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Abstract— Knowledge acquisition is an essential process in 
improving the problem-solving capabilities of existing 
knowledge-based systems through the absorption of new 
information and facilitating change in current knowledge. 
However, without a verification mechanism, these changes could 
result in violations of semantic soundness of the knowledge 
causing inconsistencies and ultimately, contradictions. Therefore, 
maintaining semantic consistency is of primary concern, 
especially when dealing with incompleteness and uncertainty.  In 
this paper, we consider the semantic completability of a 
knowledge system as a means of ensuring long-term semantic 
soundness. In particular, we focus on how to preserve semantic 
completability as the knowledge evolves over time. Among 
numerous methods of knowledge representation under 
uncertainty, we examine Bayesian Knowledge-Bases, which are a 
rule-based probabilistic model that allows for incompleteness and 
cycles between variables. A formal definition of full/partial 
completability of BKB is first introduced.  A principle to check 
the overall completability of a BKB is then formulated with a 
formal proof of correctness. Furthermore, we show how to use 
this principle as a guide for maintaining semantic soundness and 
completability during incremental knowledge acquisition. In 
particular, we consider two primary modifications to the 
knowledge base: 1) adding/fusing knowledge, and 2) 
changing/tuning conditional probabilities.  

Keywords- semantic completability; incomplete information; 
knowledge representation; Bayesian knowledge-bases  

I.  INTRODUCTION  
The development of a knowledge-based system is 

fundamentally an incremental process. The domain knowledge 
engineers (subject matter experts) are inclined to start by 
selecting a subarea that they personally understand well, and 
then continuously introduce new information to the existing 
knowledge-based system as a basic cyclical process [1], [2]. 
However, significant changes may take place at any step of the 
process, anywhere in the system, such as deleting or modifying 
existing knowledge or adding new knowledge. Any of these 
could introduce a contradiction to the existing semantics or be 
forced to lose some important prior information relationships. 
Considering that part of the knowledge may have been fully 
specified by knowledge engineers, losing such information 
could compromise the correctness of the overall knowledge 
base. As a simple example, if we raise the probability of “Rain” 
without decreasing the chance of “Not Rain”, we will end up 

with a violation of probability theory. Therefore, one key issue 
during knowledge acquisition is to ensure semantic consistency. 
This is especially important to knowledge engineers who treat 
consistency as a basic rule of thumb while potentially using a 
generate-and-test means of constructing knowledge-bases.  

On the other hand, the knowledge-based system at any 
stage is necessarily associated with some degree of 
incompleteness and uncertainty. This results in a natural 
expectation that a knowledge-based system should exhibit 
enough flexibility and intuitiveness for capturing knowledge in 
order to make it easy and responsive for the knowledge 
engineers to build models/systems that they can still 
understand, maintain, validate, update, and so forth. Bayesian 
approaches have been widely used for managing uncertainty. 
Among those, Bayesian Networks (BNs) [3], [4] are a popular 
probabilistic model due to its sound theoretical foundations in 
probability theory combined with efficient reasoning. Similar 
techniques generated from BN variants include first-order 
Bayesian logic [5] and semi-qualitative Probabilistic network 
[6].  One advantage of BNs comes from the ability to preserve 
semantic completability by nature, as they require a completely 
specified (filled) conditional probability table (CPT), which 
guarantees that the probabilities of all possible outcomes of the 
world sum up to 1. However, when the knowledge available on 
parameters is vague or incomplete, those restrictions turn out to 
be problematical since this becomes a major source of 
inflexibility. In addition, the causal mechanism in reality is 
likely to vary across the instantiations, which happens when the 
causal link between two variables becomes weak given some 
evidence. Under this situation, the underlying causal 
relationship may end up with a cycle, which is not permitted in 
a BN.  

To avoid these limitations, we represent our knowledge 
using Bayesian Knowledge-Bases (BKBs) [7], [8]. BKBs are a 
rule-based probabilistic model that represents possible world 
states and their causal relationship using a directed graph. 
BKBs subsume BNs by specifying dependence at the 
instantiation level (versus BNs that specify only at the random 
variable level); by allowing for cycles between variables; and, 
by loosening the requirement in specifying probability 
distributions, and thus allowing for incompleteness. There are 
some other techniques that attempt to handle incompleteness, 
such as Fuzzy representations [9], imprecise probabilities 



representations [10], and first-order language based knowledge 
representations [11]. However, they all suffer from potentially 
weak semantics for complex reasoning chains under 
uncertainty.  

