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Ontologies model a “state of the world”.

 Model a domain in terms of individuals, concepts that describe 
them, and relationships between them.
 Description logic (DL) – formal language

 Interesting reasoning task:  applying general (terminological) 
knowledge to case-specific (assertional) knowledge to infer new 
information.
 Rule of universal instantiation:  “If X is true for each member of a class, 

then X is true for any particular member of that class.”
 Build reasoning chains: A  B  C …
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Ontologies’ major limitation:  they 
cannot represent uncertainty.

 Uncertainty is multiple possible states of the world, with 
insufficient knowledge to choose between them.

 Ex:  We have unconfirmed reports about a certain apple that is critical to our national 
security. It may be red.  Or possibly green.  If it’s green, it’s probably a granny smith.  But it 
might just be underripe.

 How do we describe this with an ontology?  We could build one ontology for each possible 
state of the world, but that is time consuming to build and awful to maintain.

 Uncertainty is everywhere in the real world.  Models that can’t 
work with it simply can’t address some domains.
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Another complication

 Listing the possible states isn’t useful. Need some idea of their 
likelihoods.
 Ex:  There may be some tiny chance of a zombie apocalypse, but 

probably not enough to warrant civic readiness exercises.

4



How do we model uncertainty?  It’s all 
about variables.

 Variables keep track of the differences between possible world-
states.
 We can describe the possible states of a domain as the cross-product of 

each variable’s possible values.
 A complete assignment of each variable to one of its values describes a 

state of the world.

 Knowledge about uncertainty usually concerns how variables 
interact and influence each other.
 Ex:  P(A = a1|B = b1) = p
 Uncertainty theories use this to compute some measure of likelihood.

 Probability theory:  frequency of event, or degree of belief
 Fuzzy set theory:  partial set membership
 Possibility theory:  possibility and necessity of event

5



Ontology/uncertainty theories have been 
attempted, but all have drawbacks.

 Probabilistic Description Logic’s (Lukasiewicz, 2008) reasoning is 
unstable.
 Inferred rules are progressively less precise than their parents.

 Bayesian Network-Ontology combinations contain a granularity 
mismatch– BNs’ completeness requirement forces them to express 
knowledge more coarsely than ontologies can.
 PR-OWL (Costa and Laskey, 2005), BayesOWL (Ding et al, 2005), and P-

CLASSIC (Koller et al, 1997) are representative works.

 Fuzzy and possibilistic semantic networks (Straccia, 2001; and Qi et al, 
2007; respectively) treat variable interactions coarsely.  Information is 
lost during reasoning.
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BKOs intuitively overcome these 
problems.

 BKOs subsume DL ontologies in expression and reasoning.
 Knowledge is expressed with “if-then” conditional probability rules 

between assertions.
 Reasoning is a probabilistic extension of conventional DL reasoning.

 Sophisticated uncertainty reasoning can be done with existing, 
well-understood tools.
 Bayesian analyses such as belief updating and revision.
 Contribution analysis.
 Fusion of multiple, potentially-conflicting sources.
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Three technical insights enable our 
approach.

1. Consider: for any individual a and any concept C, either
or               .  Two exclusive states… sounds like a variable.
 Can define a joint probability distribution over these variables.  

Equivalently, that distribution is over the ontology’s possible states.
 Can define “constructed variables” from constructed classes.  For 

example,                    or                           .

 Ex:  A ball that can be any one of three disjoint colors.

{T/F}

{T/F}

{T/F}

8



Three technical insights (continued)

2. Generalizing the rule of universal instantiation to its 
probabilistic analog lets DL reason with uncertainty.
 “If P(X) = p for each member of a class, then P(X) = p for any particular 

member of that class.”

3. BKOs’ formulation guarantees conformance to the semantics 
of a powerful probabilistic modeling/analysis framework called 
a “Bayesian Knowledge Base” (BKB).
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Asserting Knowledge

 Probabilistic equivalents of assertional (case-specific) and 
terminological (general) axioms.
 Probabilistic assertional axiom: the probability of one individual’s 

membership in a concept is p, given some other concept memberships 
[or not – rules can be unconditional].

Short form:  

 Probabilistic terminological axiom:  any member of one concept has some 
probability p of also being a member of another concept.

 C and D can be concept constructor expressions.

10



BKO example: Mystery Sea Critter, Part 1

 We have grainy, uncertain footage of a newly-discovered ocean 
critter and are interested in its behavior and biology.

 Assertional Knowledge:  The critter was seen eating something that was 
either seaweed or a camoflagued seahorse.

