
Flexible Algorithm Selection Framework for Large Scale Metalearning
Eugene Santos Jr.1, Alex Kilpatrick1, Hien Nguyen2, Qi Gu1, Andy Grooms1, Chris Poulin1

1Dartmouth College
Thayer School of Engineering.

8000 Cummings Hall
Hanover, NH 03755

{Eugene.Santos.Jr, Qi.Gu,
Chris.Poulin}@Dartmouth.EDU

alex@tacticalinfosys.com , agrooms@sbcglobal.net

2University of Wisconsin-Whitewater
Dept. of Mathematical and Computer Sciences

800 W. Main Street.
Whitewater, WI 53190

nguyenh@uww.edu

Abstract— We are working on the problem of developing a
flexible, generic metalearning process that supports
algorithm selection based on studying the algorithms’ past
performance behaviors. State of the art machine learning
systems display limitations in that they require a great deal
of human supervision to select an effective algorithm with
corresponding options for a specific domain. Additionally,
very little guidance is available for algorithm-parameter
selection and the number of available choices is
overwhelming. In this paper, we develop a flexible, large-
scale experimental framework for a metacontroller that
supports explorations through algorithm-parameter space
and recommend algorithm for a given dataset. First, we aim
to facilitate an easy to use process to create a search space
for algorithm selection by automatically exploring some
possible combinations of algorithms and key parameters.
Secondly, our goal is to come up with an algorithm
recommendation by looking at the past behaviors of related
datasets. Our main contribution is the implemented
framework itself which is based on the use of a wide variety
of strategies to automatically generate a search space and
recommend algorithms for a specific dataset. We evaluate
our system with 40 major algorithms on 20 datasets from the
UCI repository. Each dataset is represented by 25 data
characteristics. We generate and run 7510 combinations of
algorithm, parameters and datasets. Our experiments show
that our framework offers a friendly way of setting up a
machine learning experiment while providing accurate
ranking of recommended algorithms based on past
behaviors. Specifically, 88% of recommended algorithm
rankings significantly correlated with the true rankings for a
given dataset.

Keywords: metalearning, experimental study, algorithm
selection.

I. INTRODUCTION

Metalearning is the formal study of the best practices in
machine learning [4] which enables the selection of
optimal learning algorithms that best fit the search space
of any given problem. Algorithm selection based on past
performance is a very important task in metalearning, as
shown in Rice’s metalearning model [15]. The problem is
defined as “For a given problem instance x ∈ P, with
features f(x) ∈ F, find the selection mapping S(f(x)) into
algorithm space A, such that the selected algorithm α ∈ A
maximizes the performance mapping y(α(x)) ∈ Y” [16].
This problem is often viewed as a search problem with the
search space being the sets of machine learning
algorithms performing with a set of parameters on a
specific dataset. Users often encounter many algorithms,

each containing many parameters, which, in turn may
have many values. This makes the search space intractable
for a complete search. Also there is very little guidance
available for algorithm-parameter selection. One
algorithm can be good for a specific problem but can
perform poorly on another problem. Without domain
knowledge, users can easily spend significant amounts of
time in a suboptimal solution. This argument is also
supported by the No Free Lunch theorem, as indicated in
[16] which suggested that we should understand more
about the datasets and the algorithms in order to choose an
appropriate algorithm for a specific dataset and the task at
hand.
 In this paper, we empirically study the algorithm
selection problem by developing a flexible metalearning
framework to assist users in choosing appropriate learning
algorithms for a specific dataset. The novelty of our
approach is the design of the framework which allows for
a wide variety of combinations between learning
algorithms, their parameters and datasets. This framework
enables any users to set up the experiments easily and
automatically explores the algorithm-parameter search
space to find the most appropriate algorithms. Our generic
framework is built upon the Weka foundation [8], but is
not tied to Weka. The framework is completely multi-
threaded and parallelized to support execution on clusters.
We use this framework to rank and recommend
algorithms. In our experiment, we evaluated 40
classification algorithms categorized in six groups based
on the way the classification is done (for example: using
tree, rule or probability). Unlike previous algorithm
recommender systems that focus on providing ranking
based on uni-criterion evaluation, e.g. accuracy, we take
both accuracy and running time into consideration while
producing an algorithm ranking. Twenty datasets from the
UCI repository [6] are used to assess the robustness of the
system and in evaluating the recommended algorithm
rankings. A series of recent studies have been conducted
with regards to algorithm selection. For example, 112
datasets and 8 algorithms are used in the study of Ali and
Smith [1]. However, most of these efforts only consider a
limited number of classic algorithms, such as Support
Vector Machine (SVM) and rule-based algorithms,
whereas in our work, we exploit more classification
algorithms from six different groups.
 Each dataset in our testbed is described by 25 data
characteristics extracted using a tool called DCT [11]. We
use a leave-one-out strategy for assessing the

2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4880-7/12 $26.00 © 2012 IEEE