Though reasoning over incomplete information can be 
approximated through imprecise assessments [18], [19], 
without a verification mechanism with regards to semantic 
consistency, reasoning explanations are not sound. Given that 
BKBs focus on managing incomplete information, our goal in 
this paper is to further address the ability of BKBs on 
preserving complete semantics during the process of 
knowledge acquisition. In particular, we introduce formal 
conditions concerning the semantic completability of a BKB 
and prove theorem correctness. In our previous work [8], 
theoretical and algorithmic results have been presented on how 
BKBs can implicitly preserve conditional semantics as a 
knowledge-base evolves. However, that work is based on the 
assumption of semantic completeness, whereas in this paper, 
we show what conditions are sufficient to achieve semantic 
completability. Moreover, we discuss how semantic 
completability can be maintained during incremental 
knowledge acquisition. Two types of modification are 
frequently used in knowledge base updating. One is knowledge 
fusion which integrates knowledge from different sources into 
one overall system. The other is system tuning that focuses on 
correcting a knowledge-base with minimal global change. We 
show how the conditions that guarantee the semantic 
completability can be easily applied to the two algorithms 
without increasing computational complexity.   

 We begin in the next section with a detailed description of 
BKBs. In Section 3, we present a formal definition of 
probabilistically completeness and sufficient conditions for 
evaluating completability, followed by additional properties of 
probabilistically completeness. Applications on two types of 
system modifications will be introduced in the next section. 
Finally, we will present our conclusions and future work. 

II. BAYEISAN KNOWLEDGE BASES 
BKBs subsume BNs by providing a more compact 

knowledge representation. Instead of specifying the causal 
structure using conditional probability tables (CPT) as in BNs, 
BKBs collect the conditional probability rules (CPR) in an “if-
then” style. Fig. 1 shows a graph structure of a BKB fragment, 
in which 𝐴 is a random variable with possible instantiations 
{𝑎1,𝑎2}. Each instantiation of a random variable is represented 
by an I-node, or “instantiation node”, e.g. 𝐴 = 𝑎1, and the rule 
specifying the conditional probability of an I-node is encoded 
in an S-node, or “support node” with a certain 
weight/probability. For example, 𝑞8  corresponds to a CPR 
which can be interpreted as: if 𝐴 = 𝑎2 and 𝐶 = 𝑐1, then 𝐵 = 𝑏2 
with a probability 0.1.    

Rule-based models like BKBs have significant advantage in 
size of the representation since they allow for independence to 
be specified at the instantiation level and do not require the full 
table representation of the CPTs. This design endows BKBs 
with the capability of handling incomplete probabilistic 
knowledge. As the BKB shows in Fig.1, the dependency 
relationship at the variable level implies that variable 𝐵 

depends on both 𝐴 and 𝐶. However, given evidence 𝐴 = 𝑎1, 𝐵 
becomes independent of 𝐶. This could happen in the real world 
when the role of a critical variable can dominate some local 
dependency relationships between variables. Under this 
circumstance, there is no need to fill in 𝑃(𝐵|𝐴 = 𝑎1,𝐶) since 
BKBs only capture the knowledge that is available and does 
not require a complete distribution specification. 

The other feature of BKBs is that they also allow cyclic 
relationships among random variables. Imagine if the direction 
of some causal mechanism also depends on specific states of 
the variables. Santos et al. [12] gives an example of BKB 
modeling of a political election, in which the type of “race” 
may flip the causal direction between the belief of a piece of 
evidence and the voting action.  

 The formal definition of the graphical representation of a 
BKB from Santos & Santos [7] is given below: 

Definition 1. A correlation-graph is a directed graph 𝐺 = (𝐼 ∪
𝑆,𝐸)  in which 𝐼 ∩ 𝑆 = ∅,𝐸 ⊂ {𝐼 × 𝑆} ∪ {𝑆 × 𝐼}, and ∀𝑞 ∈ 𝑆, 
there exists a unique 𝑎 ∈ 𝐼  such that (𝑞,𝑎) ∈ 𝐸. If there is a 
link from 𝑞 ∈ 𝑆 to 𝑎 ∈ 𝐼, we say that 𝑞 supports α. 

For each S-node q  in a correlation graph  G , we denote 
𝑃𝑟𝑒𝑑𝐺(𝑞) as the set of I-nodes pointing to 𝑞, i.e. 𝑃𝑟𝑒𝑑𝐺(𝑞) =
{𝑎 ∈ 𝐼|𝑎 → 𝑞 ∈ 𝐸} and 𝐷𝑒𝑠𝑐𝐺(𝑞) as the I-node supported by 
𝑞, i.e. the 𝑎 such that 𝑞 → 𝑎 ∈ 𝐸. 

 Two I-nodes, 𝛼1 and 𝛼2 are said to be mutually exclusive if 
they are different instantiations of the same random variable. 
Similarly, two sets of I-nodes 𝐼1 and 𝐼2 are mutually exclusive 
if there exists two I-nodes 𝑎1 ∈ 𝐼1 and 𝑎2 ∈ 𝐼2 , such that 
𝛼1 and 𝛼2 are mutually exclusive. For example, the sets of I-
nodes {𝐴 = 𝑎1,𝐵 = 𝑏2}  and {𝐴 = 𝑎2,𝐵 = 𝑏2,𝐶 = 𝑐1}  are 
mutually exclusive.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example of a BKB fragment 

Definition 2. A state 𝜃 is a set of I-nodes such that it contains 
no more than one instantiation of each random variable. 𝜃 is 
said to be complete w.r.t a set of random variables 𝑇  if it 
contains exactly one I-node of variable in 𝑇. 

