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RECAP RIP 2011: BKO THEORY



Semantic Networks / AKA Ontologies

e Complex networks of concepts and their relationships in a domain
— Asserts knowledge with subsumption (is-a) and relational operators (has-a)
— Exist formally as description logic (Baader et al)

* Foundation of the effort to develop a “semantic web”
— Embed deep contextual information in web pages

— Search the web not just with keywords, but with background context and
conceptual relationships
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Img sources: http://mas.cmpe.boun.edu.tr/project/files/DomainlevelOntology.jpg, http://www.flickr.com/photos/saldatoccio/2623536667/



Uncertainty Reasoning on Ontologies

 Problem: No good way to reason on uncertain ontologies.

— Want to answer question, “Given some evidence “E”, what is P(X|E)?”

— Prior work either places unintuitive restrictions on what can be represented,
or uses inadequate reasoning methods.

e Key insights
— “Uncertainty” is just multiple possible ontologies.
— Can model a probability distribution over them.
— Can easily generalize ontology reasoning to work with it.

— The result naturally ends up matching a powerful uncertainty reasoning
theory, Bayesian Knowledge Bases.



Background: Bayesian Knowledge Bases

e BKBs (Santos & Santos, 1999) model probability distributions over possible
states of the world.

— Represent knowledge as sets of “if-then” conditional probability rules
between variable states.

— Allows incompletely defined relationships between variables.
— Reasoning computes marginal probabilities and analyzes contributions.
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Fig. 2.2, A BKB fragment from fresh-water aquarium maintenance knowledge-base as a
directed graph.

Img source: Santos, Eugene, Jr., Santos, Eugene S., and Shimony, Solomon Eyal., "Implicitly Preserving Semantics During Incremental Knowledge
Base Acquisition Under Uncertainty," International Journal of Approximate Reasoning 33(1), 71-94, 2003.



Result: Bayesian Knowledge-driven Ontologies
(Santos & Jurmain, 2011)

Represent knowledge as conditional probability rules between DL
assertions.
— Ex: P(aeC|bED)=06.

Reasoning turns a BKO into a BKB.

— Ontology reasoning describes the states of the world as completely as
possible.

— The result is a BKB. Convenient!

BKOs are provably a subclass of BKBs. Any reasoning that works for
BKBs works for BKOs.



NEW GOAL: FUSING CONFLICTING
KNOWLEDGE FROM DISAGREEING
SOURCES



How Ontologies Fuse Knowledge

If ontologies use the same interpretation, naive fusion is fine.
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If they don’t, have to build a mapping ontology that
translates, then fuse.
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If knowledge actually conflicts, either in the ontos or the
mappings, have to discard something ad-hocly.




How BKBs Fuse Knowledge
(Santos et al, 2009)

* Create a probability distribution of source reliabilities.
e Sources can have different reliabilities for different rules.

Naive union of fragments Source variables S, prevent
(1) and (2) puts CPRs in rules from conflicting because
conflict. Invalid. they give the rules mutually

exclusive conditions.



BKO Fusion combines both methods
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Ex: Which mapping is the right one?




Approach

e Updating BKO theory to include source
variables and define BKO fusion.

e Recall BKOs are a subclass of BKBs, so we have
proof it will work.






Fusion Reveals New Insights

Fragment 1 Fragment 2
Source = Dr. Jones Source = Dr. Smith



Bayesian Network / Ontology Syntheses

Bayesian Networks (Pearl, 1985)
— Restricted subclass of Bayesian Knowledge Bases that assumes complete
information.
— BNs require complete definition of “conditional probability tables” instead of
working with individual rules like BKBs.
PR-OWL (Costa and Laskey, 2005), BayesOWL (Ding et al, 2005), and P-
CLASSIC (Koller et al, 1997) are representative works.

Defines conditional probability tables using DL assertions as variables.
— DL does not have BNs’ completeness requirement. Using BNs restricts the
system’s expressiveness.
— There are notions we can represent in DL that don’t work in BNs even when
completely known.
— Ex: Model probability distributions of gas mileage for various airplane models.

What happens when one is a glider? Then any distribution, even context-
specific independence (Boutilier et al, 1996), is unintuitive.



Fuzzy Description Logic

Founded on fuzzy logic / fuzzy set theory (Zadeh, 1965)

Reasoning within fuzzy description logics (Straccia, 2001) is a
representative work.

Extends DL to allow partial membership in concepts.

— Coarse treatment of uncertainty with some information loss during reasoning.
Does not intuitively capture if-then interactions like probability theory.

— Ex: given the assertions
ainC:0.7 ainD:0.4 CinE:0.2 DinE:0.6

what is the membership of a in E?
max(min(0.7, 0.2), min(0.4,0.6)) =

Most of the numbers in the reasoning chain had no effect on the outcome.
We usually don’t think of causality as working this way.



Possibilistic Description Logic

Founded on possibility theory (Zadeh, 1978) which extends fuzzy logic.

A possibilistic extension for description logics (Qi et al, 2007) is a
representative work.

Models a DL assertion’s uncertainty as two fuzzy numbers, possibility and
necessity.

— Possibility: to what degree could the assertion be true? Necessity: to what degree
must the assertion be true?

— Mathematically, possibility and necessity are simply two fuzzy description logic problems
in parallel, with the axiom that possibility > necessity.

— As with fuzzy logic, this is a coarse treatment of causality.



