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We address the problem of information fusion in uncertain environments. Imagine there

are multiple experts building probabilistic models of the same situation and we wish to

aggregate the information they provide. There are several problems we may run into by

naively merging the information from each. For example, the experts may disagree on the

probability of a certain event or they may disagree on the direction of causality between

two events (e.g., one thinks A causes B while another thinks B causes A). They may even

disagree on the entire structure of dependencies among a set of variables in a probabilistic

network. In our proposed solution to this problem, we represent the probabilistic models

as Bayesian Knowledge Bases (BKBs) and propose an algorithm called Bayesian knowledge

fusion that allows the fusion of multiple BKBs into a single BKB that retains the information

from all input sources. This allows for easy aggregation and de-aggregation of information

from multiple expert sources and facilitates multi-expert decision making by providing a

framework in which all opinions can be preserved and reasoned over.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

There are many situations when information fusion can be useful, from fusion of low level sensor data to the aggregation

of higher levelmodels built by human experts. One simple example is the case ofmultiplemedical diagnosis expert systems,

each containing rules from different experts. One expert may believe that the causal link between disease A and symptom

B is strong while another may think it is weak; or one may think that condition A causes condition B while another thinks

that B causes A. In the former case, we could take the max of the two conditional probabilities, or the average, or some

other function of the two, but in doing so we would likely lose some information. In the latter case, we would end up with

a cyclic causal relationship, violating the rules of some knowledge representation schemes like the widely used Bayesian

Networks [1]. The ability to aggregate knowledge from mutiple sources in light of these difficulties is crucial in decision

making scenarios involving mutiple subject matter experts and perspectives.

In addition to combining the opinions ofmultiple experts, anothermajor goal of thiswork is to allow the easy aggregation

and de-aggregation of pieces of information. This allows for reasoning over only the relevant pieces of the knowledge base. It

also alleviates the problem of the high computational cost of reasoning in very large knowledge bases and allows for focused

source-based analyses. Ease of aggregation is also ideal when dealing with a probabilistic model of a dynamic or evolving

situation where new knowledge is being gained and added to the knowledge base incrementally and old knowledge may

be removed if it is no longer applicable.

In this paper, we use Bayesian Knowledge Bases (BKBs) [2–4] as our knowledge representation framework. A BKB is a

generalization of a Bayesian Network (BN) in which dependencies are specified between states of random variables instead
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of between random variables, directed cycles are allowed, and the probability distribution specified need not be complete.

We show how to take a collection of BKBs andmerge them into one single BKB. In the context of the fusion process, we refer

to the input BKBs as Bayesian Knowledge Fragments (BKFs) since each represents one fragment of knowledge that we wish

to fuse into a larger knowledge base. Thus each BKF contains one chunk of knowledge and the fusion process allows them to

be composed into larger, semantically meaningful models. These fragments can be easily stored, retrieved, and aggregated.

In related work, others have tried to use BNs for knowledge representation, but techniques based on BNs run into

problems when it comes to tractable manipulation and reasoning. These techniques fall victim to exponential run time

complexity, the need for complete specification of probability distributions, and overly rigid rules regarding conditional

dependence structure. Included in this class are BN variants such as object-oriented BNs [5], multi-entity BNs [6], and

Bayesian blackboards [7].

Our fusionalgorithmisbasedon theadditionofnewnodes to the input fragments called sourcenodes. Thesenodes indicate

which rules in the knowledge base came from which fragments. A reliability index is given to each fragment indicating the

trustworthiness of the source of the knowledge contained in the particular fragment. With these source nodes and their

corresponding reliabilities, the inference process on the fused BKB can consider information from multiple sources when

constructing explanations for any evidence observed. Thus the constructed explanation may contain elements from several

different sources.

In the next section, we will describe BKBs in more detail. Then we will present the fusion algorithm and some examples

of it in use. After that, we will further investigate the properties of the fused BKB, and then we will end the paper with a

conclusion and description of future directions for this research.

2. Bayesian Knowledge Bases

A BKB is a collection of conditional probability rules (CPRs) of the form if A1 = a1, A2 = a2, . . . , An = an, then B = b

with probability p, that satisfies conditions of normalization and mutual exclusivity that will be formally defined shortly. In

these rules, Ai and B are random variables and ai and b are instantiations, or states, of those random variables. BKBs subsume

Bayesian Networks (BNs) as all BNs are representable as BKBs (one can form a BKB from a BN by making all the conditional

probability table entries in the BN into CPRs in the BKB). In contrast to BNs, and similar to probabilistic decision graphs [8],

BKBs allow for independence to be specified between states of random variables instead of between the random variables

themselves.

BKBs also do not require that the probability distribution specified by the rules be complete; inference is carried out on

only those rules that are specified. This allows for reasoning in the face of incompleteness and alleviates the burden of filling

in large conditional probability tables which can be especially problematic when all the probabilities for these tables are not

readily available. Others such as Druzdzel and van der Gaag [9] have done somework in allowing underspecified probability

distributions by defining the distribution in terms of a set of (in)equalities on the probabilities that effectively constrain the

space of distributions that are possible. However, in this approach, inconsistencies between experts must be addressed by

modifying the knowledge base, unlike in our approach in which the opinion of each expert is preserved.