Definition 3. A set of S-nodes 𝑅 is said to be complementary if 
for all 𝑞1,  𝑞2 ∈ 𝑅 , 𝐷𝑒𝑠𝑐𝐺(𝑞1) and 𝐷𝑒𝑠𝑐𝐺(𝑞2)  are mutually 
exclusive, but 𝑃𝑟𝑒𝑑𝐺(𝑞1) and 𝑃𝑟𝑒𝑑𝐺(𝑞2)  are not mutually 
exclusive.  Variable 𝑣 is said to be the consequent variable of 



𝑅, if for any S-node 𝑞 ∈ 𝑅, 𝐷𝑒𝑠𝑐𝐺(𝑞) is an instantiation of 𝑣. 
𝑅 is said to be maximum complementary if there is no 𝑅′ such 
that 𝑅 ⊆ 𝑅′. 

Notation: Let 𝜌𝑣  donate the set that contains all possible 
complementary sets of S-nodes w.r.t. variable 𝑣, such that for 
any complementary set 𝑟 ∈ 𝜌𝑣, 𝑣 is the consequent variable of 
𝑟. We also introduce  Ψ𝑣 to denote the subset of 𝜌𝑣 that only 
consists of maximum complementary sets, i.e. Ψ𝑣 = {𝑟|𝑟 ∈
𝜌𝑣 ∧ ∄𝑟′ ∈ 𝜌𝑣, 𝑟 ⊆ 𝑟′} . For example in Fig. 1, {𝑞5,𝑞7} is a 
complementary set w.r.t. variable 𝐵  and Ψ𝐵  = {{𝑞4,𝑞5,𝑞7}, 
{𝑞6, 𝑞8}}. 

Definition 4. A BKB is a tuple 𝐾 = (𝐺,𝑤) where 𝐺 = (𝐼 ∪
𝑆,𝐸) is a correlation–graph, and 𝑤 ∶ 𝑆 → [0,1] such that 
1. ∀𝑞 ∈ 𝑆,𝑃𝑟𝑒𝑑𝐺(𝑞) contains at most one instantiation of 
each random variable. 
2. For distinct S-nodes 𝑞1,𝑞2  ∈ 𝑆  that support the same I-
node, 𝑃𝑟𝑒𝑑𝐺(𝑞1) and 𝑃𝑟𝑒𝑑𝐺(𝑞2)  are mutually exclusive. 
3. For any complementary set of S-nodes 𝑅 ⊆ 𝑆 , 𝑅  is 
normalized: ∑ 𝑤(𝑞)𝑞𝜖𝑅 ≤ 1 where 𝑤(𝑞) is a weight function 
that represents the conditional probability 
𝑃(𝐷𝑒𝑠𝑐𝐺(𝑞)|𝑃𝑟𝑒𝑑𝐺(𝑞)).  

The intuition behind these three conditions is that each S-
node can only support one I-node; two rules supporting the 
same I-node cannot be satisfied at the same time; and, to ensure 
normalization of the probability distribution, every 
complementary set of S-nodes should be normalized. Given a 
variable 𝑣, since any complementary set in 𝜌𝑣  is a subset of 
some complementary set in Ψ𝑣 , the last condition can be 
translated into: for any variable 𝑣 , 𝑅 ∈ Ψ𝑣  should be 
normalized. 

 Like BNs, reasoning with BKB is also based on the 
calculation of joint probabilities over the possible states, 
which can be captured as a subgraph of a BKB, called an 
inference.  
 
Definition 5. Let 𝐾 = (𝐺,𝑤)  be a BKB with correlation 
graph 𝐺 = (𝐼 ∪ 𝑆,𝐸) . A subgraph 𝜏 = (𝐼′ ∪ 𝑆′,𝐸′)  of 𝐺  is 
called an inference over 𝐾 if.  
1. 𝜏 is acyclic. 
2. (Well-supported) ∀𝑎 ∈ 𝐼′,∃𝑞 ∈ 𝑆′, 𝑞 → 𝑎 ∈ 𝐸′ 
3. (Well-founded) ∀𝑞 ∈ 𝑆′,𝑃𝑟𝑒𝑑𝜏(𝑞) = 𝑃𝑟𝑒𝑑𝐺(𝑞) 
4. (Well-defined) ∀𝑞 ∈ 𝑆′,𝐷𝑒𝑠𝑐𝜏(𝑞) = 𝐷𝑒𝑠𝑐𝐺(𝑞) 
5. There is at most one I-node corresponding to any given 
random variable in 𝐼′. Furthermore, 𝜏 is said to be a complete 
inference over K  if state I′  is complete w.r.t. all random 
variables.  