DOI 10.1109/WI-IAT.2012.45

496

recommended algorithm ranking. For each dataset in the
testbed, we compute its similarity with all of the
remaining datasets using the k-nearest neighbor (kNN)
algorithm. Then we use the information of the algorithms
performed on the nearest datasets to form a recommended
algorithm list. The adjusted ratio of ratios (ARR) measure
[5] is used to assess each algorithm performance. We
compute the recommended ranking and the true ranking
for each dataset, and then calculate the Spearman’s
correlation over these two ranking values. A true ranking
of algorithms for a given dataset is the order in terms of
the performance of each algorithm on the particular
dataset, where the performance is evaluated via the overall
ARR measurement. Moreover, we assessed the ranking
based on the differences in terms of the end user’s
emphases. For example, machine learning practitioners
may focus more on accuracy, whereas industry software
developers may emphasize more on time. The results
show that for all but one case, the recommended and true
rankings correlated well with each other. More
importantly, 88% of the recommended rankings are
significantly correlated with the true ranking of algorithms
for a given dataset.

This paper is organized as follows: We start out with
a review on the study of algorithm selection as applied to
classification problems in Section II. Section III details
the algorithm and configuration of our framework. The
experimental setup section then describes our objectives,
and details of our testbed including datasets, algorithms,
measures and the procedure. Section V discusses the
findings from our results. Lastly, we will present our
conclusion and future work.

II. RELATED WORK

The aim of metalearning in general is to assist users in
selecting the best performance algorithms in an
appropriate model to solve a specific problem. The main
research questions are: (i) which features of a dataset
significantly affect the performance of a learning
algorithm; and (ii) which algorithms are the most
appropriate to solve a given problem. Substantive effort
has been put into extracting meta-features, where the
objective is to capture certain relationships between the
measured data characteristics and the performance of the
algorithms. Among those, StatLog project [12] is a
comprehensive empirical study that provided 16 valuable
meta-features that were widely used by metalearning
researchers for many years. A number of studies extended
the range of features by incorporating the structural
characteristics of models [13] and applying simpler and
faster learners such as landmarkers [14].

Regarding the selection of algorithms, one of the
most comprehensive studies on meta-learning for
algorithm selection is done by Smith-Miles [16]. Early
meta-learning approaches such as StatLog, limit
themselves to suggesting one or a subset of algorithms on
a given problem. Brazdil et al. [5] extends StatLog by
applying algorithm ranking rather than choosing the only
best performance algorithm. The idea is to use a learning
algorithm such as kNN to identify the similarity between

datasets in the meta-feature space. Then the ranking of
each algorithm was calculated based on its performance
on the neighboring datasets. The adjusted ratio of ratios
(ARR) which aggregates information concerning accuracy
and time is used to compute the ranking for each
algorithm. Another approach that supports multi-criteria
ranking uses data envelopment analysis (DEA), which
measures the efficiency by taking the ratio of total outputs
to total inputs [2].

In 2004, Lai and Tsai. [10] conducted a study in
which Naïve Bayes, term frequency inverted document
frequency (TFIDF), kNN, and SVM are applied on the
spam e-mail classification problem. It turned out that kNN
did worst among these algorithms while the combination
of Naïve Bayes and TFIDF gave better results than either
alone. This study is of limited interest for metalearning,
because of its narrow scope.

Recently, several general-purpose data mining
packages, e.g. Weka [8], have been developed to assist the
development of machine learning applications. They
incorporate user-friendly graphical interface to facilitate
the set-up, execution and subsequent analysis, but
generally offer no real decision support to non-expert end-
users. We build our generic framework upon the Weka
foundation as it is an open source software consisting of
an extensive collection of machine learning algorithms.
From this, we further build and evaluate the flexible
framework using ARR measures with characteristics
extracted using DCT. Our main contributions are the
flexibility of our implemented framework and the large
number of classification algorithms. This framework
allows us to add a combination of algorithm, parameter,
dataset easily, automatically generates a search space and
recommends algorithms for a specific dataset.

III. FRAMEWORK

Our framework supports explorations through algorithm-
parameter space. The framework is completely multi-
threaded and parallelized to support execution on clusters.
The key feature is an interface-based plug-in system
which allows for easy integration of new algorithms.
While the system follows most Weka conventions, it is a
stand-alone system with no dependency on Weka code.
The main components are shown in Fig. 1.

Figure 1: Architecture of algorithm selection framework.

Configuration
File

Strategy

Exp.1

Exp. 2

Exp. N

Analyzer

Recommendation

497

<?xml version="1.0" encoding="utf-8"?>
<tasks>

<task name="My Task List" folds="10" out="results/flashmob_control1_new">
 <datasources>

<data>anneal.arff</data>
<data>arrythmia.arff</data>
<data>audiology.arff</data>
<data>autos.arff</data>
<data>balance-scale.arff</data>
<data>breast-cancer.arff</data>