Similarly to a BN, a BKB can be represented graphically, but the graph is not required to be acyclic as with BNs. Other

graphical models do allow cyclicity but with various associated drawbacks. The well known Markov random fields allow

cyclicity but are undirected and cannot represent some dependencies that a directedmodel such as a BN can. Anothermodel

Fig. 1. A BKB fragment from a knowledge base about the South Carolina Democratic Primary election as a set of CPRs.

Fig. 2. A BKB fragment from a knowledge base about the South Carolina Democratic Primary election as a directed graph.
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Fig. 3. Underlying random variable relationships in Fig. 2.

allowing cycles is the dependency network model of Heckerman et al. [10], but these are equivalent in expressive power to

Markov networks and are not useful in specifying causal relationships.

There are two types of nodes in a graphically depicted BKB, I-nodes representing the different instantiations of the

random variables, and S-nodes, or “support nodes”. An example of a BKB from work on the South Carolina Democratic

Primary election is shown in rule form in Fig. 1 and in graph form in Fig. 2. Each solid black circle in Fig. 2 is an S-node and

corresponds to exactly one of the CPRs from Fig. 1. The number next to the S-node is its weight. Each text-filled oval is an

I-node corresponding to one state of one of the random variables. The dependencies shown in the BKB would result in a

circular directed graph at the randomvariable level (Fig. 3) and thuswould not be a valid BN. The circular relationship results

because black voters felt that Hillary Clinton had downplayed Martin Luther King Jr.’s role in the civil rights movement and

this caused them to support Obama [11]. However, some white voters who liked the Clinton family and supported Hillary

may have been skeptical that she had any ill intentions when making the remark about Martin Luther King Jr. Similar to

d-separation in BNs, it is possible to determine independence semantics from the graph induced by a BKB [12].

We now give the formal definition of the graphical representation of a BKB from [13]:

Definition. A correlation-graph is a directed graph G = (I ∪ S, E) in which I ∩ S = ∅, E ⊂ {I × S} ∪ {S × I}, and ∀q ∈ S,

there exists a unique α ∈ I such that (q, α) ∈ E. If there is a link from q ∈ S to α ∈ I, we say that q supports α.

An edge (a, b) ∈ E will be denoted as a→ b throughout the rest of the paper. For each S-node q in a correlation graph

G, we denote the set of all I-nodes that point to q as TailG(q), i.e. TailG(q) = {α ∈ I|α → q ∈ E}. Similarly the HeadG(q) is
the I-node that q points to in G, i.e. the α such that q→ α ∈ E.

Two sets of I-nodes, I1 and I2 are said to bemutually exclusive if there is an I-node (R1 = v1) in I1 and an I-node (R2 = v2)
in I2 with R1 = R2 and v1 	= v2. Intuitively,mutual exclusivity is the condition that the two sets I1 and I2 cannot be satisfiable

at one time (i.e. there must be some random variable that is given a contradictory assignment in each of the sets). Similarly,

two S-nodes q1 and q2 are called mutually exclusive if Tail(q1) and Tail(q2) are mutually exclusive. S-nodes and I-node sets

that are not mutually exclusive are called compatible. A state is a set of I-nodes θ such that there is at most one instantiation

of each random variable in θ .

Definition. A Bayesian Knowledge Base (BKB) is a tuple K = (G,w) where G = (I ∪ S, E) is a correlation-graph, and

w : S→ [0, 1] such that

(1) ∀q ∈ S, TailG(q) contains at most one instantiation of each random variable.

(2) For distinct S-nodes q1, q2 ∈ S that support the same I-node, TailG(q1) and TailG(q2) are mutually exclusive.

(3) For any Q ⊆ S such that (i) HeadG(q1) and HeadG(q2) are mutually exclusive, and (ii) TailG(q1) and TailG(q2) are not

mutually exclusive for all distinct q1 and q2 in Q ,

∑

q∈Q
w(q) ≤ 1.

So a BKB is a correlation graph alongwith aweight function (specifying the probabilities in the CPRs) satisfying the above

conditions. Thefirst conditionstates thatno rule canhave twocontradictoryassignments in its tail. Thesecondensures that all

S-nodes pointing to the same I-node aremutually exclusive, and the last condition ensures normalization of the probabilities.

Reasoningwith BKBs takes on twomain formswe refer to as belief revision and belief updating, similar to reasoningwith

BNs [1]. Belief revision is similar to computing the maximum a posteriori (MAP) or most probable explanation (MPE) in a

BN. In belief revision we have some evidence in the form of assignments of random variables to states, e.g. assume we have

a BKB with n variables and k pieces of evidence A1 = a1, A2 = a2, . . . , Ak = ak . The goal of belief revision is to find the

assignment of Ak+1, Ak+2, . . . , An to states such that P(Ak+1 = ak+1, . . . , An = An|A1 = a1, . . . , Ak = ak) is maximized.
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Intuitively, this can be thought of as finding the most probable state of the world that contains all the evidence. In belief

updating, the goal is to find the probability of a state of a random variable given the evidence. For example, assuming again

that A1 = a1, A2 = a2, . . . , Ak = ak , we may want to find P(B = b|A1 = a1, A2 = a2, . . . , Ak = ak) for some instantiation

b of a random variable B.

