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ABSTRACT 
 

This paper addresses the fundamental research question: “How can we determine the sequential decision-

making process inside a decision maker’s mind?” We construct a dynamic Markov Decision Process using a 

Double Transition Model (DTM). The DTM is a cognitive model decomposing the decision-making process 

into episodic tasks that are extracted from a stream of incoming information. In a DTM, each state reflects a 

stage en route to a decision, and each action reflects a possible move from collecting data to hypothesizing 

and inferencing. The reward reflects how close a stage is to the final decision. We demonstrate this process 

through a proof-of-concept DTM using a hypothetical scenario for Typhoon Haiyan in the Philippines (2013). 

The DTM constructed from this scenario enables a Commander to reason about damaged areas, death tolls, 

and assistance methods while allowing his actions to be captured and used to explain why and how each 

decision is made. 

 

INTRODUCTION 
 

The key for the successful development of a proactive 

decision support system (PDS) is to determine what the 

Commander wants and why from his goals, actions taken, and 

any relevant information. This process requires the system to 

understand the decision-making goals of the Commander in 

order to anticipate the Commander’s needs while making 

decisions. In a PDS, the context that is central to the different 

decision trajectories is constructed to support the Commander. 

Unfortunately, the existing technologies at the center of a PDS 

do not fully address this problem, namely Decision Modeling 

(DM) and User Modeling (UM). UM techniques focus on the 

activities, information seeking, and cognitive behaviors of the 

user, whereas DM techniques focus on how decisions are made. 

Even though all of these foci affect the decision-making 

process, up to this point they have not been integrated and their 

interactions have not been considered in a unified framework. 

This leads to a considerable gap between the two research areas 

of DM and UM. In this paper, we set out to address this gap, 

which leads to the fundamental research question, “How can we 

determine the sequential decision-making process in the 

Commander’s mind?” We propose to model the Commander’s 

decision-making process over time by using Double Transition 

Models (DTM) (Yu, 2013; Yu and Santos, 2016). A DTM can 

be used to derive a Markov Decision Process (MDP) in which 

each state reflects a stage on the way to a decision, and each 

action reflects a possible move, from collecting data to 

hypothesizing or from hypothesizing to inferencing. Finally, the 

reward reflects how close a particular stage is to the final 

decision. The novelty of our approach is that we model the 

process of decision-making as a sequence of events that 

includes information-seeking actions, which are themselves 

decisions that are being taken. With a model of this sequential 

and episodic decision-making process, the information-seeking 

behavior itself can now be placed into context– that is, the UM 

is put in the context of DM, and DM’s need to account for UM 

is fulfilled.  

We demonstrate this process through a proof-of-concept 

DTM using information from a hypothetical disaster rescue and 

relief effort scenario for Typhoon Haiyan in the Philippines 

(2013). The DTM constructed from this scenario allows 

Commanders to reason about damaged areas, death tolls, and 

assistance methods, and also allows his actions to be tracked 

and used to explain why and how each decision is made. This 

framework addresses the gap between DM and UM at the center 

of PDS by using contextual information about what the 

Commander’s decision-making process looks like, and 

provides a concrete structure for explaining his decisions in the 

future. 

This paper is organized as follows. We begin by reviewing 

key related work with regards to constructing this framework. 

Next, we describe our approach. We then describe the scenario, 

followed by a brief discussion. Finally, we present our 

conclusions and future work. 

 

RELATED WORK 
 

 The novelty of our approach is to construct a dynamic 

model that integrates a user’s interests and keeps track of 

sequences of actions in his decision-making process. We use 

User Modeling and dynamic Markov Decision Processes 

(dMDP) in our approach. Related work for these areas is 

presented in this section. 

User Modeling techniques have been used to enhance the 

major tasks involved in the cognitive process of decision 

making (Wang and Ruhe, 2007). The major foci in this area 

include determining a user’s goals, identifying and quantifying 

a user’s choices, evaluating choices, and making decisions. 

Furthermore, a tremendous amount of effort has been spent on 

understanding a user’s goal or intent in a Web search or a 

general information-seeking task through information retrieval 
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and knowledge representation techniques (e.g., Nguyen and 

Santos, 2013; Santos and Nguyen, 2009;  Chuklin et al., 2013). 