For example in Fig.1, the dotted rectangle encloses a 
complete inference which has a complete state { 𝐴 = 𝑎2, 
𝐵 = 𝑏2,  𝐶 = 𝑐1,  𝐷 = 𝑑1  }. The joint probability of an 
inference 𝜏 is just the product of the weights of all S-nodes in 𝜏, 
i.e. 𝑃(𝜏) = ∏ 𝑤(𝑞)𝑞∈𝜏 . The idea of inference plays an 
important role in two forms of reasoning with BKBs, belief 
revision (also called maximum a posteriori or MAP) [3], [7], 
and belief updating, where belief revision tries to determine the 
most probable state given some evidence and belief updating 
tries to calculate the marginal probability of a partial state. 
BKBs have been applied to a variety of real-world problems 

such as adversary intent modeling [13], social events prediction 
and analysis [14], and surgical intent modeling [15].  

III. COMPLETABILITY ANALYSIS 
BKBs are by nature designed to handle incomplete 

information. However, as we mentioned earlier, it is critical to 
preserve the existing semantic completability as new 
knowledge is incrementally added to the knowledge-base. 
Hence, a verification mechanism is necessary to check/preserve 
semantic completability [16], [17].  In this section, we show 
how to preserve semantic completability in BKBs by first 
examining the sufficient conditions for guaranteeing overall 
semantic completability. Unlike BNs that model uncertainties 
using complete specifications of conditional probability 
distributions, BKBs do not have these restrictions in the first 
place, which increases the flexibility for knowledge 
representation. Furthermore, there are many situations during 
knowledge acquisition when the conditional probability 
distribution cannot be fully specified, such as when the 
knowledge engineers are not fully confident about the whole 
semantic space or the information regarding model parameters 
is simply unavailable. Though such limitations may lead to an 
incomplete overall semantics, it is still helpful to maintain the 
partial completability of such variables that are conditionally 
independent of those loosely specified variables. For example,  
suppose that “rain” has a direct effect on the “sprinkler level” 
(when it rains, the level of sprinkler is usually low), then even 
if we lack statistics on the conditional probability of “sprinkler 
level” given “rain”, it is still useful to make sure that the 
probabilities of “rain” and “not rain” sum up to 1. Thus, our 
second task is to provide conditions for achieving partial 
completeness. Lastly, properties entailed by the semantic 
completability will be formally derived.  

A. Completeness 
Given a BKB 𝐾 = (𝐺,𝑤), let  𝑇 = {𝑋1,𝑋2, … ,𝑋𝑛} be a set 

of random variables in 𝐾  and  𝐼𝑇  be the set containing all 
complete states corresponding to 𝑇. 

Key Definition 6. A random variable 𝑣  is said to be 
semantically complete if ∑ 𝑃(𝑣 = 𝑖)𝑖 = 1 .  𝐾  is said to be  
semantically complete  w.r.t. T if for any variable 𝑣 ∈ 𝑇, 𝑣 is 
semantically complete. 

Key Definition 7. 𝐾 is said to be composite/partial complete 
w.r.t. 𝑇  if ∑ 𝑃(𝜃)𝜃𝜖𝐼𝑇 = 1 . 𝐾  becomes fully complete if 𝑇 
contains all random variables. 

Definition 8. 𝐾 is said to be assignment complete w.r.t. 𝑇 if for 
any complete state 𝜃 ∈ 𝑇 , there exists a complete inference 
over 𝐾 ; 𝐾  is said to be locally complete w.r.t. 𝑇  if for any 
variable 𝑣 ∈ 𝑇, ∀𝑅 ∈ Ψ𝑣,∑ 𝑤(𝑞)𝑞𝜖𝑅 = 1.  

Lemma 1. For S-node 𝑞 , if an inference 𝜏  contains both 
𝐷𝑒𝑠𝑐𝐺(𝑞) and 𝑃𝑟𝑒𝑑𝐺(𝑞), then 𝑞 ∈ 𝜏.  

Proof. Assume that 𝑞 ∉ 𝜏 , then to find an inference τ 
containing I-node 𝐷𝑒𝑠𝑐𝐺(𝑞) , there must be another S-node 𝑞′ 
supporting 𝐷𝑒𝑠𝑐𝐺(𝑞). However, all the S-nodes pointing to the 
same I-node must be mutual exclusive. In other words, 𝑞’ and 
𝑃𝑟𝑒𝑑𝐺(𝑞),  cannot coexist. Contradiction. ∎ 



Definition 9. Let θ = {X1 = x1, X2 = x2, … , Xn = xn}  be a 
state. An inference 𝜏 = (𝐼 ∪ 𝑆,𝐸)   is said to be a minimal 
inference w.r.t.  𝜃 if 𝜃 ⊆ 𝐼 and there does not exist any other 
inference 𝜏′ = (𝐼′ ∪ 𝑆′,𝐸′) ⊆ 𝜏 such that 𝜃 ⊆ 𝐼′. 