In BKBs however, we are often interested in partial states of the world instead of complete states, especially because we

may have a BKB specifying an incomplete probability distribution in which it is not possible to perform a traditional MAP

computation as described above. Thus, in revision, our goal becomes to compute the most likely partial state of the world

(also called the most probable inference supported by the evidence, as will be described later). In updating, we can find the

marginal probability of a partial state of theworld in addition to that of a single state of a randomvariable or a complete state

of the world. Given that BKBs support incomplete specification of knowledge, we may have to make these calculations in

the face of this incompleteness. In these situations, only the information that has been specified by the knowledge engineer

is used in a given computation, no assumptions are made to “fill in” the portions of the probability space that have not been

specified.

In carrying out both types of reasoning, we make use of subgraphs called inferences that capture the joint probability of

the I-nodes in the subgraph. Intuitively, an inference is a partial state of the world.

Definition. Let K = (G,w) be a BKB with correlation graph G = (I ∪ S, E). A subgraph τ = (I′ ∪ S′, E′) of G is called an

inference over K if

(1) τ is acyclic.

(2) (Well-supported) ∀α ∈ I′, ∃q ∈ S′, q→ α ∈ E′
(3) (Well-founded) ∀q ∈ S′, Tailτ (q) = TailG(q)
(4) (Well-defined) ∀q ∈ S′, Headτ (q) = HeadG(q)
(5) There is at most one I-node corresponding to any given random variable in I′.

The properties above state that in an inference, (2) each I-node must have an S-node pointing to it, (3) if an S-node in

the inference has any I-nodes pointing to it in the correlation graph they must also be in the inference, (4) there cannot be

S-nodes in the inference that do not point to any I-nodes in the inference, and (5) there cannot bemutually exclusive I-nodes

in an inference. The joint probability of the set of I-nodes in an inference is simply the product of the weights of all S-nodes

in the inference, i.e. for an inference τ = (I′ ∪ S′, E′), P(τ ) = ∏
q∈S′ w(q).

3. The fusion algorithm

In this section, we will discuss related work on model fusion and then define an algorithm that takes multiple Bayesian

Knowledge Fragments as input and fuses them into one larger BKF. EachBKF is assumed to come fromadistinct expert source.

There has been prior work on fusing probabilistic models such as that of Matzkevich and Abramson [14], but the drawback

to their approach seems to be that they resolve conflicts in the fusion of multiple Bayesian Networks by forming a new

network representing the “consensus” of the experts who created the input networks instead of preserving the knowledge

encoded by each expert as in our approach. Jiang et al. [15] also propose a framework for fusingmultiple BNs and integrating

new ones over time, but their approach can require non-trivial changes to the input BNs such as reversal of arcs to avoid the

creation of cycles and an ad-hoc addition of variables in order to get the conditional probability tables in a state in which

they can be combined to form a single set of CPTs. There is also a body of work from Laskey and Mahoney [16–18] on an

object-oriented approach to managing and aggregating fragments of BNs for specific situations. Related work by Lu and

Druzdzel using structural equations to incrementally build a model can be found in [19].

In ourmodel, the reliability and probability of correctness of each source is assessed to produce a reliability index for each

fragment, allowing more reliable sources to be given more weight in the fused BKB. As long as the input fragments are valid

BKBs, the algorithm assures that the fusion of these BKBs is still a valid BKB. A BKF can thus be described as a BKB along with

a source and its reliability index, i.e., it can be described as a tuple K = (G,w, σ, r(σ )) where G andw define a valid BKB, σ
is the source of the BKB, and r(σ ) is the reliability index, a non-negative real number denoting the reliability of the source.

The idea behind the algorithm is to first take the union of all input fragments. Then, for each random variable A in the

fused BKF, we create a new random variable SA representing the source of a rule supporting an I-node representing a state of

A. Each S-Node that points to a state of A has an I-node added to its tail called a source nodewhose random variable is SA and

whose state is σ , the source of the fragment the S-node came from. The reliability of this source node is r(σ ), the reliability

of the fragment that the S-node came from. So if a rule q supporting an I-node (A = a) is from source σ , we would add the

source I-node (SA = σ) to the tail of q in the fused BKF. We also add an S-node q′ to the fused BKF whose head is (SA = σ).
The weight of this S-node is proportional to the reliability index r(σ ) for the source, normalized so that the weights of all

sources for a given random variable do not exceed 1. Intuitively, adding a source node, as in the algorithm, turns a rule that

says “If A is true then B is true with probability p” into a rule that says “If source σ is correct and A is true, then B is true with

probability p”.

The algorithm can be described more formally as follows. The input is a set of n BKFs, {K1, K2, . . . , Kn} where Ki =
(Gi,wi, σi, r(σi)) and Gi = (Ii ∪ Si, Ei). The output is a new BKB, K ′ = (G′,w′) with G′ = (I′ ∪ S′, E′), that is the fusion of
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the n input BKFs. For an I-node α in some fragment, let Rα be the random variable that α is an instantiation of. For a source

node s = (SRα = σi) let the reliability of s be r(s) = r(σi).