User studies about personality, cognitive styles, and domain 

expertise, and even the emotion and motivation of the user, 

have been conducted in the cognitive psychology community to 

provide evidence of their respective effects on the decision-

making process (e.g., Poore et al., 2014; Scribner, 2015; Drew 

et al., 2015). User models are also used to build adaptive 

eLearning applications in which a student’s profile drives his 

navigation through domain knowledge (see (Truong, 2016) for 

a comprehensive review on eLearning systems). Unfortunately, 

there is a considerable gap between current user studies in 

cognitive engineering and computational models like the ones 

we are developing due to limitations on knowledge elicitation, 

representation tools, and differences in evaluation approaches. 

Our approach enables us to model the Commander’s behaviors 

over time and learn from his sequential actions and decisions to 

proactively assist him in future decision-making tasks. 

In the DM community, the Markov Decision Process 

(MDP) (Bellman, 1957) is a commonly used model of the 

decision-making process in uncertain environments. A MDP is 

composed of a set of states representing the world (𝑆), a set of 

actions (𝐴) that can be taken, a reward function (𝑅(𝑠, 𝑎)), and a 

set of possible transitions (𝑇: 𝑆 × 𝐴 → 𝑃(𝑆)) mapping state and 

action pairs onto another state with a probability. The goal is to 

find a set of actions to take in each state in order to maximize 

the reward (an optimal policy). Reinforcement learning is often 

applied to solve MDPs where the transition probabilities are 

unknown by leveraging traces of a policy (Sutton and Barto, 

1998; Ng and Russell, 2000). Among other areas, MDPs have 

been applied to such military applications as air campaign 

planning (Meuleau et al., 1998); for a detailed review of MDPs, 

please see Feinberg and Schwartz (2012). At the current time 

MDPs have not been used to model individuals, but rather to 

identify policies that do not require individualization. 

Additionally, the set of states in MDPs are always defined a 

priori. Unfortunately, predefined states are not possible in 

temporal and dynamic scenarios where concepts and transitions 

between these concepts may not exist until a later point in time. 

Therefore, our approach requires us to model actions and states 

which may have never been seen before and cannot be predicted 

in advance. 
 

APPROACH 
 

Inferring what information the Commander wants and why 

he wants it are the keys to a successful PDS, as identifying and 

explaining a Commander’s objectives and intent help fill the 

gap between UM and DM. The interaction between what a user 

wants and why he wants it cannot be separated because the 

motivation is a reason for taking actions to achieve something 

desired. Therefore, a unified cognitive decision model must 

have UM to identify the actions that the Commander takes and 

DM to explain why he made the decision. Simply put, actions 

taken by the DM impact representations, biases, and 

preferences in the UM, and in turn, preferences, biases, and 

representations in the UM impact which actions are preferred 

in the DM. In our cognitive decision model, context represents 

a Commander’s internal cognitive state, and is determined from 

relevant, externally available information that is central to a 

Commander’s decision-making process. The information 

includes which documents he retrieves and processes, which 

actions he has taken, and what goals he is currently pursuing. 

Our model enables us to explain why a Commander is making 

a certain decision by leveraging traces that contain a sequence 

of actions and relevant information to those actions. 
 

Architecture 
 

 The basis of our approach is to construct a Double 

Transition Model (DTM) (Yu and Santos, 2016) using traces of 

the Commander’s information streams, including incoming 

reports, documents, and requests over time. The DTM describes 

the Commander’s cognitive state and what he focuses on 

throughout the history of his decision-making process. It will 

not prescribe which actions the Commander should take next. 

In order to prescribe which actions the Commander should take 

next, we need to derive a dynamic MDP (dMDP) from the 

DTM. In this dMDP, it is possible to estimate a reward function 

that describes the Commander’s unique style and method for 

making decisions. In the next section we describe the 

construction of the DTM, the conversion of the Commander’s 

information stream to features accessible by the DTM, and the 

mapping of the DTM onto a dMDP. 

 

Double Transition Model (DTM) 
 

 The Double Transition Model (DTM) was originally 

created for modeling the formation of human opinion (Yu and 

Santos, 2016). In this paper, we use the DTM to model the 

human decision-making process, since opinion formation also 

involves decision-making processes. Each state in a DTM is the 

cross-product of two subgraphs, a Query Transition Graph 

(QTG) and a Memory Transition Graph (MTG). 

