
A Framework of Computational Opinions

A Thesis
Submitted to the Faculty

in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

by

Fei Yu

Thayer School of Engineering
Dartmouth College

Hanover, New Hampshire

May 2013

Examining Committee:

Chairman
Professor Eugene Santos Jr.

Member
Professor George Cybenko

Member
Professor Mark Borsuk

Member
Professor Joseph M. Rosen

Member
Professor Hien Nguyen

F. Jon Kull
Dean of Graduate Studies

ABSTRACT

We have a limited understanding of how an opinion is originated, how an opinion

and information supporting and explaining it gets conveyed, and how the communi-

cated opinion is perceived and processed by others. One direction of current research

focuses on the conditions and determinants for opinion formation, while another fo-

cuses on opinion change induced by external influence (social influence in particular),

however, empirical findings have concluded that the persistence of opinion change is

inconsistent. This indicates that current methods used to predict the next opinion

based on the the current opinion may fail if the decay in opinion change is rapid.

We realize that for the existing computational framework/models, the close inter-

play between opinion formation and change is not exploited well. Prevalent computa-

tional frameworks/methods either model only one opinion formation process or only

one opinion change process. Furthermore, computational frameworks/models that

actually focus on opinion dynamics either only model one task or model a sequence

of tasks but do not differentiate between them.

Our insight to better address this problem is that we recognize the learning nature

of opinion change and the decision-making nature of opinion formation: what has been

learned through internalizing an external influence guides how decisions are made to

externalizing cognitive processes. Thus the challenges for building a computational

framework lies in modeling both the learning and decision-making aspects for the

entire opinion formation task.

To address this modeling challenge, we also recognize that the individual perform-

ing an opinion formation task is essentially engaged in a sequential decision-making

problem with a specific goal in mind. This thesis presents our effort in two phases: In

Phase I, we propose a networked space of reasoning processes which we call the Dou-

ble Transition Model (DTM). Each node within a DTM represents a cognitive state

based on different degrees of query and knowledge incompleteness. The edges within

ii

a DTM denotes how query and knowledge differ between the connecting states which

can be fulfilled to trigger changes in an opinion. To ensure that diversification in

opinion formation processes can be covered by a DTM, we evaluated it by simulating

four commonly accepted heuristics in human reasoning.

The edges in a DTM are designed for modeling influence. In Phase I, we do not

differentiate the causes of the influence - whether it is internally embraced or exter-

nally activated, so a DTM is mainly a cognitive model. In Phase II, we extend a DTM

into a knowledge-based behavior model. How individuals perceive messages, accept

messages, and communicate messages is simply a sequence of decisions. Therefore, we

can construct a computational framework of opinions in which an opinion formation

task can be formulated as a Markov decision process defined using an augmented

DTM. Furthermore, we are able to use methods such as Q-learning to free us from

the requirements of having full knowledge of communication dynamics in deriving

optimal policies. In a case study, we demonstrate the power of the framework in

making the entire opinion dynamics between two individuals analyzable.

iii

Acknowledgements

First of all, I would like to thank my advisor Professor Eugene Santos Jr. He has

been an ideal image of a researcher and guided me into the wonderland of research.

By working with him I learned the value of vision, the importance of critical and

independent thinking, and the value of persistence. He has never suggested to me

what type of researcher I should be or I can be - being empirical, theoretical, or

conceptual - instead he let me discover myself through my own thesis work. Without

his tremendous patience and guidance this thesis would have not been realized.

Thanks also to my committee members: Professor George Cybenko, Profes-

sor Mark Borsuk, Professor Joseph M. Rosen, and Professor Hien M. Nguyen.

Professor Cybenko planted a seed about Markov decision processes in my brain

through his classes that made this framework of computational opinions possible.

Professor Borsuk taught me about the diversity, uncertainty, and complexity of

human behavior which motivated me to work on this framework. Professor Rosen

showcased many real medical cases that had strengthened my beliefs about the value

of a computational framework and indeed the needs to understand/model human

behavior/intent. Professor Nguyen has taught me so many research skills from

writing a paper to conducting empirical research from the general picture to every

small detail that could possibly improve the overall quality of research.

I also would like to thank my fellow students. Dr. Keum J. Kim taught

me the importance of stating assumptions and why details matter. Her skeptical eyes

towards research constantly remind me to be as skeptical and cautious as possible

especially towards my own work. Tracy taught me the beauty of math and its power

in defining a framework in a more rigorous and accessible way. Thanks to Jacob,

who shared with me a lot of the advances in programming which has substantially

iv

increased my productivity. Thanks to Jeremy, Curtis, Jake, Yan, and many many

previous fellow students. We all shared a great journey along with each other. Every

one of you is a genius in a certain way and each of you have inspired me to look

at things from a different angle. I would never forget about the numerous heated

discussions we had in the group meetings and the long-hours we had together for the

group projects. Lastly but importantly, thanks to Yuki with whom we shared our

research journey all along for these six years. It is amazing that at the end we turned

out to be really different types of researchers but yet we share extremely similar

understanding towards research.

Thanks everyone who has tolerated me when I seemed very empty or brain-

occupied. Thanks for the support from Louise, Thayer School of Engineering, and

all the research grants that made this happen.

Finally, I would like to thank my parents who have never asked me when I

would graduate. All they have said repeatedly to me is: “Do it. Try all your best,

but take good care of youself.”

v

To my parents.