 </datasources>
 <!-- Bayes algorithms -->
 <algorithm value="weka.classifiers.bayes.BayesNet">
 <option tag="D" type="bool" value="true" />
 <sub tag="Q” class="weka.classifiers.bayes.net.search.local.SimulatedAnnealing">
 <suboption tag="A" value="1" min="1" max="10" step="1" />
 <suboption tag="U" min="4" max="20" step="2" />
 </sub>
 <sub tag="Q" value="weka.classifiers.bayes.net.search.local.K2">
 <suboption type="INT" tag="P" value="4" min="1" max="10" step="1" />
 <suboption tag="S" value="BAYES" />
 <suboption tag="S" value="MDL" />
 <suboption tag="S" value="AIC" />
 </sub>
 <sub tag="E" value="weka.classifiers.bayes.net.estimate.SimpleEstimator">
 <suboption type="REAL" tag="A" value="0.5" min="0.1" max="0.6" step="0.1"/>
 </sub>
 </algorithm>

</task>
</tasks>

This framework takes a configuration file as an input
in which the description for each task in an experiment is
included. A task is a learning problem described by a set
of strategies, the input datasets, and the output result set.
A strategy is defined as a tuple of a machine learning
algorithm, a set of parameters and its corresponding
values. If the set of parameters is ignored, the default
parameters are used. Each parameter is described by type,
tag, and values. Type can be numerical data type such as
integer (denoted as INT), real values (denoted as REAL),
boolean values (denoted as BOOL), or string. Tag
represents the real name of the parameters. The values can
be a single integer, real, boolean, string value or a range
of values. We support numerical ranges of values by
allowing the users to specify the lower bound value
(denoted as min), upper bound value (denoted as max) and
the step value (denoted as step). The system will
automatically generate a loop through the values for a
parameter. This feature distinguishes the framework from
existing tools such as Experimenter in Weka where the
users can only change a small set of parameters, as Weka
does not support parameters with range values inside
Experimenter.

Each parameter, in turn, can also be another machine
learning algorithm which has its own sub-parameters. Fig.
2 shows an example of the configuration file which uses
six small datasets from the UCI collection and BayesNet
algorithm. A dataset is a collection of data organized in a
certain format such as the ARFF format used by Weka. A
dataset contains more than one instance in a specific
domain such as labor, voting, census and so forth. An
instance is defined as a row in a specific dataset which
describes an observation of a known event in the past in
that particular domain.

We use our own XML format to describe this
framework with corresponding tags to present task and
strategy. Even though our XML configuration file format
is similar to XML format of Predictive Model Markup
Language [7] (PMML), it gives us the flexibility and
autonomy of adding any new algorithms into our
framework without having to depend on PMML.

We provide a tool to convert a dataset from a non-
Weka format to ARFF format. Our framework also allows
an easy integration with a non-Weka classifier. We
provide an interface with six methods to set training
instances, test instances and run the classifier.

Figure 2: XML file contains description of learning algorithms.

 The system is designed to allow for a wide variety of
search strategies, via a callback interface. This
architecture supports multiple strategies for algorithm-
parameter space on multi-threaded and multi-processor
environment. The algorithm-parameter space is extremely
large in most cases, it is impossible to perform an
exhaustive search. Therefore, on each learning run
instance, a callback is made to an evaluator which then
determines the next algorithm-parameter instance to
search. This allows the system to dynamically change the
strategy in real time as the exploration progresses. In the
current implementation, a simplistic simulated annealing
approach is used. Ideally, a configuration XML file
provides the range of each parameter in order to limit the
search space. The range is represented by the values
which can represent the minimal and maximal values and
the steps. However, the system will accommodate cases
where this information is not provided. The system
samples several instances in the span of available
parameters for a particular algorithm and then uses a hill-
climbing approach to refine the search, continuing past the
best result in order to minimize the chance that a local
maxima is used. It is important to realize that this is a
very simplistic first-cut approach to a search strategy, and
is not meant to be optimal. In future work, we plan to
incorporate a more sophisticated machine learning
algorithm to guide the search.
 In the recommendation process, we use two
approaches to suggest algorithms to the end users. If we
have prior knowledge of the performance of algorithms on
a given dataset, then algorithms are ranked by computing
their overall ARR.

498

ARR [5] is defined as:

����� ���	 =

���

�

��	
�

������∗��� (���
�

��	
�)

 (1)

in which, ����
�� = 1 − ���������!�",#$% and &��

�� is the
running time of algorithm aj on the dataset di. AccD is the
tradeoff coefficient between time and accuracy of a
specific algorithm. If the user emphasized more on
accuracy, the value of AccD is small. If the user
emphasized more on running time, the value of AccD is
big. This measure aggregates information concerning
accuracy and time for each algorithm against another
algorithm in a specific dataset. The overall ARR for each
algorithm on a given dataset is computed by taking the
arithmetic mean of all ARRs of that algorithm against the
remaining algorithms.
 If we need to recommend algorithms for a new
dataset which we do not have any prior knowledge, we
will compute its similarity with the remaining datasets
using the kNN algorithm applied on the data
characteristics space. More detail is provided in Section
IV. Although the system provides a recommendation for
an algorithm-parameter set, extensive detailed output data
from each run is recorded, supporting complex offline
analysis or evaluation of output data though conventional
machine learning algorithms.