Bayesian-Knowledge-Fusion(K1, K2, . . . , Kn)

1 Let G′ = (I′, S′, E′) be an empty correlation graph and w′ a weight function

2 I′ ← ∪ni=1Ii
3 S′ ← ∪ni=1Si
4 E′ ← ∪ni=1Ei
5 for all fragments Ki with i← 1 to n

6 for all S-nodes q ∈ Si
7 Let α← HeadGi

(q)
8 Let the source I-node for q be s = (SRα = σi)
9 Add s to I′ and add a new S-node qs to S′

10 Add the edges qs → s and s→ q to E′
11 Let w′(q)← wi(q)
12 for all source variables SRα

13 Let � = {s | s is a source node which is a state of SRα }
14 Let ρ ← ∑

s∈� r(s)
15 for each s ∈ �, let qs be the S-node such that qs → s ∈ E′
16 Let w′(qs)← r(s)/ρ
17 return K ′ = (G′,w′)

4. Common knowledge fusion problems

Although the algorithm presented seems fairly simple, it allows us to solve a wide variety of problems that may crop

up when fusing knowledge from multiple sources. The first problem we will discuss is of experts who disagree about the

weight of a relationship. In this scenario, we have one expert who believes that A causes B with some probability p1 and a

different expert who believes that A causes Bwith some probability p2 	= p1. In more traditional systems, these rules would

need to be combined into a single rule, with one weight, that could be stored. However, we argue that in doing so, valuable

information provided by an expert may be lost. Instead of two probabilities provided by independent experts, we now have

only one value which we hope is better than either of the two we started with. Unfortunately, it may be the case that one

probability was much better than another. It may also be the case that the fact that there was disagreement about this value

is significant, but by reducing the knowledge stored to a single rule, we lose this information as well.

Using our knowledge fusion algorithm, this problem is avoided. In our system, the rules from both of the experts would

be stored in the system and available for reasoning. The rules can be appropriately weighted based on the reliability of

each of the experts with respect to the situation being modeled. A hypothetical example related to work performed with

Dr. Felicia Pratto of the University of Connecticut is shown in Fig. 4 (Pratto, personal communication). Here, two experts

have both constructed a rule indicating the likelihood that the Palestinian people will support Hamas if they believe that

the Palestinian Authority has corruption problems. From the figure it is clear that one expert believes that the perception of

corruption has a significant impact on support for Hamas while the other expert believes that the relationship is less certain

and places a much lower probability on the rule.

In order to use the Bayesian Knowledge Fusion algorithm, the experts need to be assigned reliabilities. In this case, one

of the experts happens to be Dr. Pratto, while the other is one of her students. Naturally, we assign a much higher reliability

to the rule created by Dr. Pratto (0.93) and a much lower probability to the one provided by her student (0.03). This results

Fig. 4. The same rule created by two different experts, but with different weights.
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Fig. 5. Result of the fusion of the rules from Fig. 4 after sources were assigned weights and the algorithm applied.

Fig. 6. Two rules regarding academic life that disagree about direction of causality.

Fig. 7. Fusion of the two rules from Fig. 6.

in the fused fragment shown in Fig. 5 which has each of the original rules, along with their weights, fused into a single

probabilistically valid knowledge base.

Another problem that is handled well by our framework is that of cyclicity. In traditional probabilistic knowledge rep-

resentations, cyclic knowledge is not allowed. For instance, one of the important properties of a Bayesian Network is that

it must be an acyclic graph. However, when dealing with multiple sources of knowledge, it is quite possible that they will

disagree about the direction of causality of a rule in the knowledge base. This could lead to the situation where one expert

believes that A implies B with some probability while another expert believes that B implies A with some probability. If we

were to draw this in the form of a Bayesian Network, a cycle would be present. Normally, an attempt would be made to

determine the “correct” direction of the dependence and only this direction would be stored in the knowledge base. How-

ever, in our framework, cyclic knowledge is allowed and does not pose any problems. The sources would each be assigned a

reliability and each of their rules would be included in the knowledge base without modification.

A simple example drawn from academic life is shown in Fig. 6. These fragments were created based on a comic from the

popular PhD Comics website by Cham [20]. The comic deals with the vicious cycle many students end up in with regard

to their sleep schedule. Often students do not get any work done during the day, so they stay up late to try to finish some

work and make up for it. Then since they stayed up late doing work, they are tired the next day and do not get any work

done during the day as a result. Different experts, call them Bill and Bob, may create two different rules from this comic (as

in Fig. 6) that are essentially the same but with the direction of causality reversed. One has concluded that staying up late

causes no work to be completed during the day, while the other thinks that not completing work during the day causes one

to stay up late because they want to make up for procrastination during the daytime.
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Fig. 8. Naive union of two fragments results in a violation of mutual exclusivity.

Fig. 9. Fusion of the two fragments from Fig. 8 using our Bayesian knowledge fusion algorithm solves mutual exclusivity problem.

As in the previous example, trying to use both of these rules in a Bayesian Network would result in problems. Specifically

it would introduce a cycle, which is not allowed. In our framework however, the rules can be fused without issue. As before,

the source of each of the rules must be given a reliability. In this case, as we have no reason to think one source more

reliable than the other, we assign equal weight to each of the sources. The result of applying the Bayesian Knowledge Fusion

algorithm to the rules from Fig. 6 is shown in Fig. 7.