vi

Contents

Acknowledgements . iv

List of Tables . x

List of Figures . xi

1 Introduction 1

1.1 A Framework of Computational Opinions 5

1.2 Contribution . 20

1.3 Outline . 23

1.4 Glossary . 24

2 Literature Review 25

2.1 Theories on Opinions . 27

2.2 Theories on Rationality . 33

3 Background 38

3.1 Markov Decision Process . 38

3.2 Reinforcement Learning . 47

3.3 Bayesian Knowledge Bases . 52

4 Double Transition Model 62

4.1 Overview . 62

4.2 Definitions . 64

vii

4.3 Memory Transition Graph . 66

4.4 Query Transition Graph . 73

4.5 Transformations . 83

5 Modeling Opinion Formation 91

5.1 A Toy Problem . 91

5.2 Examples . 96

5.3 Experimental Results . 109

6 Modeling Opinion Formation with External Influence 120

6.1 Overview . 120

6.2 Approach . 123

6.3 Markov Decision Problem . 128

6.4 Definitions . 133

6.5 Deterministic Task . 138

6.6 Stochastic Task . 142

7 Modeling Opinion Formation in Dynamic Situations 145

7.1 Dynamic Task . 145

7.2 Multi-agent Task . 147

7.3 Case Study . 150

8 Conclusion 167

8.1 A Framework of Computational Opinions 168

8.2 Future Work . 170

8.3 Future Future Work . 173

Bibliography 176

viii

9 Appendices 185

9.1 Appendix A . 185

9.2 Appendix B . 190

9.3 Appendix C . 193

ix

List of Tables

5.1 Learning Episodes Gathered by Agents (Toy Problem 1) 93

5.2 Learning Episodes Gathered by Agents (Toy Problem 2) 96

5.3 Two Different Sandboxes . 103

7.1 U.S. News 2013 College Data . 151

7.2 Feature Vectors for Five Universities 151

7.3 Goal Profiles for Trainers and Testers 152

7.4 Feature Vector for Two Queries . 152

7.5 Parameters for Q-learning Methods 154

x

List of Figures

1.1 Conceptual Diagram of the Framework 10

1.2 Memory Transition Graph . 11

1.3 Query Transition Graph . 13

1.4 Double Transition Model . 14

1.5 Behavior for a Double Transition Model 17

1.6 Non-Dynamic Episodic Opinion Formation Tasks 19

1.7 Dynamic Episodic Opinion Formation Task 21

3.1 Value Iteration (Sutton and Barto, 1998) 45

3.2 Policy Iteration using Iterative Policy Evaluation (Sutton and Barto,

1998) . 47

3.3 First-visit MC Method for Estimating V π (Sutton and Barto, 1998) 50

3.4 Temporal Difference Method to Estimate V π (Sutton and Barto,

1998) p. 135 . 51

3.5 One-step Q-learning Method Estimate Q(s, a) (Sutton and

Barto, 1998) p. 149 . 52

4.1 Comparison of SOAR and DTM . 65

4.2 A Conversion Solution among Four Types of Questions 77

4.3 Feature-Rooted BKBs over Feature A3 for Different Learning Episodes 84

4.4 Undesirable Transformation Results 87

xi

4.5 Removal of One World . 88

4.6 Modify the Weight of a World . 89

4.7 Remove Features . 90

5.1 A World of the Toy Problem (Toy Problem 1) 93

5.2 A World of the Toy Problem (Toy Problem 2) 96

5.3 Process of Opinion Formation over a DTM 99

5.4 Feature-Rooted BKBs over Feature A3 for Different Learning Episodes 100

5.5 BKB Representation K of L . 101

5.6 Opinion Formation for Agents in Tower Room 103

5.7 Opinion Formation for Agents in Virtual Room 106

5.8 Memory Transformation - Case 1 . 108

5.9 Memory Transformation - Case 2 . 108

5.10 Auxiliary BKB (Take the Best) . 115

6.1 Non-Episodic (Ch. 4-5) and Episodic (Ch. 6) Opinion Formation Tasks 121

6.2 Dynamic Opinion Formation Tasks (Ch. 7) 122

7.1 Q-learning Algorithm for Dynamic Opinion Formation Tasks 148

7.2 Performance Comparisons between MA-style and IA-style Agents un-

der Proper Training . 156

7.3 Performance Comparisons between MA-style and IA-style Agents un-

der Improper Training . 157

7.4 Over/under-performance with Different Initial Knowledge (Part A) . 158

7.5 Over/under-performance with Different Initial Knowledge (Part B) . 159

7.6 Over/under-performance against Testers with Different Types 161

7.7 Easiest and Most Difficult Types of Testers 162

8.1 Three Forms of Opinion Formation Tasks 171

xii

8.2 A Sequence of Opinion Formation Tasks 171

9.1 Algorithm to Compute Joint Probabilities in Base Knowledge KX . . 190

9.2 Algorithm to Compute Joint Probability (Part I) 191

9.3 Algorithm to Compute Joint Probability (Part II) 192

xiii

Chapter 1

Introduction

Opinions are personal beliefs (Krueger, 1996) - an opinion is belief as it is derived

rather than recalled; an opinion is personal as it can be derived in diverse ways.

Studying opinions is particularly appealing to both practitioners and researchers

because: 1) one’s opinions can complement others’ knowledge (Pang and Lee, 2008),

2) one’s knowledge can complement others’ experiences (Danescu-Niculescu-Mizil

et al., 2009), and, 3) one’s opinions can complement and enhance other’s thinking

(Bindel et al., 2011; Clayton, 1997).

Despite the great interest the research community has in opinion mining (par-

ticularly in sentiment analysis (Archak et al., 2007; Bethard et al., 2004; Breck

et al., 2007; Pang and Lee, 2008)), we still have a limited understanding of how an

opinion is originated, how an opinion and information supporting and explaining it

gets conveyed, and how the communicated opinion is perceived and processed by

others. One direction of current research focuses on the conditions and determinants

for opinion formation (Afshar and Asadpour, 2010; Berelson et al., 1986; Watts

and Dodds, 2007), while another prevalent direction focuses on opinion change

induced by external influence (social influence in particular) (Aronson et al., 1963;

1

Crano, 1977; Kelman, 1961). Empirical findings (Kelman, 1974; Rogalin et al., 2007)

have concluded that the persistence of opinion change is inconsistent, methods of

predicting the next opinion based on the current opinion may fail if the decay in

opinion change is rapid (Kelman, 1955, 1961; Watts and Holt, 1979).

Our key insight in tackling this challenge is that we recognize the learning

nature of opinion change (Kelman, 1961) and the decision-making nature of opinion

formation (Clayton, 1997): the internalization of an external influence guides the

externalization of internal cognitive processes. We define an opinion change process

as the process of internalizing one’s external influence, and we define an opinion for-

mation process to be the process of externalizing one’s internal cognitive processes1.

We define an opinion formation task as undergoing a series of opinion formation and

opinion change processes on one issue in a single context. Intuitively, an opinion

formation task can include situations such as a librarian wanting to suggest a good

textbook on Artificial Intelligence, congress members trying to reach consensus in a

debate, or two family members deciding on the Christmas gifts to buy through an

online messenger.

A framework that processes a sequence of opinion formation tasks allows us to

achieve a better understanding of how external influence gets internalized (opin-

ion change), how internal opinion gets externalized (opinion formation), and the

interaction between these two processes in both short-term and long-term resolu-

tions (short-term as in one task, long-term is a sequence of tasks). To begin with,

our first objective is to model an opinion formation task. As the persistence of

opinion change within an opinion formation task is stronger than the task-to-task

opinion persistence, we can exploit the close interplay between opinion formation

1Note that the concept of an opinion formation process is a different concept from the concept of
opinion formation. Both opinion formation and opinion change are more broad and general concepts.

2

and change processes within a task in order to learn the mechanisms of internalization.

The challenges of modeling an opinion formation task lies in modeling both the

learning and decision-making aspects within an interactive environment. To address

this modeling challenge we recognize that the individual performing an opinion

formation task is essentially engaged in a sequential decision-making problem with a

specific goal in mind.

Let us discuss what has been internalized by an opinion change process and what

can be externalized by an opinion formation process. It is fairly easy to hypothesize

what the external influents2 are by considering the behavior of an individual engaged

in an opinion formation task. These external influents can come in a wide variety

of forms such as receiving/observing an opinion from someone, perceiving/sensing

the environment for evidence, actively seeking information, the question itself that

asks for opinions, an action performed, or behavior (e.g. threats (Carver, 1977),

punishment and external surveillance (Hoekstra, 1995)), that can be observed from

others. To simplify the problem, we concentrate on influents in the form of messages

since what has been internalized is much less clear as it all happens within a human

brain which, of course, lacks “visibility”. A variety of social theories have identified

that the internalization may include the knowledge basis (McGuire, 1968) from which

an opinion is formed, a value system (Kelman, 1961), and sentiment towards others

(Robinson et al., 2006). To be consistent with our simplification on the external

influents, we concentrate on the underlying knowledge base and the reasoning process

from which an opinion can be derived.

2External influents refers to messages from the world.