Definition 10. Let 𝑞 be the S-node supporting I-node 𝛼, 𝛼 is 
said to be a root of 𝐾 if 𝑃𝑟𝑒𝑑𝐺(𝑞) = ∅ . 

Key Theorem 1: If 𝐾 is both assignment complete and locally 
complete w.r.t. all random variables,  𝐾 is fully complete. 

Proof. We prove this by induction on the number of I-nodes 
in  𝐾 . If 𝐾 only has one I-node, namely 𝐴 =  𝑎 . From the 
definition of BKBs and since 𝐾  is assignment complete, 
𝐴 =  𝑎 must have exactly one supporting S-node. Let 𝑞 be this 
S-node. As 𝐾  is locally complete, it’s trivial to show that 
∑ 𝑃(𝜃)𝜃𝜖𝐼𝑇 = 𝑃(𝐴 = 𝑎) = 1. 

 
(a) 

 
(b) 

Figure 2: Example of transformation. (a) Original BKB 𝐾. (b) 
Transformed BKB 𝐾′ 

 Assume that the theorem is true for all knowledge graphs 
up to 𝑁 − 1 I-nodes. Let 𝐾 be both an assignment and locally 
complete BKB with exactly 𝑁  I-nodes. Let 𝐻  be the set 
containing all complete inferences over 𝐾 . Considering that 
every complete inference in 𝐻  is also a minimum inference 
w.r.t. 𝑇  ( 𝑇  corresponds to all variables in this case), the 
problem of proving ∑ 𝑃(𝜃) = 1𝜃𝜖𝐼𝑇  is reduced to proving 
∑ 𝑤(𝜏)𝜏𝜖𝐻 = 1 (Theorem 3.9 in Santos et al. [8]). Let 𝑉(𝐾) be 
the set of all roots of 𝐾. From Proposition 4.7 in Santos and 
Santos [7], 𝑉(𝐾) is not empty, e.g. I-node 𝑎1  ∈ 𝑉(𝐾).   Let 
𝜎 = {𝑎1,𝑎2 …𝑎𝑚}  be the set of I-nodes containing all 
instantiations of variable A.  

If a1 is the only instantiation of variable 𝐴, i.e.|𝜎|=1, let 𝑞1 
be its uniquely associated S-node. Then 𝑎1 participates in all 
complete inferences in 𝐻 and 𝑤(𝑞1)  =  1. We remove 𝑎1, 𝑞1, 
and all edges coming in and out of 𝑎1. Clearly, the remaining 
BKB is still assignment and locally complete, but with 𝑁 − 1 
I-nodes. By induction, ∑ ∏ w(q) = 1q∈Sτ−q1τ∈H .  

    Thus,  ∑ 𝑤(𝜏)𝜏𝜖𝐻 = 𝑤(𝑞1)∑ ∏ 𝑤(𝑞) = 1𝑞∈𝑆𝜏−𝑞1𝜏∈𝐻 . 

    Otherwise, since 𝑎1  ∈ 𝑉(𝐾) , let 𝑋  be the set of S-nodes 
found in 𝐾 that support the remaining I-nodes {𝑎2,𝑎3 …𝑎𝑚}. 
Now, construct a new 𝐾′ = (𝐺′,𝑤′) from 𝐾 as follows: 

1. Introduce new I-node 𝑎0 and new S-node 𝑞0 for 𝑎0. 
Let 𝑤(𝑞0) = 1 −𝑤(𝑞1).  

2. Replace set 𝜎  by {𝑎1,𝑎0}  and introduce a new 
random varible 𝐴’  with possible instantiations 
{𝑎2,𝑎3 …𝑎𝑚}.  

3. For each S-node 𝑞 ∈ 𝑋, add edge (𝑎0,𝑞) and change 
𝑤(𝑞) to 𝑤′(𝑞) = 𝑤(𝑞)/ 𝑤(𝑞0). 

Fig. 2 shows an example of transformation. From this 
construction, K′ is still a valid BKB. Since the inferences which 
contain 𝑎1 are not affected by the new construction, and for any 
inference 𝜏 that includes 𝑞 ∈ X,  clearly, 𝑤′(𝜏′) = 𝑤(𝜏).  Thus, 
∑ 𝑤′(𝜏′)𝜏′𝜖𝐻′ = ∑ 𝑤(𝜏)𝜏𝜖𝐻 . 

Next, we prove that  K′ is also locally complete. In fact, 
only the S-nodes associated with variable 𝐴  and 𝐴′ have been 
modified. It is trivial to prove locally completeness for 𝐴 since 
𝑤(𝑞0)  +  𝑤(𝑞1)  =  1. Let 𝑅 ∈ Ψ𝐴′. In original BKB 𝐾,  𝑞1 is 
complementary with any S-node 𝑞 ∈ 𝑅 , or 𝑤(𝑞1) +
∑ 𝑤(𝑞) = 1𝑞∈𝑅  due to the fact that 𝑎1 is a root node. Thus in 
new BKB 𝐾′ , 𝑤′(𝑅) = ∑ 𝑤′(𝑞) =𝑞∈𝑅 ∑ 𝑤(𝑞)𝑞∈𝑅 /(1 −
𝑤(𝑞1)) = (1 − 𝑤(𝑞1))/(1 −𝑤(𝑞1)) = 1.  