A final problem that can arise in the context of multiple source knowledge fusion is a violation of the properties required

by the definition of a Bayesian Knowledge Base, in particular, the mutual exclusivity requirement. This principle requires

that all I-nodes pointing to the same S-node must be pairwise mutually exclusive, i.e. for any two S-nodes pointing to the

same I-node, there must be some I-node in the tail of each of the S-nodes representing the same random variable with a

different instantiation of that variable. Intuitively, the S-nodes supporting some I-node each represent a different way to

prove the truth of the I-node. If all of the I-nodes supporting some S-nodes can be shown to be true, then it can be inferred

that head of the S-node is true as well. Mutual exclusivity requires that in any possible world, there is only one valid way

to prove the truth of a given I-node, i.e. for any I-node, only one S-node supporting it is allowed to be true in any possible

world. A similar condition is present implicitly in Bayesian Networks. When the conditional probability table (CPT) is filled

out for a node in a BN, it is easy to see that the lines in the CPT are similar to the S-nodes in a BKB, and any pair of lines in a

CPT is guaranteed to contain a contradictory assignment to some random variable.

In our framework, we assume that all knowledge fragments that serve as input to our algorithm are valid BKBs. Thus we

are guaranteed that each of these fragments satisfies the mutual exclusion condition in the definition of a BKB. It is vitally

important that after the fusion algorithmcompletes there are no violations of this condition in the resulting fused knowledge

base, or else we cannot guarantee that a valid BKB will be produced by the algorithm. It may seem at first that given a set of

BKBs, we could just take their union in order to fuse them into a larger BKB, but this presents problems. Consider the two

fragments in Fig. 8(a) and (b) whose naive union is shown in Fig. 8(c). We can see that this is not a valid BKB because the two

S-nodes supporting (A = a) are not mutually exclusive. If we add in source nodes as in Fig. 9, we can see that the S-nodes

are now mutually exclusive because the source nodes in the tails of the random variables cannot both be true at the same

time. Thus, in addition to allowing us to keep track of sources in the model, the source nodes also resolve problems that

could occur if we decided to just take the simple union of several fragments.

The algorithm also solves normalization problems that may occur after fusion. There is a danger of violating property (3)

in the definition of a BKB and ending up with probabilities that can sum to more than 1 using a naive fusion approach, but,

as we will show in the next section, the source nodes prevent this.

As a note, the fusion algorithm will work on Bayesian Networks as well as BKBs, but when you fuse BNs, you will most

likely end up with a BKB, not a BN, after the fusion. First, cycles may be introduced violating the acyclicity of BNs. More

troublesome is the fact that the original conditional probability tables from the BNs will need to be revised so that they

remain valid. For example, one may want to fuse the two BNs in Fig. 10 into one BN. The probabilities for C = F were not
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Fig. 10. Two Bayesian Networks that need to be fused.

Fig. 11. BNs from Fig. 10 fused using the Bayesian Knowledge Fusion algorithm resulting in an invalid BN, but a valid BKB.

included in the figure but can be computed from the probabilities listed, and the prior probabilities for A and B are not listed

because they are not important to the example. The algorithm will add a source variable, called SC here, that points to C

and will then create probabilities for C conditioned on this variable. There are two possible states for SC , each representing

a single source (in this case called simply 1 and 2). P(SC = 1) corresponds to the reliability of source 1.

Fig. 11 shows the result of the fusion algorithm. A CPT is created for SC that corresponds to the reliabilities of each of

the two sources (which are given equal weight here). Then the rules shown to the left of C are created. The problem here

is that the rules to the left of C do not constitute a valid CPT for a BN. Since C depends on A, B, and C, it is necessary that

the CPT entries contain probabilities for all possible combinations of these three variables. However, the entries generated

are conditioned on only two of the variables and do not represent an exhaustive list of all possible combinations. Although

it is not a standard BN, reasoning can still be performed using techniques such as IB-MAP [21]. On the other hand, this is

still a valid BKB and is in fact probabilistically complete in that there will exist a set of mutually exclusive inferences whose

probabilities sum to one.

5. Algorithm properties

As long as the fragments that are input into the algorithm are themselves valid BKBs, the output of the algorithm will

also be a valid BKB. To prove this we need to show that the conditions in the definition of a BKB are satisfied.

Theorem 1. The output K ′ = (G′,w′) of Bayesian-Knowledge-Fusion is a valid BKB.

Proof. To complete the proof, we need to show that K ′ satisfies all properties of a BKB given in the earlier definition. Thus

G′ must be a correlation graph, w′ a valid weight function, and properties 1–3 from the earlier definition must be satisfied.

G′ is a correlation graph because only S-nodes and I-nodes were added to K ′ with no edges from S-node to S-node or

I-node to I-node. For each S-node that was added, a source I-node was also added for it to support. w′ is a valid weight

function from S′ to [0, 1] because weights of S-nodes from input fragments are preserved and weights of new S-nodes are

normalized so that they are in [0, 1]. Now we will show that each of the three properties from the definition are satisfied.

(1) ∀q ∈ S′, TailG(q) contains at most one instantiation of each random variable because we added only one I-node (the

source node) to the tail of any S-node and the the source node is an instantiation of a random variable that did not

previously exist in the fragments.