3

The overall objective of this thesis is to develop a knowledge-centric computational

framework that processes sequential opinion formation tasks. We present the effort in

two phases. Phase I focuses on addressing the learning aspect of an opinion formation

task. We propose a networked space of reasoning processes which we call the Double

Transition Model (DTM). Each node within a DTM represents a cognitive state with

different degrees of query and knowledge incompleteness. The output of a reasoning

process is an emitting probability representing a possible opinion. The edges within

a DTM denotes how a query and knowledge differ between the connecting states.

This design accounts for changes that can occur during the opinion formation process.

The edges in a DTM are designed for modeling influence. In Phase I, we do

not differentiate the causes of the influence - whether it is internally embraced or

externally activated so a DTM is mainly a cognitive model. In Phase II, we extended

DTM to address the decision-making aspect of an opinion formation task. The

behaviors specified in the extended DTM are mainly to capture the specifics of

influents such as the direction of an influent (internal versus external), its content,

and its action type (accept new knowledge, correct unsubstantial knowledge, or

discard irrelevant information).

As we mentioned above, the individual performing an opinion formation task is

essentially engaged in a sequential decision-making problem with a specific goal in

mind. From this, we recognized that completing the design of our computational

framework can be achieved through reinforcement learning problems that are directly

defined by DTMs. We start by using Markov decision processes to compute optimal

actions to take at each step based on the assumption of knowing another’s DTM.

Alternatively, we use Q-learning methods to solve tasks where the assumption of

perfect knowledge and a static environment does not hold. Furtheremore, Q-learning

4

methods also allow us to derive a reasonable approximation of optimal policies for

opinion formation tasks engaging with a series of different individuals (one at a time)

and also allows for on-line learning.

Evaluation of this framework is a challenging task due to the scope of the tasks

and the lack of ground truths in the internalization process. Alternatively, we eval-

uated the framwork from the perspective of its capabilities in computing opinions.

Additionally, we evaluated whether it succeeds in internalizing an opinion change

process and whether it in turn impacts the following opinion formation process.

The contribution of this thesis is as follows:

• We provided a general and compact framework that simultaneously models two

distinct processes (opinion formation and opinion change) in one general opinion

formation task.

• We provided, implemented, and tested different algorithms, techniques and

properties that can now be used for opinion modeling.

• The framework was constructed from external influents that are easily trackable

and accessible, thus requiring less knowledge engineering effort to instantiate

the framework to modeling different opinion formation processes.

• The design of the framework is compatible with theories in bounded rationality.

1.1 A Framework of Computational Opinions

1.1.1 Motivation

In the past few years, we developed computational models for capturing individual

differences/preferences in topics from information retrieval (Yu and Santos Jr.,

5

2012), in information-seeking behavior (Santos et al., 2010), and in adversary intent

(Santos et al., 2008, 2012). In this thesis, we are motivated to design a framework

of computational opinions after identifying a critical gap between the findings from

well-established social theories and the existing computational models. Kelman

(Kelman, 1955, 1961, 1974) determined that “opinion changes induced by social

influence can be temporary and superficial and, by contrast, those under which

such changes are lasting and integrated into the people’s beliefs and value systems”.

He has identified the various diverse effects of social influence to opinion change

including intensity, duration changes to internal beliefs, and value systems. This has

triggered us to reconsider the following problem.

6

Problem of Poor Predictivity

Imagine an opinion sequence of an individual A

[lo1], [o2], [o3, o4, o5], [o6], · · · , [on]

where each oi, i ∈ N+ is a degree of belief represented by a numeric value in

[0, 1] observed over time. The sequence in brackets is a sequence of opinions one

has formed within the same context on one issue (e.g. one has been reading a

collection of new articles on a presidential candidate, or one is having a heated

discussion on who should be the next president.). Each bracketed sequence is

an opinion formation task. A task consisting of one opinion is a non-episodic

opinion formation task, and a task consisting of multiple opinions is an episodic

task.

The findings from well-established social theories have concluded that the as-

sumption o5 = o6 rarely holds. In other words, the final opinion formed within an

interactive environment may not be the same for the opinion elicitepd next. The

non-persistent property of opinion change leads to the problem of poor predic-

tivity: The final opinion concluded in an opinion formation task poorly predicts

the next opinion.

Unfortunately, the assumption of persistence of opinion change has been implicitly

made in existing computational models (Hegselmann and Krause, 2002; Weisbuch

et al., 2003; Yildiz et al., 2011). One typical treatment is to learn the stability of

opinion change from observations of opinion dynamics (either explicitly specified or

implicitly learned by structure or parameters), but the issue is that the stability of

opinion change is domain-specific and consequently, the learned model can no longer

be applied to solve another task due to the varying stability across different domains.

7

Many computational models (Hegselmann and Krause, 2002; Yildiz et al., 2011) only

consider modeling opinion dynamics within a single interchange. These approaches

are not adequate for studying opinion dynamics spanning a longer time period.

To summarize, the fundamental issue with existing computational models is

that the need to differentiate opinion formation tasks but modeling them in one

framework/model has been overlooked. One problematic situation is a model that

treats a sequence of opinion exchange activities as one formation task - despite the

fact that the consensus being reached over a long span of time likely suffers from the

problem of poor predictivity (Dietrich and List, 2008).

Another issue with the existing computational models is that the opinion forma-

tion process and opinion change process within an opinion formation task is treated

separately/independently. In essence, there is nothing learned from an opinion

change process besides the opinion value itself and there are no decisions being

modeled for an opinion formation process besides the opinion value itself (Martin

et al., 2005). The internalization of external influence is mainly the opinion itself

which has limited coverage of what has been reported in empirical findings. Similarly,

the externalization of internal cognitive processes is also again just the opinion itself.

Studying opinion dynamics over a sequence of time steps spanning multiple

(non-)interactive episodes is important. We need to break apart, decompose, and

study opinion dynamics over a sequence of time steps into opinion formation tasks

where each task is concerned with one issue within a reasonable window of time in

the same context3. To make it clear, two discussions each on the same issue/topic

with a different individual at a different time are considered to be two separate tasks.

3The context we focus on is the source of external influents such as individuals or the environment.

8

We assume that there is a relatively high persistence in opinion change within one

task. By defining a task this way, it allows us to exploit the close interplay between

opinion change and formation processes within a task to learn the mechanisms of

internalization. By modeling the interplay between opinion formation and opinion

change processes in one task, we are then able to address the issue of poor predictivity

of opinion changes resulting from one task to another task.

To recap, we are motivated to develop a computational framework of opinions to

facilitate studies in opinion modeling. In particular,

1. model the decision-making nature of opinion formation and the learning nature

of opinion change (within one task) (Marked by a hexagon with number 1 in

Figure 1.1)

2. provide a foundation to study the persistence of opinion change in long-term

projections (cross tasks) (Marked by a hexagon with number 2 in Figure 1.1)

This effort is important as the existing computational models are inadequate:

• opinion formation process and opinion change process are modeled separately

and independently (corresponds to item #1 in the list of motivations above)

• a sequence of opinion formations tasks are either modeled separately or modeled

together but are not differentiated (corresponds to item #2)

This thesis is developed with the core goal of modelling a sequence of opinion

formation tasks. Figure 1.1 illustrates our motivation and objectives of this thesis. In

the figure, each bracket (#1 in Figure 1.1) represents a sequence of activities occurring

within one opinion formation task. An incoming arrow from the environment denotes

external influences which may result in opinion changes. An outgoing arrow from the

agent itself denotes the communication of an opinion derive from an opinion (along

9

with other messages) formation process. The arrow from one task to another (#2

in the Figure) denotes the impacts of internalization of external influences from one

task to another. The interplay between opinion change and formation in both short-

term and long-term temporal resolutions are the essence of this framework. The

following two sections describe the framework development of the thesis. Detailed

justfications of the design of the framework will be supplied in the motivation section

in the following chapters.

environment	

agent	

environment	

agent	

environment	

agent	

environment	

agent	

environment	

agent	

1	

2	

Figure 1.1: Conceptual Diagram of the Framework

1.1.2 Phase I: Double Transition Model

In Phase I (covered in Chapters 4 and 5), we developed a Double Transition Model

(DTM) which is a cognitive model. A DTM is a graph derived from two independent

graphs: one is a memory transition graph and the other one is a query transition

graph.