     Similar to K , let H′  be the set containing all complete 
inferences in 𝐾′ . We denote 𝑆𝜏  as the set of S-nodes 
corresponding to inference  𝜏 . We partition 𝐻′  into two sets 
{𝐻1, 𝐻0} where  
      τ ∈ H0 if and only if 𝑎0 ∈ 𝜏 and  
      𝜏 ∈ 𝐻1 if and only if 𝑎1 ∈ 𝜏. 
Thus, 
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Case 1.  
     Construct a new knowledge-base 𝐾1 = (𝐺1,𝑤′) from 𝐾′ by 
combining all the inferences in 𝐻1 into one subgraph 𝐺1, i.e. 
𝐺1 = ⋃ 𝜏𝜏∈𝐻1 . Clearly, 𝐾1 is a valid BKB, where 𝑎1 is the only 
instantiation of variable 𝐴. We claim that: 

1. 𝐾1  is assignment complete.   
2. K1  is locally complete w.r.t. all variables but 𝐴. 

The first claim is obvious. We prove the second one by 
contradiction. Assume there exists a variable 𝑣 in 𝐾1, 𝑣 ≠ 𝐴,  
such that ∃𝑅 ∈ Ψ𝑣,∑ 𝑤′(𝑞)𝑞𝜖𝑅 < 1. In other words, there used 
to be a S-node 𝑞∗  in 𝐾′  but not in 𝐾1  that is also 
complementary with 𝑅. We denote 𝑃𝑎(𝑅) as the superset of all 
parent I-nodes in 𝑅 , i.e. 𝑃𝑎(𝑅) = ⋃ 𝑃𝑟𝑒𝑑𝐺1(q)𝑞∈𝑅 . As the 
example shows in Fig. 1, for maximum complementary set of 
S-nodes 𝑅 = {𝑞6,𝑞8 }, 𝑃𝑎(𝑅)  =  {(𝐶 = 𝑐1), (𝐴 = 𝑎2)}.  From 
Lemma 1, PredG′(𝑞∗)  must be mutually exclusive with 𝑎1 , 
otherwise, 𝑞∗ will not be precluded from 𝐾1 . Let 𝑎𝑖 ∈
PredG′(𝑞∗), 𝑎𝑖 ≠ 𝑎1.  



We claim that in 𝐾1, there exists another S-node pointing to 
𝐷𝑒𝑠𝑐G′(𝑞∗)  that is also complementary with 𝑅. The property 
of assignment complete guarantees that there is an inference 𝜏 
that contains {𝑃𝑎(𝑅),𝑎1,𝐷𝑒𝑠𝑐G′(𝑞∗)  } in 𝐾1. Let 𝑞’ be the S-
node in 𝜏 , such that (𝑞’,𝐷𝑒𝑠𝑐G′(𝑞∗))  ∈ 𝐸1 , clearly, 𝑞’  is 
complementary with 𝑅 and 𝑞′ ≠ 𝑞∗. Thus, 𝑅 is not maximum 
complementary.  Contradiction.  

Since K1  is locally complete w.r.t. all variables but A, we 
can simply remove 𝑎1, 𝑞1, and all edges coming in and out of 
𝑎1. Then the remaining BKB is both assignment complete and 
locally complete with the number of I-nodes less than N. By 
induction,   ∑ ∏ 𝑤′(𝑞) = 1𝑞∈𝑆𝜏−𝑞1𝜏∈𝐻1  

 
Case 2. 

 Similar to Case 1, we construct a new knowledge-base 𝐾0 
from 𝐾′ by combining all the inferences in 𝐻0 into 𝐾0. Again, 
after removing 𝑞0, 𝑎0 and corresponding edges, the remaining 
BKB is fully complete with the number of I-nodes less than N. 
By induction, ∑ ∏ 𝑤′(𝑞)𝑞∈𝑆𝜏−𝑞0 = 1𝜏∈𝐻0  

Thus, 
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Key Theorem 2: If 𝐾 is both assignment complete and locally 
complete w.r.t. 𝑇, 𝐾 is composite complete w.r.t. 𝑇.  

Sketch of Proof. Let 𝐻∗  be the set containing all complete 
inferences corresponding to 𝑇 . We construct a new BKB 
𝐾∗ = (𝐺∗,𝑤) , 𝐺∗ = ⋃ 𝜏𝜏∈𝐻∗ . Clearly, 𝐾∗  is assignment 
complete. The local completeness of 𝐾∗can be proved in a 
similar way as Theorem 1. Therefore, 𝐾∗ is fully complete, and 
thus K is composite complete w.r.t 𝑇.  