 Each node in the QTG represents a single query or a 

question that the Commander focuses on. Each query is 

represented as a vector [𝑋, ? , 𝑐1, 𝑑2, … ] where 𝑋 ∈ 𝑈 represents 

the target random variable of interest, 𝑈 represents the entire 

universe of random variables, ? ∈ 𝑈 represents that the 

instantiation of a variable is unknown, and 𝑐1 and 𝑑2 represent 

the states that the random variables 𝐶, 𝐷 ∈ 𝑈 take on. The set 

of all possible queries is denoted by ∇. A function 𝐹𝑞: 𝑞1 → 𝑞2  

where 𝑞1, 𝑞2 ∈ ∇ is called the query transformation function 

(qtf), which tells how to transition between states in the QTG. 

Each task has its own query space 𝜑(𝑡𝑖) = ⟨𝑞(𝑡𝑖), 𝑇𝑞(𝑡𝑖)⟩ 

where 𝑞(𝑡𝑖) is a finite set of queries and 𝑇𝑞(𝑡𝑖) is a finite set of 

qtfs.  

Def 1. (Yu and Santos, 2016): A QTG 𝑸 is an undirected 

graph (𝑽𝑸, 𝑬𝑸)where 𝑽𝑸 is a finite subset of ⋃ 𝒒(𝒕𝒊)𝒊  and 

(𝒗𝟏
𝑸

, 𝒗𝟐
𝑸

) ∈ 𝑬𝑸 only if 𝑭𝒒(𝒗𝟏
𝑸

) = 𝒗𝟐
𝑸

 for some 𝑭𝒒 ∈ 𝑻𝒒(𝒕𝒊) 

and 𝒊. 

Query transformations represent the changes in the 

Commander’s focus. The formulation of the query lends a 

potential structure for how the Commander represents 

information in his underlying knowledge base. Queries may be 
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input by the commander, or inferred by assuming a base 

structure and generating queries to match the structure. 

 The MTG stores the underlying knowledge of the 

Commander and how its features relate in a probabilistic 

network called a Bayesian Knowledge Base (BKB) (Santos and 

Santos, 1999). Let Ξ be the space of probabilistic networks 

over 𝑈 that form the memory of a Commander. A memory 

transformation function (mtf) 𝐹𝑚: 𝑚1 → m2 for 𝑚1, 𝑚2 ∈Ξ  

represents how memory changes, either by changing the 

parameters or structure of the underlying knowledge base. Let 

Γ = (𝐾, 𝑇𝑚) be the memory space where 𝐾 is a finite set of 

probabilistic networks and 𝑇𝑚 is a finite set of mtfs operating on 

𝐾.  

Def 2. (Yu and Santos, 2016): A MTG 𝑲 is an undirected 

graph (𝑽𝑲, 𝑬𝑲) where 𝑽𝑲 is a finite set from 𝑲 and (𝒗𝟏
𝑲, 𝒗𝟐

𝑲) ∈

𝑬𝑲 only if 𝑭𝒎(𝒗𝟏
𝑲) = 𝒗𝟐

𝑲 for some 𝑭𝒎 ∈ 𝑻𝒎. 

MTGs and QTGs combine to form the DTM. In the DTM 

a transformation from one state to another represents a change 

in what the Commander is interested in or what changes 

occurred in his cognitive state. 

Def 3. (Yu and Santos, 2016): A DTM 𝑫 induced by QTG 

𝑸 and MTG 𝑲 is the undirected graph (𝑽𝑫, 𝑬𝑫) where 𝑽𝑫 =

𝑽𝑸 × 𝑽𝑲 and there is an edge between 𝒗𝟏
𝑫 = (𝒗𝟏

𝑸
, 𝒗𝟏

𝑲) and 

𝒗𝟐
𝑫 = (𝒗𝟐

𝑸
, 𝒗𝟐

𝑲) if and only if (1) 𝒗𝟏
𝑸

= 𝒗𝟐
𝑸

 or (𝒗𝟏
𝑸

, 𝒗𝟐
𝑸

) ∈ 𝑬𝑸 

and (2) 𝒗𝟏
𝑲 = 𝒗𝟐

𝑲 or (𝒗𝟏
𝑲, 𝒗𝟐

𝑲) ∈ 𝑬𝑲. 