Memory Transition Graph

As shown in Figure 1.2, each node in a memory graph represents a snapshot of the

working memory. The entire graph stores all past histories of memory linked by

perceived information. The graph starts empty and creates a node every time new

information is perceived. (This approach assumes the perception of one piece of

10

Perception	

Episodic	

Episodic	

 Episodic	

Episodic	

Long-Term Memory	

Working Memory	

Working Memory	

Working Memory	

l2	

l4	

l3	

Memory	

Figure 1.2: Memory Transition Graph

information at a time.) The new node will then have all the information perceived

in the past plus the new information that has just been perceived. This new node

will be linked to the current node. As such the difference between two connecting

memories is always one piece of information that we refer to it as a learning episode.

We always keep a marker that points to the most recent memory (node) which at

the same time stores the entire history of learning episodes. We call this long-term

memory as it contains the most complete set of knowledge, and all the other nodes

are considered to be candidates for short-term memory as it stores partial knowledge

from the long-term memory.

11

This is a simple memory transition graph to start with. One thing we would like

to emphasize is that the graph itself is not intended to indicate the way memory is

organized. The purpose of this memory transition graph is to model how a memory

can be formed and the edges that can be considered as stimulus for memory recall.

We intend to be brief here in terms of why the memory transition graph is designed

this way and how it is different from the existing memory structure. Full details and

justifications for such design can be found in Chapter 4.3.

Query Transition Graph

We applied the same idea as above to the development of a query transition graph.

As shown in Figure 1.3, each node in a query graph represents a query at a time. Each

query is recorded when an opinion is being requested by someone else. Therefore, the

creation of a new query is triggered by a task while the new creation of a memory

is triggered by perception (in Figure 1.2). The entire query graph stores all past

histories of queries. The graph starts empty and creates a new node for every inquiry

for opinions. We also kept a marker that points to the most recent query being asked

but the query is no longer accumulated as how memory is, therefore, an edge be-

tween two nodes represents the difference in the content of the connecting two queries.

The representation of a query is simply a vector such as [x, ?, ?, 3, · · · , 2] where

a numeric value represent either a category or a discretized number for a feature of

an entity, a question mark represents unknown value for a feature, and x represents

the target feature of an entity. For example, one may ask another one for opinions

about a university:“This school has tuition around $42, 000, yearly enrollment around

11, 000 and an acceptance rate around 7.7%, do you think this is a tier 1 school?”

The other features that are not included in an inquiry are treated as unknown, and

the targeted feature is thus the rank of the school. In Figure 1.3, unknown features

12

are represented by white rectangles, known features are grey rectangles, and targeted

features are represented by black rectangles.

The easiest way to understand this graph is that it is simply a sequence of opinion

inquiry tasks. The edges denote the ways relevant tasks can be recalled - therefore, the

form of links introduced here only consider temporal relationships as a clue to retrieve

relevant tasks. We will formally present the general definition of this transition graph

in Chapter 4.4.

Task	

Features	

Features	

Features	

Query	

Query	

Query	

Query	

d12	

d34	

d23	

Features	

Query	

Figure 1.3: Query Transition Graph

Double Transition Model

A Double Transition Model can be derived by combining a memory transition graph

and a query transition graph. As shown in Figure 1.4, each node in a DTM is a

13

combination of a node in a memory transition graph and a node in a query transition

graph. A node in a memory transition graph is a working memory (long-term

memory is also a working memory with full knowledge), a node in a query transition

graph is a query from a corresponding opinion inquiry task. A node in a DTM thus

represents a cognitive state that has two ingredients - a working memory and a query

in mind. An edge in a DTM now captures both the difference in memory and the

difference in query between two connecting cognitive states.

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

(l2,d12)	

(l4,d34)	

(l3,d23)	

Action	

Perception	

DTM	

Figure 1.4: Double Transition Model

A DTM is capable of performing actions (here actions refer to cognitive activ-

ities); that is, inferring an opinion based on a query over the working memory in

the current cognitive state. The action that is performed on a cognitive state is an

inference activity that outputs an opinion in the form of probabilistic value - thus

14

each cognitive state corresponds to one opinion. In essence, the structure of a DTM

is a graph with a number of interconnected cognitive states, based on each state an

opinion can be formed through inferencing.

We have illustrated a simple DTM in order to convey our basic ideas in developing

a framework. However, there are three key challenges regarding the design of DTM.

The first challenge is whether a collection of episodic knowledge is a sufficient

representation of knowledge. It has been widely accepted that humans store three

different types of knowledge (Baddeley and Hitch, 1974; Coleman and Mizel, 1968):

episodic knowledge, semantic knowledge and procedural knowledge. Episodic knowl-

edge is the things we “remember” - the situations we have experienced, things we

have seen and so forth. Semantic knowledge is the things we “know” - e.g. The earth

is round. Procedural knowledge is about the “how” - e.g. The steps to make a cup

of coffee. We will explain in Chapter 4 how we manage to simplify the problem by

deriving semantic knowledge from the collection of episodic knowledge by conducting

episodic-based reasoning and semantic-based reasoning. By doing so, we reduced the

complexity of instantiating a framework.

The second challenge is whether the vector representation of a query is a suffi-

cient representation of opinion requests from human. Humans can ask questions in

a variety of forms such as yes-no question (e.g. Is today Thanksgiving?), alternative

question (e.g. Is this building tall or short?), wh-questions (e.g., Who is the current

president of United States?), and tag questions (e.g. Today is Thanksgiving, isn’t

it?). Therefore, we need to carefully evaluate whether a vector representation is

sufficient to capture the semantic meaning in questions expressed by natural lan-

guage. We present an intermediate representation (propositional logic) as a standard

15

language for engineers to encode questions expressed by natural language, and then,

we provide a method that automatically translate an opinion request in the form of

propositional logic to opinion queries in the form of vectors.

The third challenge is the difficulty to identify the current cognitive state in

use for deriving an opinion. It may seem obvious that the most recent memory or

the long-term memory should be chosen, but we will show in Chapter 4.2 that our

understanding of the structure and content of a working memory is limited. What

may even be worse, due to the ambiguity of communication or by deliberate choice,

the query in use may not be equivalent to the query of the interlocutor. Mainly, a

DTM is designed in order to reflect the dynamics of the cognitive states in use by

explicitly modeling stimulus (edges) that can trigger changes. Transitions between

the cognitive states is one of the internalizations we wish to learn for our overall

problem.

