and datasets. In the second 
step, named algorithm selection step, we need to come up 
with a list of recommended algorithms. Specifically, we 
define the true ranking for a dataset di as the ordering of 
algorithms based on their performance collected while 
classifying this dataset.  This true ranking is computed as 
follows: first, the averages of the twelve values for each 
algorithm grouped by algorithm parameters are calculated. 
Then ����� ���	  is computed and the overall ARR for 
each algorithm is calculated as follows: 

����� �� =  �
8 ∑ ����� ���	�	   (3) 

where m is the number of algorithms. The system ranked 
the algorithms by their ARRs in descending order. Since 
����� ���	 depends on the value of AccD in addition to 
accuracy and running time. This rank is considered as the 
true ranking with a given value of AccD for the dataset di.
The intuition behind this idea is that given two different 
users with two different preferences in the way they solve 
a learning problem, different lists of algorithms will be 
recommended.  
 If we do not know anything about the performance of 
any algorithms on a given dataset, kNN algorithm is used 
to find the nearest neighbor datasets.  The set of 
algorithms performing well on these sets is used to 
generate the recommended list for the new dataset. We 
evaluate the ability to recommend algorithms by assessing 
the correlation between the true ranking obtained above 

and the recommended ranking. The recommended ranking 
on a specific dataset is computed by aggregating the ARR 
measurements on all the datasets in the nearest neighbor 
set. Basically, for each dataset in the testbed, we compute 
its Euclidean distance to each of the remaining datasets. 
Each dataset is described by 25 data characteristics 
presented earlier in subsection A. Given two datasets 
ap={p1,p2,…,p25} and aq={q1, q2,…,q25}, the Euclidean 
distance between ap and aq is defined as follows: 

#:+��;<�!�>,�?% =  @∑ (A$ − B$)..C$D�      (4) 

Note that these values pi and qi have been normalized. 
Then k datasets with smallest distances are chosen to be 
the nearest neighbors. In this implementation, we choose 
k=3. After the nearest neighbor set is formed, we compute 
the ranking by aggregating the ARR through all of the 
datasets in the nearest neighbor sets and taking averages 
of all available algorithms. The approach is discussed in 
details in [5].

����� = �
8 ∑ @∏ ������� �>�?     F

�? (5) 

in which m is the number of algorithms and k is the 
number of datasets in the nearest neighbor set.  
 We compute the true ranking and recommended 
ranking for three values of AccD. Recalling that AccD is 
the value that represents the emphasis the user has on 
either time or accuracy. We choose three values for AccD 
(0.1%, 1% and 10%) as they are used in other experiments 
with ARR [5]. With AccD being 0.1%, it reflects a profile 
of a machine learning practitioner who emphasizes more 
on accuracy while with AccD being 10%, it reflects a 
profile of an industry software developer who emphasizes 
more on running time.  After the true ranking and 
recommended ranking are computed, we use Spearman’s 
correlation to find if the rankings are correlated with each 
other. Since we are more interested in ranking order 
(ordinal scale), Spearman correlation is an appropriate 
choice for analysis. All data analysis is performed using 
SPSS version 9.0 [17].

V. RESULTS AND DISCUSSION 
The goals of our evaluation are addressed through this 
experiment. First, the robustness and ease of use of our 
framework has been tested with 7510 runs. Each run is the 
execution of a strategy on a dataset on one node of our 
cluster:  Dell Poweredge 2950 with 2 quad core Intel 
Xeon E5420 processors @ 2.50GHz, 16GB Ram, 80GB 
7.2k rpm SATA drive. The input of each run is a tuple 
(algorithm, parameters, dataset). The output of each run is 
the value of the above 12 measures. The outputs of this 
step then serve as inputs to the algorithm selection step, 
after which, an algorithm ranking is produced. This 
ranking is called true ranking for a given dataset for a 
given user profile.  TABLE II shows the real ranking of 
the top 5 of algorithms for each dataset in the testbed. 
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TABLE II. TOP 5 ALGORITHMS FOR ALL DATASETS. 

Dataset Top 5 
algorithms for 
accuracy 
emphasized 
users
(AccD=0.1%)

Top 5 algorithms 
for neutral users
(AccD=1%) 

Top 5 algorithms 
for running time 
emphasized users
(AccD=10%)