Each node within the DTM represents the Commander’s 

cognitive state (via the MTG) and what he focuses on (via the 

QTG). Transitions between states represent decisions made and 

actions taken. The goal in the DTM is thus to reconstruct the 

sequence of decisions that the Commander made in order to 

predict future decisions by leveraging repeating patterns. 

As an example of the DTM, a Commander may have 

received new information that an Earthquake hit Bohol in the 

Philippines. The Commander could undergo a memory 

transformation by adding a feature representing the possibility 

that Bohol may be damaged into his underlying MTG that 

represents the Commander’s knowledge. Then he could 

undergo a query transformation, asking a question such as “Is 

Bohol Damaged?” This process can be seen in Figure 1. 

 

 
Figure 1. An example of the DTM framework. 

 The random variables (such as ‘Bohol’ and ‘Earthquake’) 

and their relationships in the DTM and its underlying QTG and 

MTG are unknown at first and must be identified and extracted 

from the Commander’s information stream in order to 

incorporate them into the MTG representing the Commander’s 

memory. 

 

Information preprocessing 
 

Our model is built from a set of relevant features that are 

defined as distinctive attributes for the Commander’s decision-

making process extracted from his information stream. In order 

to extract the features automatically from a source of incoming 

unstructured documents we convert the text into two structured 

formats: Document Graphs (DG) (Santos and Nguyen, 2009) 

and vectors containing the main topics of these documents.  

 A Document Graph is a graph consisting of concept nodes 

and relations between them. Concept nodes represent entities, 

and relations are either “isa” for subsumption relations between 

entities or “related_to” for any other relationship between 

entities. A sample DG for “A magnitude 7.2 earthquake hit 

Central Visayas on Tuesday” is shown in Figure 2. 
 

 
 

Figure 2. Sample Document Graph 

 We also use Latent Dirichlet Allocation (LDA) (Blei et al., 

2003) to generate topics from the corpus of relevant documents 

compiled in the Commander’s information stream. Topics are 

vectors of semantically related words. The topics and terms in 

each topic give us general summaries of the main topics from 

these incoming documents while document graphs fill in the 

detailed information of main concepts. We combine both LDA 

and DGs into our feature extraction algorithm. 

 

Feature extraction 

 
A Commander’s decision and action space is uncertain and 

constantly changing. Making decisions in such a space requires 

automatic identification and extraction of features that are 

relevant to current and future decisions. The value of a feature 

is a specific, valid, and observed state of that attribute. 

Therefore, extracting feature-value pairs from unstructured and 

structured information is a crucial part of this model. A 

flowchart of extracting features and values from unstructured 

incoming documents is shown in Figure 3. These features are 

utilized in the dMDP, the DTM, and the underlying BKBs. 
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Bayesian Knowledge Bases 
 

 In order to be able to answer queries in the DTM, and thus 

make individual decisions or choose actions, we must be able 

to reason over the feature space. A Bayesian Knowledge Base 

(BKB) (Santos and Santos, 1999) provides a convenient method 

to reason over the feature space using if-then rules with 

associated probabilities. The structures and probabilities must 

both be learned from the documents and traces of the 

Commander’s actions. The QTG in the DTM provides the 

structures. For a given query such as, "[𝑋 =
𝐵𝑜ℎ𝑜𝑙, 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 5.2, ? ]”, where the 

features were extracted from text, we use the uniform 

distribution to select probabilities and get the BKB depicted in 

Figure 4. Note that this is only a single possible state 

represented by the query, and all features that exist for an 

unknown variable (denoted as "?" in the above query) (e.g. 

“Attack = Moro National Liberation Front”) could have been 

selected instead (including no instantiation, as pictured), 

changing the structure of the BKB in figure 4. 

 
Figure 4. BKB for query [X=Bohol, Earthquake 

Magnitude=5.2,?] 

 A formed query is looking for a relationship among 

features. Choosing to include features in a query implies that 

there is an expected probabilistic relation between the target and 

the features. We both extract the queries from the Commander’s 

information-seeking actions and also build the memories from 

documents in the Commander’s history. The ability to transition 

between cognitive states and also keep all subsequences as 

episodes in the QTG and MTG allows us to identify more 

probable memory structures that are consistent with the 

Commander’s behavior because we can simply select the best 

subsequent decision when we derive the dMDP. 