1.1.3 Phase II: Augmented Double Transition Model + Re-

inforcement Learning

In Phase I, we focus on the development of the Double Transition Model. A DTM

can perform simple tasks such as forming an opinion given a query. Figure 1.5 shows

how a DTM reacts to a dynamic environment. For consistency, we also refer to a

perception activity as a task. As shown in the sequence on the top of the figure, l1

to l3 are perceived learning episodes in three consecutive steps. Tasks 4 and 5 are

opinion formation tasks: For example, in task 4, an individual asks for an opinion

on query q1. The DTM then forms an opinion o1 and sends it out. In the task

sequence shown at the top of the figure, the rectangles colored as white (e.g. l1) are

received information including perceptions (represented by learning episodes) and

task information (represented as queries). The black rectangles (e.g. o1) are outgoing

16

messages. We call tasks 4 and task 5 as non-episodic opinion formation tasks as they

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

(l2,d12)	

(l4,d34)	

(l3,d23)	

Action	

Perception	

DTM	

task: t1 | t2 | t3 | t4 | t5 | t6 |	

l1	

 l2	

 l3	

 q1	

 q2	

 l4	

o1	

 o2	

non-episodic tasks	

Figure 1.5: Behavior for a Double Transition Model

do not maintain an interactive session with the individual who asks for opinions.

In real-world problems, asking a librarian’s opinion can be considered as a typical

non-episodic opinion formation task where an individual tends to be the domain

expert. Non-episodic opinion formation tasks are common also when the problem

itself is not controversial. Episodic opinion formation tasks are also common. For

example, if two people are estimating the weight of a cow in a photo, they can go

through a couple of iterations to describe their estimation as well as reasons.

In Phase II (covered in Chapters 6 and 7) our focus is to model episodic

opinion formation tasks. We break down this task further with regards to whom an

17

individual interacts with: non-dynamic one-to-one episodic opinion formation task4

focuses on how to choose an action to fulfill his goal whereas his interlucator also has

a particular goal to fulfill. A goal can simply be reaching opinion consensus, changing

the other’s opinion, or do not care; dynamic one-to-one episodic opinion formation

task 5 is that an individual engages in opinion formation task with different people

one at a time.

Non-Dynamic Episodic Opinion Formation Task

As shown in Figure 1.6, task 5 is an episodic opinion formation task. In this task, an

individual receives a query for providing an opinion (q2), and then he responds with

opinion o2. After he responds with his opinion, he receives feedback from the other

agent: o3 represents the other individual’s opinion on the same query and l4 is the

other individual’s explanation.

From the perspective of interaction, a non-dynamic episodic opinion formation

task (Figure 1.6) includes three subtasks which differs from a non-episodic opinion

formation task:

1. determines whether to accept a message sent by someone else.

2. determines whether to provide information to explain his opinion.

3. determines whether to adjust his own opinion.

In the first task, one may re-form his opinion (usually called opinion change) by

accepting new information from someone else. In the second task, he makes a

decision on whether to adjust his opinion by observing others’ opinions. In the third

4As this thesis focuses on interactions between two entities, we simply consider this task to be a
non-dynamic episodic opinion formation task.

5As this thesis focuses on interactions between two entities, we simply call this task a dynamic
episodic opinion formation task.

18

task, the generation of information can be considered a by-product of the opinion

itself. The importance of this by-product is that it becomes an external influence

(actually a perception) to other people he communicates to.

episodic task	

o2	

q2	

 o3	

 l4	

task: t1 | t2 | t3 | t4 | t5 |	

l1	

 l2	

 l3	

 q1	

 o1	

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

obv(f5)	

pasrmv(l4)	

intadd(l3)	

Action	

Perception	

Reinforcement Learning	

DTM + RL	

actadd(l1)	

Figure 1.6: Non-Dynamic Episodic Opinion Formation Tasks

As we described earlier, the existing computational models solve each task

separately. Each task is implemented independently of another task which makes

it non-intuitive and hard to analyze. Most importantly, it is not coherent with

the nature of human behavior. Ideally, when two people start discussing on one

issue, they go through a couple of iteractions of opinion exchange with additional

arguments. Then, they either reach a consensus or ends the conversation or exchange

with a unresolvable opinion polarization.

19

We solve a non-dynamic episodic opinion formation task by defining it as a

Markov decision problem. Each player makes a decision on the best action to take

to maximize his/her utilities (values). An action can be to accept a message from

the other, to send a chosen message to the other, to adjust his own opinion by

recognizing/discarding a previously seen message, or just do nothing. The DTM

model and the goal function of each player is sufficient to define all the quantities of

a MDP.

Dynamic Episodic Opinion Formation Task

In Chapter 6, we describe our modeling approach. In Chapter 7 (see Figure 1.7),

we describe how one player can learn how to perform well using Q-learning methods

when he is not familar with the reactions from the other player. Q-learning also allows

us to model dynamic episodic opinion formation tasks6; that is, one player engages in

an opinion formation task with N different players one at a time. As shown in Figure

1.7, different colors in the environment sequence represent different individuals.

The framework of computational opinions is a reinforcment learning framework

with double transition model as a core. Despite of its simplicity, it can model the

entire sequence of opinion formation tasks.

1.2 Contribution

We provide a new outlook of the nature of opinion modeling. The key contribution

to the framework of opinions is:

6We may also call it as dynamic one-to-one episodic opinion formation task.

20

episodic task	

o2	

q2	

 o3	

 l4	

task: t1 | t2 | t3 | t4 | t5 |	

l1	

 l2	

 l3	

 q1	

 o1	

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

obv(f5)	

pasrmv(l4)	

intadd(l3)	

Action	

Perception	

Reinforcement Learning	

DTM + RL	

actadd(l1)	

Figure 1.7: Dynamic Episodic Opinion Formation Task

• first framework that models knowledge basis, opinions, and interactive forma-

tion with external influence

• first framework in which the cognitive model is learned from feedback cycles

between opinion formation and opinion change

• little requirement for knowledge engineering

A double transition model is constructed on episodic knowledge in the form of

a matrix and a history of queries being asked in the form of vectors.

• is domain-independent thus does not need to build one DTM for each opinion

• there is high transparancy as the framework is mathematically defined

21

Key contributions to opinion theories are:

• provides a platform to study the persistence of opinion change

• provides a platform with which to study various propositions of how and why

humans differ in opinion formation

• provides a platform to study the relation between internalization of external

influence and externalization of internal influence

• an opinion can be analyzed via knowledge structure and its content for other

models

Key contributions to theories of rationality are:

• compatible with dual-process theory

• first framework that unifies some commonly-accecpted human heuristics

Key contributions to problem solving in opinion modeling are:

• defines and provides algorithms to solve a (non-)episodic opinion formation task

• defines and provides algorithms to solve a (non-)dynamic episodic opinion for-

mation task

• defines and provides algorithms to solve a sequence of (non-)episodic (non-

)dynamic opinion formation tasks

• provides solutions to convert questions expressed in natural language into

queries in the form of vectors

• provides a lazy fusion method to construct a probabilistic model from data in

the form of a matrix

22

1.3 Outline

This thesis presents a framework of computational opinions. We present our work in

two phases. Phase I focuses on addressing the learning aspect of an opinion formation

task.

• Chapter 2 surveys main social theories and theories of rational thinking in order

to provide a general understanding of the main challenges these two fields have

and the main tasks and problems they attempt to address. Our objective is to

develop a computational framework that is general, compact, simple to build,

and compatible with both social theories in opinions, and theories of bounded

rationality.