IV. EXPERIMENTAL SETUP
 The goals of this evaluation are twofold. First, we
want to test the robustness of our implemented
framework. Secondly, we assess the ranking of algorithms
and compare the recommended ranking with the true
ranking. We choose the classification problem to study in
this experiment because this is a popular machine learning
problem with well-established testbeds, procedure and
measures.

A. Testbeds
We use forty algorithms which are categorized into six
groups based on the ways a classifier can be constructed.
These groups are Bayes (probability-based algorithms),
functions (logic-based algorithms), lazy (distance-based
algorithms), rule (rule-based algorithms), tree (tree-based
algorithms) and a miscellaneous group. The list of
algorithms is presented in Appendix 1. Twenty datasets
from the UCI [6] repository have been used to evaluate
the robustness and recommendation ranking of the
framework.
 Each dataset is represented by 25 data characteristics
extracted using DCT tool [11]. These characteristics
include general measurements such as number of features,
number of instances; measurements of discriminant
analysis applicable for numerical attributes such as fract
and cancor, and information theoretical measurements for
symbolic attributes such as class entropy, joint entropy.

The list of datasets and some general characteristics are
shown in the TABLE I. For more details, please see [11].

TABLE I. DATA CHARACTERISTICS OF TESTBED.

 We assess each strategy using twelve measures that
are commonly used to assess machine learning
algorithms. They are accuracy, running time, true positive,
true negative, false positive, false negative, precision,
recall, F-measure, specificity, information score, and root
mean square error. Accuracy is defined as the ratio
between the number of correctly classified instances over
the number of all classified instances. Running time is
defined as the difference between the ending and starting
of the classification process. True positive is the number
of correctly classified positive instances. True negative is
the number of correctly classified negative instances.
False negative is the number of incorrectly classified
negative instances while false positive is the number of
incorrectly classified positive instances. Precision is the
ratio between the total number of correctly classified

Collection Features Symbolic
Features

Numerical
Features

Instances Classes

Anneal 39 32 6 898 6

Arrythmia 280 73 206 452 16

Audiology 70 69 0 226 24

Autos 26 10 15 205 7

Balance-
scale

5 0 4 625 3

Breast-
cancer

10 9 0 286 2

Car 7 6 0 1728 4

Cmc 10 7 2 1473 4

Credit-
rating

16 9 6 690 2

Cylinder 40 21 18 540 2

Diabetes 9 0 8 768 2

Glass 10 0 9 214 7

Horse-
Colic

23 15 7 368 2

Ionosphere 35 0 34 351 2

Iris 5 0 4 150 2

Labor 17 8 8 57 2

Segment 20 0 19 2310 7

Sonar 61 0 60 208 2

Splice 62 61 0 3190 3

Vote 17 16 0 435 2

499

positive instances over the number of instances while
recall is the ratio between the total number of correctly
classified instances over the total number of positive
instances. F-measure is computed as:

' − *��+-�� = .∗/02�$3$45∗62��77

/02�$3$45�62��77 (2)
 Specificity is the percentage of negative instances
that were predicted as negative. Information score is
defined by [9] represents the prior information that is
needed to correctly classify instances minus the residual
information. Finally, root mean square error (RMS) is
computed as the square root of the mean of the square of
the differences of the predictions and the actual class of
all instances.

B. Procedure
Our system automatically builds a set of strategies and
performs classification on a specific dataset. We choose
10-fold Cross Validation (CV) to evaluate the algorithms,
as it is a commonly used approach in machine learning for
evaluating algorithm configuration. Basically, we partition
the original dataset into 10 sub-sets, one of which is used
for testing while the remaining nine sub-sets are used for
training. The CV process is then run ten times and the
twelve measures described above will be recorded and
aggregated to produce a single measure for this strategy
on this dataset. We refer to this step as the learning
algorithm step. The results from this step contains the
name of the dataset, name of algorithm, parameters and
values of corresponding parameters, and the values of
twelve measures described in subsection A for all
combinations of the strategies and datasets. In the second
step, named algorithm selection step, we need to come up
with a list of recommended algorithms. Specifically, we
define the true ranking for a dataset di as the ordering of
algorithms based on their performance collected while
classifying this dataset. This true ranking is computed as
follows: first, the averages of the twelve values for each
algorithm grouped by algorithm parameters are calculated.
Then ����� ���	 is computed and the overall ARR for
each algorithm is calculated as follows:

����� �� = �
8 ∑ ����� ���	�	 (3)

where m is the number of algorithms. The system ranked
the algorithms by their ARRs in descending order. Since
����� ���	 depends on the value of AccD in addition to
accuracy and running time. This rank is considered as the
true ranking with a given value of AccD for the dataset di.
The intuition behind this idea is that given two different
users with two different preferences in the way they solve
a learning problem, different lists of algorithms will be
recommended.
 If we do not know anything about the performance of
any algorithms on a given dataset, kNN algorithm is used
to find the nearest neighbor datasets. The set of
algorithms performing well on these sets is used to
generate the recommended list for the new dataset. We
evaluate the ability to recommend algorithms by assessing
the correlation between the true ranking obtained above

and the recommended ranking. The recommended ranking
on a specific dataset is computed by aggregating the ARR
measurements on all the datasets in the nearest neighbor
set. Basically, for each dataset in the testbed, we compute
its Euclidean distance to each of the remaining datasets.
Each dataset is described by 25 data characteristics
presented earlier in subsection A. Given two datasets
ap={p1,p2,…,p25} and aq={q1, q2,…,q25}, the Euclidean
distance between ap and aq is defined as follows:

#:+��;<�!�>,�?% = @∑ (A$ − B$)..C$D� (4)

Note that these values pi and qi have been normalized.
Then k datasets with smallest distances are chosen to be
the nearest neighbors. In this implementation, we choose
k=3. After the nearest neighbor set is formed, we compute
the ranking by aggregating the ARR through all of the
datasets in the nearest neighbor sets and taking averages
of all available algorithms. The approach is discussed in
details in [5].