 

 

Dynamic Markov Decision Processes 
 

 In the paper by Yu and Santos (2016), the authors derived 

a mapping from the DTM, goals, and actions onto a MDP for 

an individual opinion formation task. Their process maximizes 

a goal function and reward function while minimizing the 

change to the knowledge base of a decision maker. In our case, 

as new information comes in and a Commander makes 

decisions, his feature space must be robust to inaccuracy and 

information changes. We instead use a dMDP to account for 

this dynamic feature space that is presented to a Commander. 

The MDP is constructed and solved for each of the finite feature 

sets at a given point in time. The probabilities of transitions in 

the dMDP mirror the probabilities of transitions within the 

DTM, which were sampled from the Commander’s own 

history. The Commander’s history is based on his decisions, 

and the reward function maximizes the policy that best matches 

his decisions while simultaneously maximizing the consistency 

of the memory transition graph. This reward function is the key 

insight into modeling a Commander’s decision-making 

behaviors because traces of his decisions encompass his unique 

decision-making style. Our future goal is to solve the dMDP to 

predict both the decisions that the Commander is likely to 

encounter and which choice he is likely to make. 

 

SCENARIO DISCUSSION 
 

To demonstrate our approach, we chose the disaster rescue 

and relief effort for Typhoon Haiyan in the Philippines in 2013. 

We collected and compiled relevant documents about this 

disaster, including press releases and Department of Defense 

reports (including US Marine reports) and arranged them into a 

timeline. Since we have to synthesize the Commander’s 

timeline, the documents have been filtered so that only the 

material highly correlated with the tasks at hand are delivered 

to our system. We argue that this is realistic because the 

documents that a Commander selects would be expected to be 

correlated with the task at hand. We also assume that the tasks 

related to the decisions made by Commanders and the 

Commander’s cognitive states are changing over time. The 

features will be automatically extracted from semi-structured 

documents and used to construct the DTM. A memory 

transition graph of the DTM contains a set of nodes, each of 

which is described by a BKB created from the features obtained 

at each time slice (as shown in Figure 5(a)). Similarly, the QTG 

Figure 3. Feature extraction flowchart. 
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is created from features extracted based on a Commander’s 

requests over time (shown in Figure 5(b)). The random 

variables 𝐴, 𝐵, 𝐶, and 𝐷 represent the features while 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 

and 𝑑𝑖  represent the corresponding values. This DTM allows 

users to ask questions that are defined over the features in the 

DTM. Questions may relate to different probabilities acquired 

through reasoning in the underlying BKBs. For example, the 

BKB may reveal such questions as “Which region is more 

damaged, Tacloban or the Six Islands?”, “Which region has 

more damage among those where more than 1,000 people were 

killed?”, or “Is Bohol still damaged from the Earthquake?” We 

refer to the features that we believe to be true as evidence. These 

questions are answered through solving the dMDP that 

ultimately learns to create a policy rewarding the decisions that 

the Commander made and recommends transitions in the DTM. 

At this time, a belief update is performed on a BKB at each node 

computing posterior distributions of the features. For example, 

through the BKBs we are able to find that the answer to the first 

of the aforementioned questions that the six islands had a higher 

probability of being damaged at time t1 but had a relative lower 

probability of damage at time t4 as incoming information 

changed and updated the response of the system. Testing with 

our scenario validates that we can model a user’s actions and 

behaviors in a decision-making process. Finally, while we do 

not currently have learning modules in the model to estimate a 

user’s cognitive styles and patterns in the decision-making 

process for prediction, we will develop this ability in the future. 

 

 
Figure 5 (a) Memory Transition Graph (b) Query Transition Graph 

 

CONCLUSION 
 

We have demonstrated a framework for providing 

proactive decision support to Commanders in an uncertain, 

changing, temporal information space. Our framework bridges 

a gap between the user modeling and decision making 

communities by capturing the context of a Commander’s 

decision-making process and reasoning over the feature spaces. 

This provides a concrete architecture for future work including 

explaining why a specific decision is made or incorporating 

cognitive styles into the decision-making process. 