• Chapter 3 provides background for the three technologies we use in building

the framework: Makov decision process is used to model an opinion formation

task, Bayesian knowledge bases are chosen as both knowledge representations

and reasoning mechanisms, and additional reinforcement learning methods are

used for model-free problem solving.

• Chapter 4 formally introduces Double Transition Model with justifications and

methods presented in consequent sections.

• In Chapter 5 we provide some examples of how an opinion formation task is

performed by a DTM and then we conduct an evaluation of DTM by modeling

four human reasoning heuristics.

Phase II focuses on addressing the decision aspect of an opinion formation task.

In particular, we present our work in defining and solving different types of common

opinion formation tasks.

• In Chapter 6 we provide justifications on episodic opinion formation tasks and

describe how to define a MDP based on DTMs and goal functions.

23

• As we assume full knowledge of environment dynamics in Chapter 6, we explore

alternative reinforcement learning methods that can mitigrate this problem in

Chapter 7. Furthermore, we show that model-free methods, such as Q-learning,

also allow us to model how an individual improves his strategy over repetitive

exercises by performing the tasks with different individuals. In addition, we

formally define multi-agent MDPs over a set of DTMs and goal functions.

• In Chapter 7, we also conduct a case study to demonstrate the computational

power of the framework in studying a hypothetical problem of improper training.

• We conclude this thesis and describe a few important future works in Chapter

8.

1.4 Glossary

Opinion is personal beliefs that are derived rather than recalled; opinion is personal

as it can be derived in diverse ways.

An opinion change process is a process to internalize an external influence.

An opinion formation process is a process to externalize internal cognitive processes.

A non-episodic opinion formation task consists of a single opinion formation process,

in which there is no external influence in the task.

An episodic opinion formation task consists of a sequence of opinion formation and

change processes.

A dynamic episodic opinion formation task consists of a sequence of opinion forma-

tion and change processes that can be further divided into episodic and non-episodic

opinion formation tasks.

An external influent refers to one message from the world.

An internal influent refers to one message from oneself.

24

Chapter 2

Literature Review

The objective of this chapter is to survey the major theories in opinion modeling

and theories in bounded rationality. In Section 1, we focus on three well-established

social theories: Compliance-Identification-Internalization theory, which studies the

persistence of opinion change from the perspective of social integration, Affect Con-

trol Theory which studies the role of sentiment in controlling opinions (sentiment),

and Receive-Accept-Sampling Theory which places a central focus on knowledge in

the process of opinion change (knowledge). Lastly, we will have a brief discussion on

how a computational framework would be helpful for advancing the state-of-art of

social theories.

Section 2 surveys research efforts in the rationality of thinking. By describing the

main findings in this field, our goal is to convey the message about how humans solve

problems differs from how computational methods and models solve problems. In the

AI literature we differentiate the strong form of AI and the weak form of AI. Models

that can simulate how humans think are considered strong AI and models that can

simulate how human behave are considered weak AI (Russell et al., 2010). In general,

weak AI focuses on methods and systems used in problem solving (Campbell et al.,

25

2002; Marr, 1982) which has made significant progress in the last few decades. The

progress of strong AI is much slower and it mainly focuses on replicating human cog-

nitive capabilities such as learning (Bareiss et al., 1990), comprehension (Charniak,

1972), reasoning (Michalski, 1983), and planning (Lehman et al., 1996). Generally,

the reasons for slow growth in AI is its difficulty with evaluation, and the availability

and accessibility of datasets.

Despite the challanges in the AI field, deep learning (towards strong AI) has

recently been gaining some attention. In 2009, the Long Short-Term Memory

(Hochreiter and Schmidhuber, 1997) method which overcame a long-standing prob-

lem in reconcurrent backpropogation, and won three International Conference on

Document and Analysis (ICDAR) 2009 competitions in connected handwriting

recognition without any prior knowledge about the three different languages to

be learned. In 2012, the Google Brain team (Le et al., 2012) learned a 9-layered

locally connected autoencoder from unlabeled images taken from YouTube videos to

recognize higher-level concepts such as cats and human bodies. These two recent

successes of deep learning have resurrected interests in multi-layer computational

models especially in artificial neural networks (Haykin and Network, 2004).

This chapter does not survey all the known computational models mainly because

there are few computational frameworks that simultaneously model knowledge, be-

havior, and the forward and backward feedbacks all in one framework. Instead, we

describe relevant cognitive models in Chapters 4 and 5 when we describe DTM. We

then describe relevant behavioral models in Chapters 6 and 7.

26

2.1 Theories on Opinions

Social influence on opinions has drawn a lot of attention in the research communities

due to its long persistence and strong influence in both opinion change and behavior

change.

Watts (Watts and Holt, 1979) argues that opinion change induced from active

participation, such as writing or role playing, persists longer than from passive par-

ticipation such as through reading. This is because active participation produces

new information, leads to greater involvement, and makes participants continue to

think about the event after the participation has ended. All of these activities result

in better recall of the information. It has been also observed (Hoekstra, 1995) that

public opinions are heavily influenced by the pressure conditions under which they

were obtained. High pressure conditions such as punishment, reward, or external

surveillance might induce unnecessary resistance or compliance to survey responses.

Another reason why external influence on opinions is being heavily researched is that

studies may provide unique insights on effective methods to change public opinion.

This is important for both the media and the government, who often attempt to

redirect public attitudes by providing accessible information and opinions from elites

(Zaller, 1992).

2.1.1 Compliance-Identification-Internalization Model

The Compliance-Identification-Internalization Model (CII-Model), was developed

by Kelman (Kelman, 1955, 1961, 1974) from the perspective of social integration

with opinion communicators. According to Kelman, “this theoretical framework

was particularly concerned with specifying the conditions under which changes

induced by social influence attempts are temporary and superficial and, by contrast,

27

those under which such changes are lasting and integrated into the person’s belief

and value systems”. The CII model thus allows for differentiating three differ-

ent processes of influence: compliance, identification, and internalization. Briefly

speaking, compliance refers to the situation where external influence is accepted

by an individual because he wants to gain specific rewards such as approval, avoid

specific publishments, or disapproval by conforming, not because he believes in

the content. Individuals seek to be compliant in terms of opinion values but the

individuals’ underlying beliefs may not be consistent. Identification refers to the

situation where external influence is accepted by an individual because he wants

to establish or maintain a satisfying self-defining relationship to another person

or a group. He believes in the responses but their specific content is more or less

irrelevant. Internalization refers to the situation where influence is accepted by an

individual because both the content and the behavior itself are intrinsically rewarding.

Kelman conducted an empirical experiment in 1954, just prior to the announce-

ment of the Supreme Court decision on desegregation in the public schools. They

recorded communications in tapes that advocated maintaining some of the private

Negro colleges to preserve local culture, history and tradition if the Supreme Court

ruled that segregation was unconstitutional. They varied the source, degree of

the communicator’s power (e.g., means-control, attractiveness, and credibility). In

addition, they also varied the conditions of salience and surveillance. Salience is

maximized by issuing the questionaire immediately after the communication. Surveil-

lance is maximized by designing the questionaire to strengthen that the questionaire

is administered at the communicator’s request. The experimental results confirmed

the hypotheses of the CII model.