����� = �
8 ∑ @∏ ������� �>�? F

�? (5)

in which m is the number of algorithms and k is the
number of datasets in the nearest neighbor set.
 We compute the true ranking and recommended
ranking for three values of AccD. Recalling that AccD is
the value that represents the emphasis the user has on
either time or accuracy. We choose three values for AccD
(0.1%, 1% and 10%) as they are used in other experiments
with ARR [5]. With AccD being 0.1%, it reflects a profile
of a machine learning practitioner who emphasizes more
on accuracy while with AccD being 10%, it reflects a
profile of an industry software developer who emphasizes
more on running time. After the true ranking and
recommended ranking are computed, we use Spearman’s
correlation to find if the rankings are correlated with each
other. Since we are more interested in ranking order
(ordinal scale), Spearman correlation is an appropriate
choice for analysis. All data analysis is performed using
SPSS version 9.0 [17].

V. RESULTS AND DISCUSSION
The goals of our evaluation are addressed through this
experiment. First, the robustness and ease of use of our
framework has been tested with 7510 runs. Each run is the
execution of a strategy on a dataset on one node of our
cluster: Dell Poweredge 2950 with 2 quad core Intel
Xeon E5420 processors @ 2.50GHz, 16GB Ram, 80GB
7.2k rpm SATA drive. The input of each run is a tuple
(algorithm, parameters, dataset). The output of each run is
the value of the above 12 measures. The outputs of this
step then serve as inputs to the algorithm selection step,
after which, an algorithm ranking is produced. This
ranking is called true ranking for a given dataset for a
given user profile. TABLE II shows the real ranking of
the top 5 of algorithms for each dataset in the testbed.

500

TABLE II. TOP 5 ALGORITHMS FOR ALL DATASETS.

Dataset Top 5
algorithms for
accuracy
emphasized
users
(AccD=0.1%)

Top 5 algorithms
for neutral users
(AccD=1%)

Top 5 algorithms
for running time
emphasized users
(AccD=10%)