(2) Now we must show that for distinct S-nodes qi, qj ∈ S that support the same I-node, TailG(qi) and TailG(qj) are

mutually exclusive. This is true by construction of G′. To see this, let qi be any S-node in G′ and assume it came from

input fragment Ki and has head (R = v). If there are any other S-nodes from Ki with the same head, they are mutually

exclusive with q since Ki is itself a BKB and S-nodes with the same head in a BKB must be mutually exclusive. If there

is an S-node qj from Kj , j 	= i, that has the same head as qi, then it is mutually exclusive with qi because the source

nodes for qi and qj are of the same variable with different instantiations. i.e. (SR = i) is in the tail of qi and (SR = j) is
in the tail of qj .



E. Santos Jr. et al. / International Journal of Approximate Reasoning 52 (2011) 935–947 943

(3) Finally we need to show that for any Q ⊆ S′ such that (i) HeadG′(q1) and HeadG′(q2) are mutually exclusive, and (ii)

TailG′(q1) and TailG′(q2) are not mutually exclusive for all distinct q1 and q2 in Q ,

∑

q∈Q
w(q) ≤ 1.

AssumeQ ⊆ S′ and satisfies conditions (i) and (ii) above. Then all the I-nodes thatmembers ofQ point tomust be from

the same random variable. The reason is that the members of Q would not be mutually exclusive if this was not the

case. To prove this, assume that there exist distinct S-nodes q1, q2 ∈ Q such that h1 = HeadG′(q1) = (R1 = v1) and
h2 = HeadG′(q2) = (R2 = v2) with R1 	= R2. Then h1 is not mutually exclusive with h2 because mutually exclusive

I-nodes have the same random variable with a different instantiation of that variable. Thus we have a contradiction,

and so all I-nodes that S-nodes in Q point to are of the same random variable.

Now, assume the random variable pointed to by the members of Q is a source random variable. Then, since the

source nodes are normalized so that their probabilities sum to less than 1 by the fusion algorithm,
∑

q∈Q w(q) ≤ 1.

Now assume that the random variable pointed to by members of Q is not a source random variable. Then we claim

that all members of Q must be from the same input fragment. The reason is that source nodes were added to all S-

nodes by the fusion algorithm that have a state which indicates the fragment they came from. If two S-nodes point to

an instantiation of the same random variable, then either they are from the same fragment, or they are from different

fragments and they have a source I-node in their tail with different states (corresponding to the source fragment).

Therefore two S-nodes pointing to an I-node of the same random variable either come from the same fragment or

have tails that are mutually exclusive, which is not allowed by the definition of the set Q . Therefore all members of Q

are from the same input fragment. Since that input fragment was a valid BKB, it must be that
∑

q∈Q w(q) ≤ 1 (or else

the input fragment would be proven an invalid BKB and we would have a contradiction).

These are sufficient to satisfy the definition of a BKB, so the output of the fusion algorithm is indeed a valid BKB. �

Now that we know the result of the fusion algorithm is a valid BKB if all input fragments are valid BKBs, it is interesting to

ask what other properties of the input fragments are preserved by the algorithm. One property that we know is preserved

is groundedness.

Definition. A node a ∈ I ∪ S in a BKB is said to be grounded if there exists an inference τ over the BKB such that a is in τ .

Groundedness is a desirable property because if an S-node remains grounded during changes to the knowledge base, the

initial probability semantics assigned to it is preserved [3].

Theorem 2. If all S-nodes in the input fragments are grounded in their respective fragments, then all S-nodes in the fusion of

these fragments, K ′, are grounded in K ′.

Proof. Let q ∈ S′ be an S-node originally from fragment Ki, then there is a subgraph τ that is an inference over Ki such that

q ∈ τ . We will construct a new subgraph τ ′ ⊃ τ that is an inference over K ′. Start with τ ′ = τ , and then for each S-node

q in τ , there is a source node s such that there is an edge from s to q in E′, and there is an S-node q′ pointing to s. Thus add

q, q′, s, s→ q, and q′ → s to K ′. So τ ′ consists of τ , the source nodes for S-nodes in τ , the S-nodes supporting these source

nodes, and the corresponding edges.

Now it needs to be shown that τ ′ is an inference over K ′. τ ′ is acyclic because τ was acyclic and all that was added to τ
was the source nodes and their supports. Let a be a node from τ , then there is no path from a to itself in τ ′ because there is

no path from a to itself in τ , and it is impossible to reach nodes in τ ′ − τ from a. This is because the only nodes in this set are

the source nodes and their supports, the only input to a source node is its support, and there are no inputs to the supports.

From this argument it also follows that there is no path from a node in τ ′ − τ to itself, and so τ ′ is acyclic.
τ ′ is well-supported as well. Let α ∈ I′. If α ∈ τ then it is supported by the same S-node that supported it in τ . If

α ∈ τ ′ − τ , then it is a source node and it has a support in τ ′ by construction.

Now it will be shown that τ ′ is well-founded. Let q ∈ S′ be from fragment Ki originally. Then TailG′(q) is TailGi
(q) with

the source node added to it. Also Tailτ ′(q) is Tailτ (q) with the source node added to it. Since TailGi
(q) = Tailτ (q) by the

well-foundedness of τ , we have that TailG′(q) and Tailτ ′(q) are both equal to Tailτ (q) with the source node added. Therefore

they are equal to each other and τ ′ is well-founded.