28

The CII model is one of the most important theories on social influence which

inspired numerous studies in various domains ranging from educational exchange

(Bailyn and Kelman, 1962), organizational commitment (Mowday et al., 1979), and

to analyze contemporary online social networks such as Facebook (Cheung et al.,

2011). The CII theory points out that the characteristics of an opinion communicator,

the way an opinion gets conveyed, and internal mechanisms play important roles

in determining the final influence of an opinion. Our rationale for an overarching

computational framework is very much aligned with the motivation for CII theory,

however, while CII theory focuses on conditions and various processes under which an

influence is accepted, the theory does not address how such influence may propogate

within communities. For example, if an influence is internalized by an individual, how

would this individual become a communicator to others and what will be the content

this individual expresses? The extension of CII theory to the processes of influence

acceptance and process of influence generation would be particularly valuable in the

design of a computational frameworks.

2.1.2 Affect Control Theory

While Kelman’s CII theory is concerned with various extents of internalization of

external influence, Affect Control Theory (ACT), (Berger and Zelditch, 2002; Heise,

1979; Robinson et al., 2006; Smith-Lovin, 1987), is concerned with the interplay be-

tween affect and behavior. According to Heise, the ACT theory has three basic

axioms:

1. Individuals create events to confirm the sentiments that they have about them-

selves and others in the current situation.

2. If events don’t work to maintain sentiments then individuals re-identify them-

selves and others.

29

3. In the process of building events to confirm sentiments, individuals perform the

social roles that operate society–the principle of affective rationality.

The mathematical model of ACT theory (Heise, 1979; Robinson et al., 2006; Rogalin

et al., 2007) utilizes a few tools such as sentiment measurements, impression-

formation equations, and mathematical minimization procedures to derive an EPA

(Evaluation, Potency, and Activity) profile. Evaluation, Potency and Activity were

the most significant three dimensions of affect identified by Osgood et al. (Osgood

et al., 1975) after conducted a cross-national project from 1950 to 1960 in order

to test the hypothesis that human beings utilize similar descriptive frameworks in

allocating affective meaning of concepts. Test subjects from two dozen societies

were presented with a list of common concepts (e.g. father, water) and were asked

to respond to each concept with a modifier (e.g., beautiful, scary). An atlas of

affective meaning for some 600 concepts was developed through a variety of cross-

national investigations on measuring affective associations of concepts. Based on

statistical analysis the three factors which were identifiable in nearly every language

and cultural community were Evaluation (e.g. good, bad), Potency (e.g. strong,

weak), and Activity (e.g. active, passive). Described by Berger et al. (Berger and

Zelditch, 2002), Evaluation refers to a sense of approval or disapproval that can

elaborate into judgements of morality, aesthetics, functionality, hedonism, or other

standards, Potency relates to an entity’s impact and might elaborate into assessments

of physical magnitude, strength, forcefulness, social power, expansiveness, and the

like, and Activity indexes an entity’s spontaneity which can elaborate into judgments

of animation, speed, perceptual stimulation, age, propensity to be an agent, and so on.

While CII theory focuses on identifying three processes each associated with a

different degree of persistence in opinion change, ACT highlights the possible rein-

forcement effect between affect and behavior. According to the 2nd axiom, sentiment

30

towards another individual not only results in a particular degree of persistence (pre-

dictable using the EPA factors) for that scenario, but also results in changes to in-

ternal mechanisms to fit how the persistence of opinion change will be for the future

scenarios.

2.1.3 Receive-Accept-Sampling Model

An alternative model for studying political communication and public opinion in

general is the Receive-Accept-Sampling Model (RAS) developed by Zaller (Zaller,

1992). The CII model differentiates processes of opinion change based on the

relationship between behavior compliance and the consequent compliance with an

internal value system, however, the question of how influence may conflict or is

aligned with one’s internal value system was not formally elaborated in this model.

The RAS model characterizes opinion formation process from the perspective of

information processing: the opinions expressed by individuals are heavily influenced

by their degree of political awareness (receive), consistency between the messages and

their predispositions (accept), and the priorities of messages by the time opinions

were formed (sampling). As pointed out by Zaller, politically more aware individuals

are more likely to receive elite message. Due to their exposure to multiple and often

conflicting messages, people are less likely to accept messages that are inconsistent

with their prior attitudes. Less aware individuals receive fewer messages, but are

more likely to accept them even if they are conflicting.

Compared to the CII model and ACT model, the cognition-oriented RAS model

studies from how cognitive engagement influences the persistence of opinion change

(accept), how cognition is involved in evaluating information (accept), and how in-

formation is selected in deriving an opinion (sampling).

31

2.1.4 Computational Models

Recently psychologists have incorporated techniques from information systems

to model human behavior. For example, Chwelos et al. (Chwelos et al., 2001)

proposed a model for investigating a purchasing manager’s intent for adopting

inter-organizational systems such as an electronic data interchange. Early work

by Price and Mueller (Curry et al., 1985) models the causal relationship between

the employment turnover of nurses and the turnover rate’s determinants. Welner

(Schmidt and Weiner, 1988) proposed a cognitive, emotion, action model to analyze

people’s decision on help-giving. In another example, Sheth (Sheth, 1973) developed

a model that integrated psychology, marketing, and information systems to predict

online consumer behavior. More specifically, due to an online consumer’s dual nature

as a traditional shopper and a computer user, the Technology Acceptance Model

(TAM) (Davis et al., 1989) was applied to investigate their intent at using the

technology of the web store, where TAM itself is a model used to predict the use of

information systems.

All these behavior models take the form of a causal model that predicts be-

havior based on its correlation with internal determinants such as intent, attitude,

belief, and emotion, as well as with external determinants such as resources, use-

fulness, and ease of use. These models were built on careful analysis of real-life

data and verified through empirical studies, however, they do not account for the

dynamism of people’s behavioral change and opinion change. Moreover, in each of

the models, the variables and causal relationships are fixed so they are limited to

only their respective domain applications.

32

2.1.5 Discussions

The general issues reagarding social theories are that they are typically domain-

specific, meaning that validating social theories in other domains take tremendous

time and labor. These studies are often pursued by scholars from a variety of disci-

plines, and so constructively comparing results across different experimental designs,

executions, and data is a challenge. The lack of a computational framework has lim-

ited scholars for the problems they can explore and the hypotheses they can verify.

For example, the issue of conveyed information is clearly important in the process of

opinion formation. According to LeDuc (Leduc, 2002), the more the issue is linked

with one’s political identity (or inner belief) or the more knowledge the voters have

about the issue, the more predictable the voting will be, and the faster voters will

make up their mind. On the other hand, the newer the issue is (e.g., maybe the issue

is seldom debated publicly), the more volatile the voting is, and the longer it takes

to form decisions. Current studies are pursued mainly via computing correlations

between information and opinions at the macro-level (population dynamics), rather

than be capable of exploring opinion dynamics on the micro-level (individual opinion

dynamics). Another problem is that the assumptions of theories and experiments

can be inconsistent with each other. For example, analysis of public opinion has also

shown that public opinions are unstable and are even affected temporarily by the

framing of the survey questions (Kelman, 1961), order of questions on the survey, or

the choice of survey questions immediately before the response (Zaller, 1992).