Anneal

LMT,RandomTr
ee
NNge,HyperPip
es, JRIP

NNge,
RandomTree,
SMO-PolyKernel,
RBFNetwork,
JRIP

ZeroR, NNge,
RandomTree, SMO-
PolyKernel, OneR

Arrythmia ADTree,VotedP
erceptron,
SPegasos,
AODE, LBR

VotedPerceptron,
ADTree,
Spegasos, AODE,
LBR

ZeroR,
DecisionStump,
SimpleLogistic,
OneR, RandomTree

Audiology IB1,SMO-
PolyKernel,LM
T, HyperPipes,
NNge

ZeroR, IB1,
OneR,
DecisionStump,
ConjunctiveRule

OneR, IB1,
DecisionStump,
ConjunctiveRule,
RandomTree

Autos LMT,
RandomTree,
NNge,
HyperPie, JRIP

NNge,
RandomTree,
SMO_PolyKernel
, RBFNetwork,
JRIP

ZeroR, NNge,
RandomTree, SMO-
PolyKernel, OneR

Balance-
scale

LMT, FT,
RandomForest,
NNge,
RandomTree

FT, NNge, LMT,
SMO-
PolyKernel,IB1

RBFNetwork,
NBTree,
DecisionStump,
LADTree,
DecisionTable-
BestFirst

Breast-
cancer

IB1,
RandomForest,
RandomTree,
NNge, KStar

IB1,
RandomForest,
NNge,
RandomTree,
JRIP

BFTree,,
DecisionStump,
ZeroR, NNge,
RandomForest

Car NNge, BFTree,
SimpleCart,
LMT, SMO-
PolyKernel

NNge, IB1,
RandomTree,
RBFNetwork,
BFTree

IB1, OneR, NNge,
DecisionStump,
ZeroR

Cmc RBFNetwork,
Logistic,
RandomForest,
RandomTree,
NNge

RBFNetwork,
Logistic,
RandomTree,
RandomForest,
IB1

ZeroR, RBFNetwork,
Logistic, HyperPiper,
RandomTree

Credit-
rating

RandomForest,
NNge, IB1,
RandomTree,
JRIP

NNge,
RandomForest,
IB1, BFTree,
RandomTree

LADTree, BFTree,
OneR, SMO-
PolyKernel,
DecisionStump

Cylinder

Logistic, KStar,
HyperPipes,
IB1, NNge

HyperPipes,
Logistic, NNge,
KStar,
RandomTree

HyperPipes, VFI,
NaiveBayesUpdateab
le, ZeroR,
RandomTree

Diabetes RandomForest,
NNge,
RandomTree,
IB1, BFTree

RandomForest,
NNge,
RandomTree,
BFTree, REPTree

BFTree, ADTree,
REPTree, NNge,
RandomForest

Glass IB1,
RandomForest,
Logistic, LMT,
RandomTree

NNge, IB1,
SMO_PolyKernel
, RandomTree,
RBFNetwork

IB1, NNge,
DecisionStump,
ZeroR, OneR

Horse-Colic Winnow, LBR,
AODE,
RandomForest,
BFTree

Winnow, LBR,
AODE,
SimpleCart,
RandomForest

VotePerceptron,
BFTree, NNge,
RandomTree, JRIP

Ionosphere RandomForest,
NNge,
RandomTree,
JRIP, NBTree

NNge, BFTree,
RandomTree,
JRIP,
RandomForest

NNge, OneR,
BFTree, JRIP,
RandomTree

Iris NNge,
RandomTree,
IB1, LADTree,
RandomForest

NNge, BFTree,
RandomTree,
JRIP, REPTree

NNge, OneR,
BFTree, JRIP,
RandomTree

Labor NaiveBayes,
JRIP, Logistic,
LMT,
RBFNetwork

NaiveBayes,
JRIP, LMT,
RBFNetwork,
NNge

BFTree, JRIP,
NaiveBayes, NNge,
OneR

Segment HyperPipes,
SimpleCart, IB1,
BFTree, NNge

BFTree,
SimpleCart,
HyperPipes,
NNge, IB1

ZeroR, BFTree,
SimpleCart,
HyperPipes, OneR

Sonar
IB1,
RandomForest,
NBTree, JRIP,
RandomTree

IB1,
RandomForest,
LADTree,
ADTree,
RandomTree

LADTree, ADTree,
FT, RandomTree,
ZeroR

Splice AODE, FT,
SMO-
PolyKernel,
NaiveBayesSim
ple, JRIP

NaiveBayesSimpl
e, VFI, AODE,
SMO-Kernel,
RandomForest

NaiveBayesSimple,
ZeroR, OneR,
HyperPipes,
DecisionStump

Vote RandomForest,
NNge, ADTree,
RandomTree,
IB1

RandomForest,
RandomTree,
IB1, NNge,
ADTree

OneR,
DecisionStump,
RandomTree, IB1,
RandomForest

 In TABLE III, we show an example of the accuracy
and running time (in milliseconds) for the top 5
algorithms performed on the anneal dataset. With AccD
value being 10%, the algorithms with shorter running time
are preferred. Therefore, we can see the algorithms with
faster average running time such as ZeroR, NNge,
Random Tree. With value of AccD being 0.1%, the
algorithms with higher accuracy are preferred. Thus, we
saw algorithms with faster average running time such as
LMT in this list.

TABLE III. AN EXAMPLE OF RUNNING TIME AND
ACCURACY TRADEOFF FOR ANNEAL
DATASET.

 We assess the second goal of our evaluation by
computing the correlation between true rankings and the
recommended rankings. The recommended ranking is
created by aggregating the ranking of all the algorithms
performed with all the datasets in the nearest neighbor
sets. The nearest neighbor set for a specific dataset is
computed by finding k datasets (k=3 in this
implementation) that have the shortest Euclidean distance
to that given dataset. TABLE IV shows the datasets and
their nearest neighbor sets. NN1, NN2, NN3 are the name
of the datasets in the nearest neighbor for a given dataset
and distance 1, distance 2, and distance 3 are the
corresponding Euclidean distance from NN1, NN2, and
NN3 to the given dataset.
 We generated the recommended algorithm list for all
datasets and computed the Spearman’s correlation
between the true ranking and the recommended ranking of
algorithms for a specific dataset. The results are shown in
TABLE V.

Algorithm Accuracy Time Algorithm Accuracy Time

ZeroR 0.327 2 LMT 0.902 1131

NNge 0.887 6 RandomTree 0.884 13

RandomTree 0.884 13 Nnge 0.887 6

SMO-PolyKernel 0.833 13 HyperPipes 0.744 91

OneR 0.553 9 JRIP 0.890 77

AccD=10% (emphasize on running time) AccD=0.1% (emphasize on accuracy)