τ ′ is also well-defined. To see this, let q ∈ τ be from fragment Ki, then Headτ ′(q) = Headτ (q). Since τ is an inference,

Headτ (q) = HeadGi
(q). Then since the algorithm does not modify the head of an S-node, HeadG′(q) = HeadGi

(q). Therefore
Headτ ′(q) = HeadG′(q), and τ ′ is well-defined.

Finally it needs to be shown that there is at most one instantiation of any random variable in τ ′. Then let α1 and α2 be

I-nodes in τ ′, we need to show that Rα1
	= Rα2

. We will look at three different cases. First let α1 ∈ τ and α2 ∈ τ ′ − τ ,
then Rα1

	= Rα2
because τ has only random variables from the original fragments and τ ′ − τ has only random variables

corresponding to sources which were created by the algorithm.

So now assume that α1, α2 ∈ τ . Then Rα1
	= Rα2

or else τ would not be a valid inference.
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Now assume that α1, α2 ∈ τ ′ − τ (i.e. they are source nodes). Then Rα1
	= Rα2

because all sources in τ ′ were inserted by

the algorithm while processing fragment Ki (the fragment that inference τ came from). The algorithm creates one unique

random variable for each unique S-node in the original fragments. Since source nodes must all point to an S-node that

is supporting a member of τ , both α1 and α2 are in the tail of some S-node(s) that support members of τ . Since τ is an

inference, it has at most one instantiation of each random variable in it, and each I-node has only one S-node supporting

it. The algorithm creates a source node for every S-node in an input fragment and the random variable of an S-node is

determined by the I-node it points to. In this case, α1 and α2 point to different S-nodes in τ which must point to different

I-nodes in τ . Therefore Rα1
	= Rα2

.

Thus τ ′ is an inference that contains q and q is grounded. �

In addition to groundedness of S-nodes, we are also interested in whether I-nodes or sets of I-nodes participate in any

inferences.

Corollary 3. If all S-nodes in the input BKBs are grounded in their respective BKBs, then all I-nodes in K ′ are grounded in K ′.

Proof. Assume α is an I-node in K ′, then it must be in either the head or the tail of some S-node q. By the previous result, q

is in some inference τ ′ in the fused BKB. Since τ ′ is well-founded and well-defined, the head and tail of q in K ′ must also be

in τ ′. Therefore α is in τ ′ and so α is grounded. �

This establishes that single I-nodes remain grounded in the fused BKB, but what about sets of I-nodes?

Definition. A state θ is well-represented in a BKB K if there exists an inference τ = (I′ ∪ S′, E) over K whose I-node set I′
coincides with θ , i.e. if θ ⊆ I′.

Similar to groundedness, we can show that the fusion algorithm also preserves well-representedness:

Corollary 4. All well-represented states in the input fragments are well-represented in K ′.

Proof. If a state θ was well-represented in some fragment Ki then it was in an inference τ in Ki. After the fusion process it

is also in the inference τ ′ discussed in proof of the previous theorem. �

Finally it would be nice to know how much larger the output of our fusion algorithm is than would be the output of a

naive union of the inputs. i.e. how many nodes are we adding through the course of the algorithm?

Theorem 5. Assume there are n input fragments to the fusion algorithm and fragment K1, . . . , Kn where fragment Ki has mi

S-nodes. Let M = ∑n
i=1 mi, then the fusion algorithm adds O(M) more nodes to the fused output than would result from a naive

union of all the fragments.

Proof. This result follows from the specification of the algorithm.One source I-node is added to each S-node in the algorithm.

Then one S-node is added to support this source node. Thus a constant number of nodes are added to the BKB for each S-node

in an input fragment. �

This also begs the question of how much complexity is being added to reasoning algorithms that operate on the fused

BKB. The complexity in reasoning arises when there are more alternate paths formed through the network that can be used

to form an inference graph. Since the source nodes and their supports that are added to the fused BKB do not have anything

pointing to them, the additional paths they introduce are very short, and thus the penalty in terms of computational time

from adding these nodes should not be too bad. Coming up with specific bounds to characterize the additional complexity

and determining what conditions may result in more or less of a penalty will be an important component of future research

on the fusion algorithm.

6. Reasoning example

Now, an example of how the fusion process can be used to aggregate information from multiple experts will be given

in this section. Assume there are two doctors asked to provide rules to a diagnosis system. They do not have much time to

help so they each provide only a few simple rules. The provided fragments are shown on the left of Fig. 12. The fusion of

these two fragments is shown on the right of the same figure. In the fragments, random variables A, B, and C correspond to

symptoms, and disease is a random variable representing the possible diseases a patient may have.

If we are presented with a patient who has symptom A, we can perform belief revision on the fragments to infer a

likely disease. From fragment 1 we would conclude the patient had d1. From fragment 2 we would not be able to make

any conclusions, but from the fusion of the two fragments we would see that d2 was most likely. This would be done by

performing belief revision on each BKB to find the most probable inference containing the evidence that (A = yes). The
result of belief revision on the fused BKB in Fig. 12 is shown in Fig. 13. The setting of each random variable in the most
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Fig. 12. Fragments from two different doctors on the left. The BKB resulting from their fusion is shown on the right.