Key Corollary 1, If 𝐾 is both assignment complete and locally 
complete w.r.t. 𝑇, 𝐾 is semantically complete  w.r.t. T. 

 
Figure 3: Example of a composite complete BKB  

Theorem 2 and Corollary 1 can be applied to quantify the 
completability level of BKB in terms of the number of 

semantically complete variables. We take the BKB 𝐾 in Fig. 3 
as an example. Though the conditional probability distribution 
of 𝑃(𝐷|𝐶) is not fully specified, variables 𝐴, 𝐵 and 𝐶 still hold 
complete semantics. The complexity of checking for 
completability is the same as performing belief updating (i.e. 
computing posterior probabilities). 

B. Properties for BKB completeness 
As we proved in the last section, assignment complete and 

locally complete are two sufficient conditions for semantic 
completeness. However, are they also necessary? Moreover, 
can we derive other important BKBs properties from 
probabilistically completeness? 

Note: If 𝐾  is fully complete, 𝐾  may not be assignment 
complete. Fig. 4 gives an example where ∑ 𝑃(𝐴 = 𝑖,𝐵 =𝑖,𝑗
𝑗) = 1, but there is no inference for  𝜃1 = {𝐴 = 𝑎1,𝐵 = 𝑏3} or 
𝜃2 =  {𝐴 = 𝑎2,𝐵 = 𝑏1}. The reason is that the probabilities for 
states  𝜃1 and 𝜃2  are both equal to 0. Since BKBs only capture 
meaningful semantics, the redundant dependency relationships 
are removed.  

 
Figure 4: Example of a fully complete but not assignment complete BKB  

Definition 11. A node 𝑎 ∈ 𝐼 ∪ 𝑆  in BKB 𝐾  is said to be 
grounded if there exists an inference 𝜏 over 𝐾 such that 𝑎 is in 
𝜏. 𝐾 is said to be grounded if ∀a ∈ I ∪ S, a is grounded.  

Lemma 2. If 𝐾 is fully complete and ∀𝑞 ∈ 𝑆,𝑤(𝑞) > 0, then 
𝐾 is grounded. 

Proof. Assume there exists a S-node 𝑞  that belongs to no 
inferences.  Then from Lemma 1, there is no inference 
containing both 𝐷𝑒𝑠𝑐G(𝑞)  and 𝑃𝑟𝑒𝑑𝐺(𝑞)  or  
𝑃(𝐷𝑒𝑠𝑐G(𝑞),𝑃𝑟𝑒𝑑𝐺(𝑞))  =  0 . However, 𝑤(𝑞) =
𝑃(𝐷𝑒𝑠𝑐𝐺(𝑞)|𝑃𝑟𝑒𝑑𝐺(𝑞)) = 𝑃(𝐷𝑒𝑠𝑐𝐺(𝑞),𝑃𝑟𝑒𝑑𝐺(𝑞))/
𝑃(𝑃𝑟𝑒𝑑𝐺(𝑞))  >  0 , So,  𝑃(𝐷𝑒𝑠𝑐G(𝑞),𝑃𝑟𝑒𝑑𝐺(𝑞)) > 0 . 
Contradiction. ∎ 

      The underlying philosophy behind lemma 2 is that in a fully 
complete BKB, no rule is redundant. Thus, if a S-node remains 
grounded during knowledge acquisition, then its initial 
assigned probability can be semantically preserved [8].  

Lemma 3. If 𝐾 is fully complete and ∀𝑞 ∈ 𝑆,𝑤(𝑞) > 0, then 
𝐾 is locally complete.  

Sketch of Proof. Assume there exists a variable 𝑣, such that 
∃𝑅 ∈ Ψ𝑣,∑ 𝑤(𝑞)𝑞𝜖𝑅 < 1. Then we can always select a S-node 
𝑞′ ∈ 𝑅  and increase 𝑤(𝑞′)  to 𝑤′(𝑞′) = 𝑤(𝑞′) + 1 −
∑ 𝑤(𝑞)𝑞𝜖𝑅 . From Lemma 2, 𝑞′  must be grounded. Let 𝜏′ be an 



inference with 𝑞′  inside. Then ∑ 𝑤′(𝜏)𝜏𝜖𝐻 = ∑ 𝑤(𝜏)𝜏𝜖𝐻−𝜏′ +
𝑃(𝜏′) > 1. Contradiction. ∎ 

Lemma 3 guarantees that any change that affects the joint 
probabilities does not affect the local completeness as long as 
the semantic completability is preserved in the knowledge base.  

IV. MAINTENANCE OF SEMANTIC CONSISTENCY DURING 
KNOWLEDGE ACQUISITION 

The knowledge-based system allows knowledge engineers 
to potentially make significant changes to the knowledge base. 
Such changes, if not carefully handled, could lead to serious 
semantic conflicts and thus degrade the problem-solving 
capabilities of the system. In this section, we present how 
Theorems 1&2 can be readily applied to preserve semantic 
completeness with regards to two types of modification.  