501

Dataset NN1 Distance 1NN2 Distance 2 NN3 Distance 3
anneal vote 0.420 labor 0.431 balance-scale 0.432
arrhythmia audiology 0.473 sonar 0.526 cylinder 0.537
audiology autos 0.361 glass 0.456 arrhythmia 0.473
autos vote 0.261 car 0.264 breast-cancer 0.342
breast-cancer diabetes 0.073 ionosphere 0.083 sonar 0.153
car diabetes 0.119 credit-rating 0.151 cylinder 0.162
cmc Ionosphere 0.170 breast-cancer 0.187 diabetes 0.199
credit-rating ionosphere 0.081 sonar 0.112 vote 0.121
cylinder car 0.162 vote 0.171 sonar 0.181
diabetes breast-cancer 0.073 ionosphere 0.083 vote 0.114
glass iris 0.188 balance-scale 0.228 segment 0.229
horse-colic vote 0.090 ionosphere 0.139 labor 0.170
ionosphere labor 0.068 credit-rating 0.081 breast-cancer 0.083
iris ionosphere 0.171 glass 0.188 vote 0.205
labor Ionosphere 0.068 vote 0.088 disbetes 0.127
segment glass 0.229 cmc 0.263 iris 0.302
sonar credit-rating 0.112 breast-cancer 0.153 vote 0.161
splice car 0.277 cmc 0.313 cylinder 0.316
vote labor 0.088 horse-colic 0.090 diabetes 0.114

TABLE IV. DATASETS AND THEIR NEAREST NEIGHBORS

TABLE V. SPEARMAN’S CORRELATION BETWEEN
REAL RANKING AND RECOMMENDED RANKING OF
ALGORITHMS FOR ALL 20 DATASETS.

 As we can see, among 60 pairs of algorithm rankings,
there is only one pair (dataset: arrhythmia, AccD=1%)
that yields negative correlation. Six more pairs have weak
correlations (Spearman’s correlation < 0.3, Sig(1-tail) >
0.05). The remaining fifty three pairs (88%), as
highlighted in TABLE V, have correlations bigger than
0.3 (Sig (1-tail) <0.05). More importantly, thirty nine
pairs (65%) have strong correlation (Spearman’s
correlation>= 0.5, Sig (1-tail) < 0.05). Notice that the
distances of the three datasets in the nearest neighbors of
arrhythmia dataset are bigger than other distances for all
three values of AccD. That means using the algorithm

rankings for audiology, sonar and cylinder to predict the
ranking for arrhythmia may not be precise.
Additionally, the distance between two dataset
depends on the set of data characteristics.
Therefore, the more related the data
characteristic set is to the algorithm
performance, the more precise and more
significant the distance is.

 In summary, our framework has allowed us
to set up experiments very easily, especially
when dealing with parameters having ranges
of values. More importantly, it produces the
algorithms rankings related to the true
ranking for a given dataset.

VI. CONCLUSION
We have reported our effort on the
development of a flexible, generic framework
that supports algorithm selection based on
studying the algorithms’ past performance
behaviors on relevant datasets. In this work,
we considered all the features of the datasets
as well as all data characteristics of the
datasets for determining the relevant datasets.
Our contributions are two folds. First, the
framework is very flexible for users to add
any news algorithms and parameters.
Additionally, it supports parameters with
range values. Secondly, we use the typical
evaluation procedure in metalearning to
assess the algorithm rankings. Our results
show that 88% of the recommended rankings
correlate with the true rankings. As there is
very little guidance available for algorithm-
parameter selection, this framework can be
used to automatically generate the search
space and suggest the algorithm depending
the user’s preferences.

This problem is particularly interesting
and challenging in both the research and
validation phases. The development and
evaluation of this framework is the beginning
of our quest to explore the combination
between algorithm selection and feature
selection in metalearning. There are many
ways we can extend and improve this
framework. In this work, we currently use 25

data characteristics extracted by DCT tool to represent a
dataset. The problem is that except for the general set of
characters, some datasets with only numerical features
may not have the same data characteristics with the
datasets having only symbolic features. We would like to
explore other types of data characteristics such as DeCT
[13] which explore the tree structures of datasets.
Secondly, we currently use the whole set of features of
any dataset in our testbed in our learning algorithm. The
machine learning community has a long history of work
on feature selection that can be used to improve the
process. Next, one direction closely related to

AccD=10% AccD=0.1% AccD=1%

Dataset
Sprearman's
correlation

Sig
(1-tail)

Spearman's
correlation

Sig
(1-tail)

Spearman's
correlation

Sig
(1-tail)

Anneal 0.457 0.012 0.525 0.004 0.575 0.001

Arrhythmia 0.208 0.14 0.144 0.224 -0.166 0.19

Audiology 0.302 0.071 0.314 0.059 0.067 0.373

Autos 0.446 0.011 0.4 0.021 0.337 0.046

Balance-scale 0.148 0.231 0.57 0.001 0.504 0.004

Breast-cancer 0.383 0.018 0.68 <0.001 0.68 <0.001

Car 0.541 0.001 0.8 <0.001 0.545 0.001

CMC 0.333 0.045 0.57 0.001 0.5 0.004

Colic 0.316 0.044 0.745 <0.001 0.618 <0.001

Credit-rating 0.54 0.001 0.694 <0.001 0.656 <0.001

Cylinder 0.573 <0.001 0.597 0.001 0.501 0.002

Diabetes 0.372 0.028 0.784 <0.001 0.805 <0.001

Glass 0.703 <0.001 0.742 <0.001 0.721 <0.001

Ionosphere 0.338 0.039 0.829 <0.001 0.639 <0.001

Iris 0.659 <0.001 0.73 <0.001 0.833 <0.001

Labor 0.333 0.045 0.477 0.006 0.463 0.008

Segment 0.742 <0.001 0.743 <0.001 0.761 <0.001

Sonar 0.516 0.002 0.794 <0.001 0.801 <0.001

Splice 0.655 <0.001 0.481 0.007 0.375 0.032
Vote 0.669 <0.001 0.831 <0.001 0.693 <0.001

