

Jacob Jurmain

Adversary Mission Characterization

- Adversary Intent
- Bayesian Knowledge Bases
- Bayesian Knowledge-driven Ontologies

Adversary Intent

- Adversary mission characterization equates to "intent".
 - For maximum insight, know the adversary's perspective, motivation, and rationale, not just their methods.
 - Beliefs, axioms, goals, actions
- Model intent with Bayesian Knowledge Bases.
 - Focus on uncertainty and incompleteness work with however much you know, even if that's not much.
 - Focus on explanations all inferences can be backtracked and completely explained.
 - Powerful features capture cyclic knowledge and fuse multiple sources of knowledge, even when they conflict.

The Basic BKB Analyses

- Belief updating: What is the probability of a particular variable state assignment?
 - Ex: Given everything we know about this adversary, what are the probabilities they will attack with method X, Y, or Z?
- Belief revision: What is the most probable "state of the world"?
 - Ex: How likely are some possible explanations for the events we've just observed?
- Contribution analysis: How much did one variable state assignment appear as a cause of another?
 - Ex: How much did one source of motivation contribute to the adversary's actions, vs. another source?

Challenge of Conflicting Information

- Naïve union of rules violates mutual exclusion.
- Solution: Create a probability distribution over the sources.

Naïve union of fragments (1) and (2) puts CPRs in conflict. Invalid. Source variables S_x prevent rules from conflicting because they give the rules mutually exclusive conditions.

New Insights From Fusion

BKB Practical Application

- For one-off analyses, manually build BKB fragments and fuse them.
 - Each fragment describes a facet of the situation.
 - Use the fused model for explanations and what-if analyses.
- For domains you plan to revisit, use our new result Bayesian Knowledge-driven Ontologies (BKOs).
 - Starting from an initial description of the adversary, builds a broader characterization from background knowledge.
 - Uses a prebuilt library of general domain knowledge. More work up front, but analyses are easy once it's built.

BKO Theory

- Extension of BKBs to facilitate logical reasoning about probabilistic domain knowledge.
 - Automatically assemble case-specific BKBs for multiple analyses in a domain.
 - Can import ontologies and formally merge them with fusion.
- Recent publication: E. Santos Jr. & J. Jurmain, "Bayesian Knowledge-driven Ontologies", Proc. IEEE SMC, Oct. 2011
 - Core contribution probabilistic terminological (i.e. 1st order) knowledge expression and logical reasoning.
 - Past attempts were either crippled or restricted.
 - Core insight a fundamental connection between ontologies and probability theory.

Expression and Reasoning

BKOS – HOW THEY WORK

15 June 2012

9

Terminological Knowledge – Old Way

- Ontologies make inferences by applying terminological knowledge to assertional knowledge.
 - No uncertainty allowed. Only T/F variable interactions.
 - Ex: We know that a specific vehicle is a car and that all cars have wheels. Therefore that specific vehicle has wheels.

The_Vehicle \in Car Car \sqsubseteq has_Wheels \Rightarrow The Vehicle has Wheels

Uncertain Terminological Knowledge

- BKOs extend this to handle uncertainty.
 - More complex variable interactions allowed.
 - Ex: We're pretty sure we've been hit by a DDoS attack. How bad is the threat? P(attack ∈ DDoS) = 0.95

The library says DDoS's are usually from amateur hacktivists, but sometimes are from a foreign government:

 $P(x \text{ done_by some Hacktivist}|any x \in DDoS) = 0.7$

 \Rightarrow P(attack done_by **some** Hacktivist|attack \in DDoS) = 0.7

 $P(x \text{ done_by some Gov't}|any x \in DDoS) = 0.2$

 \Rightarrow P(attack done_by **some** Gov't|attack \in DDoS) = 0.2

The library also says government attacks are more likely to be a real threat:

- $P(x \in \text{Threat}|\text{any x done_by some Gov't}) = 0.6$
 - \Rightarrow P(attack \in Threat|attack done_by **some** Gov't) = 0.6
- $P(x \in \text{Threat}|\text{any x done_by some Hacktivist}) = 0.1$ $\Rightarrow P(\text{attack} \in \text{Threat}|\text{attack done_by some Hacktivist}) = 0.1$

0.95 $P(attack \in DDoS) = 0.95$ P(attack done_by **some** Hacktivist|attack \in DDoS) = 0.7 P(attack done_by **some** Gov't|attack ∈ DDoS) = 0.2 Attack ∈ DDoS P(attack ∈ Threat|attack done_by **some** Gov't) = 0.6 $P(\text{attack} \in \text{Threat}|\text{attack done_by some Hacktivist}) = 0.1$ 0.7 0.2 Attack done_by Attack done_by some Hacktivist some Gov't 0.6 0.1 0.9 0.4 Attack ∈ Threat Attack ∉ Threat

- Belief revision: determine most probable state of the world.
 - P = 0.5985
- Belief updating: compute posterior probability of a single variable assignment.
 - Sum of probabilities of inferences that assignment appears in.
 - P(Attack ∈ Threat) = 0.0665 + 0.076 = 0.1425
- Contribution analysis: compute how much one random variable appears as a cause of another.
 - Sum of probabilities of inferences in which the hypothesized cause appears with the effect, divided by the effect's posterior probability from updating.
 - Contribution of "Attack done by some Hacktivist" to "Attack ∈ Threat" 0.0665 / 0.1425 = 0.467

P = 0.0665 P = 0.076 P = 0.5985P = 0.114

A Practical BKO System

BKOS – HOW TO USE THEM

15 June 2012

14

Step 1: Domain Taxonomy

 Find or build ontolog(ies) laying out the key concepts of the domain. This will be the library's skeleton.

Thayer School of Engineering at Dartmouth

Step 2: Collect Domain Knowledge

- Fill in the model with relationships and "if-then" rules.
- Resolve conflicts between sources formally, with fusion. No more lossy, unsound "ontology merging".

15 June 2012

Step 3: Use it to Answer Questions

 Build small case descriptions and let the library build BKBs with all its relevant knowledge. Then analyze the BKBs.

Step 4: Grow and Update

- Use the BKO to find gaps in collective knowledge.
 Add to it over time.
- Exchange BKOs between groups. Fuse other perspectives with your own and see new explanations of the world emerge.

Concept Application: Sysadmin's Helper

- Expert system to detect simple attacks.
 - Duplicate expert's basic threat assessment rules... and maybe some of the complex ones too.
 - BKOs are uniquely good at this.
 - Fusion facilitates pooling of expertise over time.
- Decrease human system defenders' workload
 - Goal: handle the script kiddies and let them focus on the real threats.
 - Man-on-the-loop instead of -in-the-loop.
 - Explainability: report the system's whole reasoning chain, not just its conclusions.