 Terminological Knowledge:  First we classify the critter by diet.  Then we 
consider what that might imply for its eyesight.
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Mystery Sea Critter, Part 2
 Original assertional knowledge

 Instantiating PTAs on “Critter” to generate new inferences:
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Mystery Sea Critter, Part 3

Critter ate
some Seahorse

Critter ate
some Seaweed

Critter ate
some Plant

Critter ate
some Animal

Critter     OmnivoreCritter     Carnivore Critter     Herbivore

Critter eyesight_quality acute

Critter     Carnivore
Omnivore

0.3 0.6

1.0 1.0

0.50.50.30.6

1.0 1.0

0.7
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BKB Analyses
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 Belief revision:  determine most 
probable state of the world.
 P = .3

Critter ate
some Seahorse

Critter ate
some Seaweed

Critter ate
some Plant

Critter ate
some Animal

Critter     OmnivoreCritter     Carnivore Critter     Herbivore

Critter eyesight_quality acute

Critter     Carnivore
Omnivore

0.3 0.6

1.0 1.0

0.50.50.30.6

1.0 1.0

0.7

P = .126
P = .063
P = .21
P = .3

 Belief updating:  compute 
posterior probability of a single 
variable assignment.
 Sum of probabilities of inferences that 

assignment appears in.
 P(Critter eyesight_quality acute) = .126

+ .063 +.21 = .399

 Contribution analysis:  compute 
how much one assignment seems 
to cause another.
 Sum of probabilities of world states in 

which the cause appears with the 
effect, divided by the effect’s 
probability from updating.

 Contribution of  “Critter ate some
Seahorse”  to “Critter eyesight_quality
acute”:
(.126 + .063) / .399 = .474



Next Development Steps

 Additional theory development to incorporate advanced 
ontology and BKB capabilities.
 Ontology expressions beyond DL
 BKB fusion, sensitivity analysis, interfacing with social networks…

 Optimization of reasoning algorithm.

 Software development.
 Representation language/format for domain libraries and case models
 Reasoning application
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Additional material
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Probabilistic Description Logic

 Founded on Probabilistic Logic (Nilsson, 1986)
 Expressive Probabilistic Description Logics (Lukasiewicz, 2008) is representative of 

the field.

 Assigns probability intervals to DL assertions.
 Ex: 0.7 ≤ P(Tweety is-a Bird) ≤ 0.8
 Not very intuitive.  Uncertainty on an uncertainty metric?
 Limitation: inferred probability intervals’ relative precision (width ÷ mean) decays 

during forward chaining.  This cripples deep reasoning.

Ex: 0.7 ≤ P(Tweety is-a Bird) ≤ 0.8 RP:  0.1/0.75 = 0.13
0.9 ≤ P(Birds can fly) ≤ 0.99 RP:  0.09/0.945=0.095
→ 0.7 * 0.9 = 0.63 ≤ P(Tweety can fly) ≤ 0.8 * 0.99 = 0.79 RP:  0.16/0.71 = 0.22
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Bayesian Networks and 
Ontologies

 Founded on Bayesian Networks (Pearl, 1985)
 Restricted subclass of Bayesian Knowledge Bases that assumes complete 

information.
 BNs require complete definition of “conditional probability tables” instead of 

working with individual rules like BKBs.

 Defines conditional probability tables using DL assertions as variables.
 DL does not have BNs’ completeness requirement.  Using BNs restricts the 

system’s expressiveness.
 There are notions we can represent in DL that don’t work in BNs even when 

completely known.
 Ex:  Model probability distributions of gas mileage for various airplane models.  

What happens when one is a glider?  Then any distribution, even context-specific 
independence (Boutilier et al, 1996), is unintuitive.
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Fuzzy Description Logic

 Founded on fuzzy logic / fuzzy set theory (Zadeh, 1965)
 Reasoning within fuzzy description logics (Straccia, 2001) is a representative work.

 Extends DL to allow partial membership in concepts.
 Coarse treatment of uncertainty with some information loss during reasoning.  

Does not intuitively capture if-then interactions like probability theory.
 Ex: given the assertions

a in C : 0.7 a in D : 0.4 C in E : 0.2 D in E : 0.6

what is the membership of a in E?
max(min(0.7, 0.2), min(0.4,0.6)) = 0.4

Most of the numbers in the reasoning chain had no effect on the outcome.  We 
usually don’t think of causality as working this way.
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Possibilistic Description Logic

 Founded on possibility theory (Zadeh, 1978) which extends fuzzy logic.
 A possibilistic extension for description logics (Qi et al, 2007) is a representative 

work.

 Models a DL assertion’s uncertainty as two fuzzy numbers, possibility and 
necessity.
 Possibility:  to what degree could the assertion be true?  Necessity:  to what degree 

must the assertion be true?
 Mathematically, possibility and necessity are simply two fuzzy description logic 

problems in parallel, with the axiom that possibility ≥ necessity.

 As with fuzzy logic , this is a coarse treatment of causality.
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