502

metalearning is deep learning [3] which is a prominent
form of hierarchical machine learning. Deep learning
utilizes many deep layers of abstract representation,
inspired by human visual processing capabilities. Deep
learning may help us discover the semantic meaning
behind why certain algorithms perform best on some
testbeds and poorly in others. These two themes (deep
learning and metalearning) ultimately come down to the
intentional use of structured signal similarity/intersection
(A ∩ B) and the unstructured noise dis-
similarity/symmetric difference. As such, we would argue
for a ‘Relative Network’ of objects and their relationships,
structured entirely along the above. We would like to
leverage our selection algorithm work to understand
deeply why certain algorithms work on certain testbeds
but poorly on others.

 ACKNOWLEDGEMENT

This research is a part of the Dartmouth Metalearning
Working Group project, award N10PC20221, funded by
IARPA. Thank you Christopher Witt for useful comments
while editing this paper.

REFERENCES

[1] S. Ali, and K. Smith. “On learning algorithm selection for
classification”. Applied Soft Computing, 6(2), pp. 119–138.
2006.

[2] A. Bazleh, P. Gholami and F. Soleymani. "A New
Approach Using Data Envelopment Analysis for Ranking
Classification Algorithms". Journal of Mathematics and
Statistics, 7 (4), pp. 282-288, 2011.

[3] Y. Bengio. "Learning Deep Architectures for AI".
Foundations and Trends in Machine Learning. 2(1), pp. 1-
127. 2009.

[4] P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta.
“Metalearning: Application to Data Mining”. Springer.
2010.

[5] P. B. Brazdil, C. Soares, J. P. DA COSTA. “Ranking
Learning Algorithms: Using IBL and Meta-Learning on
Accuracy and Time Results”. Machine Learning, 50, pp.
251–277, 2003.

[6] A. Frank & A. Asuncion. “UCI Machine Learning
Repository”. Irvine, CA: University of California, School
of Information and Computer Science. 2010.

[7] A.Guazzelli, M. Zeller, W. Chen, and G. Williams.
“PMML: An Open Standard for Sharing Models”. The R
Journal. 1/1, 2009

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I. H. Witten. “The WEKA data mining
software: an update”. SIGKDD Explore. Newsletter. 11, 1,
pp. 10-18. 2009.

[9] I. Kononenko and I. Bratko. “Information-based evaluation
criterion for classifier’s performance”. Machine Learning,
6(1), pp. 67–80. 1991.

[10] C-C, Lai, and M-C Tsai. “An Empirical Performance
Comparison of Machine Learning Methods for Spam E-
mail Categorization”. In Proceedings of the Hy-brid
Intelligent Systems, HIS '04, pp. 44 - 48. 2004

[11] G. Lindner and R. Studer. “AST: Support for Algorithm
Selection with a CBR Approach”. In Proceedings of PKDD
'99, Jan M. Zytkow and Jan Rauch (Eds.). Springer-Verlag,
pp. 418-423.1999.

[12] D. Michie, D. J. Spiegelhalter, and C. Taylor Eds.
“Machine Learning, Neural and Statistical Classification”.
Ellis Horwood, New York. 1994

[13] Y. Peng, P. A. Flach, C. Soares and P. Brazdil. “Improved
Dataset Characterisation for Meta-learning”. Lecture Notes
in Computer Science, 2534/2002, pp. 193-208. 2002.

[14] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. “Meta-
Learning by landmarking various learning algorithms”. In
Proceedings of the 17th International Conference on
Machine Learning, pp. 743-750. 2000.

[15] J. R. Rice, “The algorithm selection problem,” ser.
Advances in Computers, M. Rubinoff and M. C. Yovits,
Eds. Elsevier, 15, pp. 65 – 118. 1976.

[16] K. A. Smith-Miles. “Cross-disciplinary perspectives on
meta-learning for algorithm selection”. ACM Computing.
Survey. 41(1), Article 6, 2009.

[17] SPSS Inc. SPSS Base 10.0 for Windows User's Guide.
SPSS Inc., Chicago IL. 1999.

Appendix 1
List of algorithms in the experiments

Bayes algorithms Lazy algorithms
AODE IB1
AODEsr IBk
NaiveBayes KStar
NaiveBayesSimple LBR
NaiveBayesUpdateable LWL
BayesNet
Function algorithms Rule algorithms
Logistic ConfunctiveRule
MultilayerPerceptron DecisionTable
RBFNetwork DTNB
SimpleLogistic JRIP
SMO NNge
SPegasos OneR
VotedPerceptron ZeroR
Winnow

Tree algorithms
ADtree LMT
BFTree NBTree
DecisionStump RandomForest
FT RandomTree
J48 REPTree
LADTree SimpleCart

Misc algorithms
HyperPipes VFI

503