A. Application to BKB Fusion 
One type of knowledge base modification occurs when 

several pieces of information are to be fused together. This 
happens frequently in decision making scenarios when multiple 
perspectives/experts are involved. For example, in the case of a 
medical diagnosis system, two experts may hold different 
opinions about the causal relationship between two variables of 
interest. So, simply combining the two knowledge bases could 
cause a violation of probabilistic soundness. An algorithm [12] 
was proposed to encode and aggregate a set of knowledge 
fragments from different sources into one unified BKB. An 
important property of this approach is their ability to support 
transparency in analysis.  In other word, all perspectives are 
preserved in the fused BKB without losing any information. 
The idea behind this algorithm is to take the union of all input 
fragments by incorporating additional variables called source 
nodes, indicating the source and reliability of the fragments. An 
example of BKB fusion is shown in Fig. 5., where two 
fragments from two sources Dr. X and Dr. Y are fused into 
one, and the decision will be drawn based on which source of 
information is invoked.  Furthermore, it was demonstrated that 
elements from different sources could also be combined to 
form new inferences.  

Theorem 3. If all BKB fragments are semantically complete 
and all of the source nodes are locally complete, then the fused 
BKB is semantically complete. 

Proof. From the fusion algorithm, we note that if two 
fragments 𝑖 and 𝑗 are sharing one I-node, say 𝐴 = 𝑎, then after 
being fused together, only one fragment will be activated at one 
time due to the fact that two source node 𝑆𝐴 = 𝑖 and 𝑆𝐴 = 𝑗 are 
mutual exclusive. Let 𝑝  be the distribution in the fusion of 
these two fragments, we have 𝑝(𝑆𝐴 = 𝑖) + 𝑝(𝑆𝐴 = 𝑗) = 1. 
Thus, 

 

 

 

 

where, 𝑝𝑖  and 𝑝𝑗  correspond to the original probability 
distribution from fragment 𝑖 and 𝑗. ∎ 

 
Figure 5. Example of BKB fusion of fragments from two different doctors. 

Theorem 3 offers a sound theoretical foundation for preserving 
the semantic completeness in fragment knowledge during 
knowledge integration. As depicted in Fig. 5, the fused BKB on 
the bottom inherits the semantic completeness from the two 
fragments, e.g.  𝑃(𝐴 = 𝑎1)  +  𝑃(𝐴 = 𝑎2)  = 1 . Moreover, 
Theorem 3 can be easily implemented in modeling real world 
scenarios since the only implementation required is to 
normalize the reliability of each source node.  

B. Application to BKB tuning 
Another type of modification takes the form of tuning the 

probabilities of certain rules. Santos et al. [20] proposed a 
method to correct a knowledge-based system by tuning 
necessary conditional probabilities while minimizing overall 
change in the knowledge-base. The basic idea is to transform 
the problem of multiple parameters changes as well as BKB 
structural constraints into a Linear Programming problem 
which can be solved efficiently. One of the constraints 
regulated by a BKB is that for any random variable 𝑣, 𝑅 ∈ Ψ𝑣, 
𝑅 should be normalized, i.e. ∑ 𝑤(𝑞)𝑞𝜖𝑅 ≤ 1. Considering that 
the tuning process only adjusts the weights of S-nodes without 
changing the structure of BKB, to preserve the completeness of 
the original BKB, we can simply replace the upper inequality 
with our locally complete constraint: ∑ 𝑤(𝑞)𝑞𝜖𝑅 = 1. Clearly, 
the new problem is still LP solvable.  

In fact, Santos et al. [20] has shown that if the original BKB 
is locally complete, the tuned system also retains the property 
of locally complete. In other words, the best way to minimizing 
the global changes is to maintain the semantic completeness.  

V. CONCLUSION 
In this paper we proposed a verification mechanism to check 

the semantic completability of a knowledge-based system, such 
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that the initial value and semantics specified by the knowledge 
engineers can be preserved during incremental knowledge 
acquisition. We start by examining the sufficient conditions for 
guaranteeing overall semantic completability and then extend 
to partial completeness. Furthermore, we derived some 
important properties concerning the completability of BKBs. 
Another contribution of this work is that we demonstrate how 
this verification mechanism can be readily applied to preserve 
semantic completeness with regards to knowledge integration 
and system tuning without increasing computational 
complexity.  

For future work, we will examine how the verification 
mechanism can be applied to knowledge validation for BKBs 
whose goal is to make the knowledge bases satisfy all test cases 
given by knowledge engineers. One type of knowledge 
validation is to deal with the problem of thrashing, where 
incompleteness is a main contributor to thrashing results. 
Therefore, to solve this problem, it becomes important to 
define and detect the incompleteness, such that the hinted 
information can be correctly added to the knowledge base and 
ultimately bridge the gap between the availability of amounts 
of information and expertise.  
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