Anneal

LMT,RandomTr
ee
NNge,HyperPip
es, JRIP

NNge, 
RandomTree, 
SMO-PolyKernel, 
RBFNetwork, 
JRIP

ZeroR, NNge, 
RandomTree, SMO-
PolyKernel, OneR

Arrythmia ADTree,VotedP
erceptron, 
SPegasos, 
AODE, LBR

VotedPerceptron, 
ADTree, 
Spegasos, AODE,
LBR

ZeroR, 
DecisionStump, 
SimpleLogistic, 
OneR, RandomTree

Audiology IB1,SMO-
PolyKernel,LM
T, HyperPipes, 
NNge

ZeroR, IB1, 
OneR, 
DecisionStump, 
ConjunctiveRule

OneR, IB1, 
DecisionStump, 
ConjunctiveRule, 
RandomTree

Autos LMT, 
RandomTree, 
NNge, 
HyperPie, JRIP

NNge, 
RandomTree, 
SMO_PolyKernel
, RBFNetwork, 
JRIP

ZeroR, NNge, 
RandomTree, SMO-
PolyKernel, OneR

Balance-
scale

LMT, FT, 
RandomForest, 
NNge, 
RandomTree

FT, NNge, LMT, 
SMO-
PolyKernel,IB1

RBFNetwork, 
NBTree, 
DecisionStump, 
LADTree, 
DecisionTable-
BestFirst

Breast-
cancer

IB1, 
RandomForest, 
RandomTree, 
NNge, KStar

IB1, 
RandomForest, 
NNge, 
RandomTree, 
JRIP

BFTree,, 
DecisionStump, 
ZeroR, NNge, 
RandomForest

Car NNge, BFTree, 
SimpleCart, 
LMT, SMO-
PolyKernel

NNge, IB1, 
RandomTree, 
RBFNetwork, 
BFTree

IB1, OneR, NNge, 
DecisionStump, 
ZeroR

Cmc RBFNetwork, 
Logistic, 
RandomForest, 
RandomTree, 
NNge

RBFNetwork, 
Logistic, 
RandomTree, 
RandomForest, 
IB1

ZeroR, RBFNetwork, 
Logistic, HyperPiper, 
RandomTree

Credit-
rating

RandomForest, 
NNge, IB1, 
RandomTree, 
JRIP

NNge, 
RandomForest, 
IB1, BFTree, 
RandomTree

LADTree, BFTree, 
OneR, SMO-
PolyKernel, 
DecisionStump

Cylinder

Logistic, KStar, 
HyperPipes, 
IB1, NNge

HyperPipes, 
Logistic, NNge, 
KStar, 
RandomTree

HyperPipes, VFI, 
NaiveBayesUpdateab
le, ZeroR, 
RandomTree

Diabetes RandomForest, 
NNge, 
RandomTree, 
IB1, BFTree

RandomForest, 
NNge, 
RandomTree, 
BFTree, REPTree

BFTree, ADTree, 
REPTree, NNge, 
RandomForest

Glass IB1, 
RandomForest, 
Logistic, LMT, 
RandomTree

NNge, IB1, 
SMO_PolyKernel
, RandomTree, 
RBFNetwork

IB1, NNge, 
DecisionStump, 
ZeroR, OneR

Horse-Colic Winnow, LBR, 
AODE, 
RandomForest, 
BFTree

Winnow, LBR, 
AODE, 
SimpleCart, 
RandomForest

VotePerceptron, 
BFTree, NNge, 
RandomTree, JRIP

Ionosphere RandomForest, 
NNge, 
RandomTree, 
JRIP, NBTree

NNge, BFTree, 
RandomTree, 
JRIP, 
RandomForest

NNge, OneR, 
BFTree, JRIP, 
RandomTree

Iris NNge, 
RandomTree, 
IB1, LADTree, 
RandomForest

NNge, BFTree, 
RandomTree, 
JRIP, REPTree

NNge, OneR, 
BFTree, JRIP, 
RandomTree

Labor NaiveBayes, 
JRIP, Logistic, 
LMT, 
RBFNetwork

NaiveBayes, 
JRIP, LMT, 
RBFNetwork,
NNge

BFTree, JRIP, 
NaiveBayes, NNge, 
OneR

Segment HyperPipes, 
SimpleCart, IB1, 
BFTree, NNge

BFTree, 
SimpleCart, 
HyperPipes, 
NNge, IB1

ZeroR, BFTree, 
SimpleCart, 
HyperPipes, OneR

Sonar
IB1, 
RandomForest, 
NBTree, JRIP, 
RandomTree

IB1, 
RandomForest, 
LADTree, 
ADTree, 
RandomTree

LADTree, ADTree, 
FT, RandomTree, 
ZeroR

Splice AODE, FT, 
SMO-
PolyKernel, 
NaiveBayesSim
ple, JRIP

NaiveBayesSimpl
e, VFI, AODE, 
SMO-Kernel, 
RandomForest

NaiveBayesSimple, 
ZeroR, OneR, 
HyperPipes, 
DecisionStump

Vote RandomForest, 
NNge, ADTree, 
RandomTree,  
IB1

RandomForest, 
RandomTree, 
IB1, NNge, 
ADTree

OneR, 
DecisionStump, 
RandomTree, IB1, 
RandomForest

 In  TABLE III, we show an example of the accuracy 
and running time (in milliseconds) for the top 5 
algorithms performed on the anneal dataset. With AccD 
value being 10%, the algorithms with shorter running time 
are preferred. Therefore, we can see the algorithms with 
faster average running time such as ZeroR, NNge, 
Random Tree. With value of AccD being 0.1%, the 
algorithms with higher accuracy are preferred. Thus, we 
saw algorithms with faster average running time such as 
LMT in this list.  