Fig. 13. Most probable inference from BKB in Fig. 12 with evidence (A = yes) contains the original nodes (center) and the source nodes that were used to support

them.

probable inference is shown. Each source random variable is also assigned to a state indicating which source was used to

support the truth of the random variable. The output can be interpreted as follows: Themost likely symptoms are A, B, and C.

The source of the rule supporting Awas 1, and the source of the rule supporting B, C, and the disease was 2 in this inference.

The authors have used the fusion process inmodelingmultiple realworld scenarios. For instance, the 2008 South Carolina

Democratic primary election was modeled [22]. In this case, 17 different sources were used such as news reports, blogs,

and expert analysis. A fragment was created from each of the sources and then they were fused for analysis. Each fragment

averaged roughly five to ten I-nodes and up to 20 S-nodes. The fusion algorithm proved especially helpful in two regards.

First, it was difficult for the knowledge engineer to deal with a network the size of final fused BKB. The sheer number of

variables and rules that were presentmade it challenging to check for errors and visualize the relevant portions of themodel

during editing. It was much easier to work with each of the fragments separately and ensure that any modifications made

sense in the context of the single fragment. Second, there were often multiple violations of the mutual exclusivity condition

between any two fragments neccesitating either a change in the fragments or an algorithm such as ours in order to aggregate

them.
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7. Benefits of source nodes

The ability to set and modify source reliabilities as well as include sources as nodes in the probabilistic representation

presents an opportunity for extensive analysis that has not been tapped as of yet. For instance, given the case whenmultiple

sources are used repeatedly, their reliability can be tracked and updated over time as the knowledge they provide is tested

against the real world. Reliability with respect to a particular topic can also be computed. For instance, when a repeat source

presents a new knowledge fragment, we could compare the similarity of this fragment to all other fragments they have

provided in the past (perhaps using topic detection or graph comparison algorithms) to get an idea of how reliable the

source has been when modeling similar situations in the past.

In prior work [22], the authors developed an algorithm to compute the contribution of a variable to the truth of some

other variable in a BKB. Given a target I-node q and some other I-node r, the algorithm computes the contribution of node

r to the probability of q. The algorithm works roughly as follows. First, we note that the probability of q can be found by

looking at all possible “worlds” sanctioned by the BKB and summing the probabilities of all worlds in which q is true. Here,

a world is simply an assignment of all variables to a state. Let the set of all the worlds in which q is true beW . Then, in order

to find the contribution of r to q, we look at the subsetW ′ ⊆ W in which r is also true. The contribution of r to q is the sum

of the probabilities of the worlds in W ′. Since we are using a BKB and not a BN, we do not always have complete worlds to

deal with. The corollary of a world in a BKB is an inference. Thus, to compute contributions, we actually sum over inferences

instead of summing over complete states of the world.

Fortunately, the same algorithm can be used to calculate the contribution of a source to some variable in a BKB since

sources are included as a node in the knowledge base just as the rest of the variables in the model are. Thus it is possible

to see the contribution of each source to the truth of each variable in order to, for instance, determine if a decision is being

unduly influenced by one or a small set of sources instead of taking a broader look at the situation.

There is also the opportunity to ask “what-if” questions by manipulating the sources. For instance, what if I removed

source A? What would the result of reasoning be then? In this case, it could be good to target sources that have a very high

contribution to the answers being produced. This could give a decision maker the chance to see if source A is really skewing

things, or if the answer would still be the same without the input of this source.

8. Conclusion and future work

In this paper, we introduced an algorithm to fuse several Bayesian Knowledge Fragments into one BKB. This allows the

easy aggregation and de-aggregation of chunks of information from multiple sources. The fusion was shown to produce a

valid BKB that preserves the rules in the input fragments and their groundedness. The fusion process also allows for the

tracking of sources and construction of explanations that contain rules frommultiple experts, forming an explanation with

greater likelihood than one formed from rules taken from a single expert in isolation. The algorithm allows for disagreement

and even circularity in the rules provided by different sources.

Future research in this area will further investigate the properties of fused knowledge bases including the added com-

plexity of reasoning resulting from the addition of source nodes. We will also identify more possible application areas in

which to apply the fusion algorithm to demonstrate its usefulness. Another particular problem that will be addressed is the

validation of fused BKBs. Previous work has looked at how to validate the correctness of a single BKB with regard to a set

of test cases [23,13]. Given a set of fragments that all pass their own individual test cases, we will investigate under what

conditions it can be guaranteed that the fused BKB will also be able to pass these test cases. In particular, if the fused BKB

does not pass all test cases, is there a way of adjusting the reliabilities of the input fragments so that it does pass? This would

provide away of training the knowledge basewithoutmodifying the input fragments themselves, only theweights assigned

to each of their sources.

Additionally, it will be interesting to look at the transportability of fragments from one situation to another. It would be

ideal if we could build a large library of fragments from which a subset could be drawn and fused to address a particular

situation. This raises the question of how easily one can construct fragments that are generalizable and howwell theywould

perform in different application areas. Work by Druzdzel and Díez [24] suggests that it is not easy to see when information

frommultiple sources can be combined in new situations without introducing some bias that can skew results by orders of

magnitude.
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