Solving the models in this framework allows us to 

reconstruct the most likely decision process the Commander 

took to reach a conclusion. One of the challenges in the 

evaluation of this framework is limited availability of data that 

tracks the process of Commanders’ behaviors. We are in the 

process of constructing multiple synthetic Commander’s action 

sequences using data from real-world events to further validate 

the model. Our future work includes the use of inverse 

reinforcement learning to learn the Commander’s policy and 

reward function simultaneously. This will enable us to predict 

a Commander’s decisions and actions through a model of his 

underlying process of decision making in order to provide 

relevant information and proposed courses of action even 

before being asked. Future work also involves quantifying the 

growth rates of the model. 

 

ACKNOWLEDGEMENTS 
 

 This work was sponsored in part by ONR Grant No. 

N00014-15-1-2154 and DURIP Grant No. N00014-15-1-2514. 

 

REFERENCES 
 

Bellman, R. E. (1957). A Markovian Decision Process. Ind. Univ. Math. J. 6(4), 
679–684. 

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The 

Journal of Machine Learning Research, 3, 993-1022. 
Chuklin, A., Serdyukov, P., & De Rijke, M. (2013). Using intent information 

to model user behavior in diversified search. In Proceedings of the 35th 
European conference on Advances in Information Retrieval (ECIR'13), 

Pavel Serdyukov, Pavel Braslavski, Sergei O. Kuznetsov, Jaap Kamps, 

and Stefan Rüger (Eds.). Springer-Verlag, Berlin, Heidelberg, 1-13. 
Drews, F., Siebeneck, L., & Cova T. (2015). Information Search and Decision 

Making in Computer-Based Wildfire Simulations. Journal of Cognitive 

Engineering and Decision Making. 9: 229-240. 
Feinberg, E. A., & Shwartz, A. (Eds.). (2012). Handbook of Markov decision 

processes: methods and applications (40). Springer. 

Meuleau, N., Hauskrecht, M., Kim, K. E., Peshkin, L., Kaelbling, L. P., Dean, 
T. L., & Boutilier, C. (1998). Solving very large weakly coupled Markov 

decision processes. In Proceedings of the fifteenth national/tenth 

conference on Artificial Intelligence/Innovative Applications of Artificial 
Intelligence (AAAI '98/IAAI '98) (pp. 165-172). 

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforcement learning. 

In Proceedings of the Seventeenth International Conference on Machine 
Learning (ICML '00), Pat Langley (Ed.). Morgan Kaufmann Publishers 

Inc., San Francisco, CA, USA, 663-670. ). 

Nguyen H. & Santos E., Jr. (2013). Hybrid User Model for Capturing a User’s 
Information Seeking Intent. In Multimedia Services in Intelligent 

Environments. 24, pp 31-63. 

Poore, J. C., Forlines, C. L., Miller, S. M., Regan, J. R., & Irvine, J. M. (2014). 
Personality, cognitive style, motivation, and aptitude predict systematic 

trends in analytic forecasting behavior. Journal of cognitive engineering 

and decision making, 8(4), 374-393. 
Santos E., Jr., & Nguyen, H. (2009). Modeling Users for Adaptive Information 

Retrieval by Capturing User Intent. In Collaborative and Social 

Information Retrieval and Access: Techniques for Improved User 
Modeling. IGI Global. 

Santos, E., Jr., & Santos, E. S. (1999). A framework for building knowledge-

bases under uncertainty. Journal of Experimental & Theoretical Artificial 
Intelligence, 11(2), 265-286. 

Scribner, D. R. (2015). Predictors of Shoot–Don’t Shoot Decision-Making 

Performance An Examination of Cognitive and Emotional Factors. 
Journal of Cognitive Engineering and Decision Making. 

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. 

MIT press. 
Truong, H. M. (2016) Integrating learning styles and adaptive e-learning 

system: Current developments, problems and opportunities, Computers in 

Human Behavior, Vol. 55, Part B, Pages 1185-1193, ISSN 0747-5632.  
Wang, Y., & Ruhe, G. (2007). The Cognitive Process of Decision Making. 

International Journal of Cognitive Informatics and Natural Intelligence 

(IJCINI), 1(2), 73-85. 
Yu, F. (2013). A Framework of Computational Opinions (Doctoral 

Dissertation), Dartmouth College, Hanover, NH. 

Yu, F. & Santos, E., Jr. (2016). On Modeling the Interplay between Opinion 
Change and Formation, in Proceedings of the 29th International FLAIRS 

Conference, Key Largo, FL (pp. 140-145). 

Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting 222