TABLE III. AN EXAMPLE OF RUNNING TIME AND 
ACCURACY TRADEOFF FOR ANNEAL 
DATASET. 

 We assess the second goal of our evaluation by 
computing the correlation between true rankings and the 
recommended rankings. The recommended ranking is 
created by aggregating the ranking of all the algorithms 
performed with all the datasets in the nearest neighbor 
sets. The nearest neighbor set for a specific dataset is 
computed by finding k datasets (k=3 in this 
implementation) that have the shortest Euclidean distance 
to that given dataset. TABLE IV shows the datasets and 
their nearest neighbor sets. NN1, NN2, NN3 are the name 
of the datasets in the nearest neighbor for a given dataset 
and distance 1, distance 2, and distance 3 are the 
corresponding Euclidean distance from NN1, NN2, and 
NN3 to the given dataset. 
 We generated the recommended algorithm list for all 
datasets and computed the Spearman’s correlation 
between the true ranking and the recommended ranking of 
algorithms for a specific dataset. The results are shown in 
TABLE V. 

Algorithm Accuracy Time Algorithm Accuracy Time

ZeroR 0.327 2 LMT 0.902 1131

NNge 0.887 6 RandomTree 0.884 13

RandomTree 0.884 13 Nnge 0.887 6

SMO-PolyKernel 0.833 13 HyperPipes 0.744 91

OneR 0.553 9 JRIP 0.890 77

AccD=10% (emphasize on running time) AccD=0.1% (emphasize on accuracy)
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Dataset NN1 Distance 1NN2 Distance 2 NN3 Distance 3
anneal vote 0.420 labor 0.431 balance-scale 0.432
arrhythmia audiology 0.473 sonar 0.526 cylinder 0.537
audiology autos 0.361 glass 0.456 arrhythmia 0.473
autos vote 0.261 car 0.264 breast-cancer 0.342
breast-cancer diabetes 0.073 ionosphere 0.083 sonar 0.153
car diabetes 0.119 credit-rating 0.151 cylinder 0.162
cmc Ionosphere 0.170 breast-cancer 0.187 diabetes 0.199
credit-rating ionosphere 0.081 sonar 0.112 vote 0.121
cylinder car 0.162 vote 0.171 sonar 0.181
diabetes breast-cancer 0.073 ionosphere 0.083 vote 0.114
glass iris 0.188 balance-scale 0.228 segment 0.229
horse-colic vote 0.090 ionosphere 0.139 labor 0.170
ionosphere labor 0.068 credit-rating 0.081 breast-cancer 0.083
iris ionosphere 0.171 glass 0.188 vote 0.205
labor Ionosphere 0.068 vote 0.088 disbetes 0.127
segment glass 0.229 cmc 0.263 iris 0.302
sonar credit-rating 0.112 breast-cancer 0.153 vote 0.161
splice car 0.277 cmc 0.313 cylinder 0.316
vote labor 0.088 horse-colic 0.090 diabetes 0.114

TABLE IV. DATASETS AND THEIR NEAREST NEIGHBORS

TABLE V. SPEARMAN’S CORRELATION BETWEEN
REAL RANKING AND RECOMMENDED RANKING OF 
ALGORITHMS FOR ALL 20 DATASETS.

 As we can see, among 60 pairs of algorithm rankings, 
there is only one pair (dataset: arrhythmia, AccD=1%) 
that yields negative correlation. Six more pairs have weak 
correlations (Spearman’s correlation < 0.3, Sig(1-tail) > 
0.05). The remaining fifty three pairs (88%), as 
highlighted in TABLE V, have correlations bigger than 
0.3 (Sig (1-tail) <0.05). More importantly, thirty nine 
pairs (65%) have strong correlation (Spearman’s 
correlation>= 0.5, Sig (1-tail) < 0.05). Notice that the 
distances of the three datasets in the nearest neighbors of 
arrhythmia dataset are bigger than other distances for all 
three values of AccD. That means using the algorithm 

rankings for audiology, sonar and cylinder to predict the 
ranking for arrhythmia may not be precise. 
Additionally, the distance between two dataset 
depends on the set of data characteristics. 
Therefore, the more related the data 
characteristic set is to the algorithm 
performance, the more precise and more 
significant the distance is.  

 In summary, our framework has allowed us 
to set up experiments very easily, especially 
when dealing with parameters having ranges
of values. More importantly, it produces the 
algorithms rankings related to the true 
ranking for a given dataset. 

VI. CONCLUSION 
We have reported our effort on the 
development of a flexible, generic framework 
that supports algorithm selection based on 
studying the algorithms’ past performance 
behaviors on relevant datasets. In this work, 
we considered all the features of the datasets 
as well as all data characteristics of the 
datasets for determining the relevant datasets. 
Our contributions are two folds. First, the 
framework is very flexible for users to add 
any news algorithms and parameters. 
Additionally, it supports parameters with 
range values.  Secondly, we use the typical 
evaluation procedure in metalearning to 
assess the algorithm rankings. Our results 
show that 88% of the recommended rankings 
correlate with the true rankings. As there is 
very little guidance available for algorithm-
parameter selection, this framework can be 
used to automatically generate the search 
space and suggest the algorithm depending 
the user’s preferences.   

This problem is particularly interesting 
and challenging in both the research and 
validation phases. The development and 
evaluation of this framework is the beginning 
of our quest to explore the combination 
between algorithm selection and feature 
selection in metalearning. There are many 
ways we can extend and improve this 
framework. In this work, we currently use 25 

data characteristics extracted by DCT tool to represent a 
dataset. The problem is that except for the general set of 
characters, some datasets with only numerical features 
may not have the same data characteristics with the 
datasets having only symbolic features. We would like to 
explore other types of data characteristics such as DeCT 
[13] which explore the tree structures of datasets. 
Secondly, we currently use the whole set of features of 
any dataset in our testbed in our learning algorithm.  The 
machine learning community has a long history of work 
on feature selection that can be used to improve the 
process. Next, one direction closely related to 

AccD=10% AccD=0.1% AccD=1%

Dataset
Sprearman's 
correlation

Sig 
(1-tail)

Spearman's 
correlation

Sig 
(1-tail)

Spearman's 
correlation

Sig 
(1-tail)

Anneal 0.457 0.012 0.525 0.004 0.575 0.001

Arrhythmia 0.208 0.14 0.144 0.224 -0.166 0.19

Audiology 0.302 0.071 0.314 0.059 0.067 0.373

Autos 0.446 0.011 0.4 0.021 0.337 0.046

Balance-scale 0.148 0.231 0.57 0.001 0.504 0.004

Breast-cancer 0.383 0.018 0.68 <0.001 0.68 <0.001

Car 0.541 0.001 0.8 <0.001 0.545 0.001

CMC 0.333 0.045 0.57 0.001 0.5 0.004

Colic 0.316 0.044 0.745 <0.001 0.618 <0.001

Credit-rating 0.54 0.001 0.694 <0.001 0.656 <0.001

Cylinder 0.573 <0.001 0.597 0.001 0.501 0.002

Diabetes 0.372 0.028 0.784 <0.001 0.805 <0.001

Glass 0.703 <0.001 0.742 <0.001 0.721 <0.001

Ionosphere 0.338 0.039 0.829 <0.001 0.639 <0.001

Iris 0.659 <0.001 0.73 <0.001 0.833 <0.001

Labor 0.333 0.045 0.477 0.006 0.463 0.008

Segment 0.742 <0.001 0.743 <0.001 0.761 <0.001

Sonar 0.516 0.002 0.794 <0.001 0.801 <0.001

Splice 0.655 <0.001 0.481 0.007 0.375 0.032
Vote 0.669 <0.001 0.831 <0.001 0.693 <0.001
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metalearning is deep learning [3] which is a prominent 
form of hierarchical machine learning. Deep learning 
utilizes many deep layers of abstract representation, 
inspired by human visual processing capabilities. Deep 
learning may help us discover the semantic meaning 
behind why certain algorithms perform best on some 
testbeds and poorly in others. These two themes (deep 
learning and metalearning) ultimately come down to the 
intentional use of structured signal similarity/intersection 
(A ∩ B) and the unstructured noise dis-
similarity/symmetric difference. As such, we would argue 
for a ‘Relative Network’ of objects and their relationships, 
structured entirely along the above. We would like to 
leverage our selection algorithm work to understand 
deeply why certain algorithms work on certain testbeds 
but poorly on others.  
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Appendix 1 
List of algorithms in the experiments 

Bayes algorithms Lazy algorithms
AODE IB1
AODEsr IBk
NaiveBayes KStar
NaiveBayesSimple LBR
NaiveBayesUpdateable LWL
BayesNet
Function algorithms Rule algorithms
Logistic ConfunctiveRule
MultilayerPerceptron DecisionTable
RBFNetwork DTNB
SimpleLogistic JRIP
SMO NNge
SPegasos OneR
VotedPerceptron ZeroR
Winnow

Tree algorithms
ADtree LMT
BFTree NBTree
DecisionStump RandomForest
FT RandomTree
J48 REPTree
LADTree SimpleCart

Misc algorithms
HyperPipes VFI
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