2.2 Theories on Rationality

In the work of Gigerenzer and Brighton (Gigerenzer and Brighton, 2009), they listed

some interesting examples of how animals use smart heuristics to solve adaptive prob-

lems:

33

“To measure the area of a candidate nest cavity, a narrow crack in a rock,

an ant has no yardstick but a rule of thumb: Run around on an irregular

path for a fixed period while laying down a pheromone trail, and then

leave. Return, move around on a different irregular path, and estimate

the size of the cavity by the frequency of encountering the old trail. This

heuristic is reported to be remarkably precise: Nests half the area of

others yielded reencounter frequencies 1.96 times greater (Mugford et al.,

2001). To choose a mate, a peahen similarly uses a heuristic: Rather than

investigating all peacocks posing and displaying in a lek eager to get her

attention or weighting and adding all male features to calculate the one

with the highest expected utility, she investigates only three or four, and

chooses the one with the largest number of eyespots (Petrie and Halliday,

1994).”

Simon (Herbet, 1955) also suggests that humans may adopt heuristics to make a

decision even though we have demonstrated superior cognitive capabilities compared

to animals. In particular, Simon pointed out that “humans experience limits in

formulating and solving complex problems and in processing (receiving, storing,

retrieving, transmitting) information”. Simon’s theory of Bounded Rationality has

inspired research in domains from Economics (Duhaime and Schwenk, 1985; Schwenk,

2006), Psychology (Kahneman et al., 1982), Political Science (Cohen et al., 1972),

and AI (Brighton, 2006), literally all fields that have something to do with humans.

In general, researchers are interested in studying how humans conduct congitive

activities under the situation of bounded rationality. One aspect for approaching

this question is to study the relationship between cognitive processes and their

performance. There are two main streams of research, one streams focusing on

34

cognitive biases and the other one focusing on effective heuristics in reasoning.

Kahneman (Daniel, 2011) and Tversky (Kahneman et al., 1982; Tversky, 1972)

introduced the notion of cognitive biases to describe the mistakes individuals con-

stantly and consistently make. For example, the ambiguity effect is a tendency to

avoid options for which missing information makes the probability seem “unknown”.

Furthermore, their studies sugggested that human cognitive activities may not be

in accord with existing mathematical models (e.g. statistical models). For instance,

they conducted experiments showing that humans may reach a wrong conclusion

when they ignore prior probabilities (Kahneman and Tversky, 1972). As Kahneman

explained in his Nobel Memorial Lecture (Kahneman, 2002):“Our research attempted

to obtain a map of bounded rationality, by exploring the systematic biases that sep-

arate the beliefs that people have and the choices they make from the optimal beliefs

and choices assumed in rational-agent models.”.

Gigerenzer and his colleages approach the problem from another viewpoint; that

is, instead of identifying road blocks that prevent one from making an optimal choice

(like a rational agent would do), the identified approaches/patterns that humans have

successfully applied to make good choices. In the past decades Gerd Gigenrenzer

and his team focused on a collection of fast and frugal heuristics (Czerlinski et al.,

1999; Gigerenzer and Brighton, 2009; Gigerenzer and Gaissmaier, 2011; Gigeren-

zer and Goldstein, 1999; Martignon and Hoffrage, 2002) that have been shown to

outperform complex mathematical models such as linear regression and decision trees.

Even though Kahneman and Gigerenzer are looking at two different sides of the

same coin, it is hard to integrate their findings. Their different view points grew out

of these two streams. Kahneman and his team have made implicit assumptions that

35

humans do optimize while Gigenrenzer argues that the assumptions of sub-optimality

deviates from Simon’s original idea (Gigerenzer and Gaissmaier, 2011). Another

consideration is that brain mechanisms in cognitive activities still remain a mystery

to all of us. We are still puzzled by simplier questions such as how does a genius’

brain differs from an ordinary’s brain (Simonton, 2012). Knowing how a brain works

in a problem-solving or a decision-making process is a more challenging problem.

Human brains are still an unknown black box. The common observables are hu-

man actions and communication. For us to try understanding cognitive activities,

however, there are many unresolved issues that provent us from even analyzing

human communication and behavior, specifically human deceptions hide true human

intent from observers, opinion and behavior shaped by the environment, exogenous

influence from other peers and nowadays from multimedia that can change one’s

opinions without one even noticing it (Baron, S., 2005; Esser, 1998; Mason et al.,

2007).

It is evident that a computational model may help test the validity of these two

perspectives, explore conditions under which any of these two holds or fails, and,

more importantly, provide capabilities to automate all these tests. In general, a

computational model is necessary for validating different theoretical accounts and

empirical findings, and it also serves as a framework for scholars to communicate and

replicate each other’s work.

To the best of our knowledge, there is no such computational model that can

achieve the required integration. The prevalent computational models assume

some forms of omniscience (have knowledge of all data needed) and some forms of

omnipotence (have all the computational resources and can always compute them

correctly), however, the properties of omniscience and omnipotence of these compu-

36

tational models are inconsistent with the nature of human cognitive processes that

typically have partially observable information, have limitations on computational

complexities, and can have errors in perception and reasoning. Works in the areas

of Fuzzy Logic (Klir and Yuan, 1995), Imprecise Probability (Dempster, 1967), and

numerous other methods of missing value estimations (Schafer and Graham, 2002)

are often treated as methods to remedy situations where things are not as perfect as

expected.

Another challenge for a computational model is to be capable of embodying dif-

ferent types of individual differences relevant to human cognition. In studying factors

that drive opinion change, Kelman (Kelman, 1961) has stated that knowing the direc-

tion of an individual’s response or the distribution of responses in the population are

far from the information needed to understand these opinions. We end this chapter

with the three types of information considered important by Kelman in understanding

opinion formation and opinion change:

“We need information that will allow us to make some inferences about

the characteristics of the observed opinions - their intensity, their salience,

the level of commitment that they imply. We need information about the

motivational bases of these opinions-about the functions that they fulfill

for the individual and the motivational systems in which they are embed-

ded. We need information about the cognitive links of the opinions-the

amount and the nature of information that suppports them, the specific

expectatations that support them.”

37

Chapter 3

Background

This chapter provides background material on Markov decision processes, model-free

reinforcement learning methods, and Bayesian knowledge bases. Bayesian Knowledge

Bases is our choice for knowledge representation of memory as well as our choice for

modeling human reasoning (in Chapter 4). Markov decision processes is our choice

to model both non-episodic opinion formation tasks and episodic opinion formation

tasks between two people (in Chapter 6). Model-free reinforcement learning methods

is our choice to generalized the framework for modeling non-episodic and episodic

opinion formation tasks between two entities (in Chapter 7).

3.1 Markov Decision Process

3.1.1 Notations

Definition 1 (Discrete-Time Finite Markov Decision Process). A discrete-time finite

markov decision process (MDP) is a 4-tuple (S,A, P,R) (Sutton and Barto, 1998),

where

• S is a finite set of states.

• A is a finite set of actions.

38

• P is function from S × A × S into [0, 1], the closed unit interval, such that∑
s′∈S P (s, a, s′) = 1 for all a ∈ A and s ∈ S.

• R is a function from S × A× S into R, the collection of all real numbers.

In the above definition, P (s, a, s′) is the probability that the next state is s′, given

the action a and the current state s. In other words, P (s, a, s′) = Pr(s′ | a, s). We

shall also denote P (s, a, s′) by Pa(s, s
′). Moreover, R(s, a, s′), also written as Ra(s, s

′),

is the value of the reward received after transition to state s′ from state s by taking

action a.1

In what follows, t will denote the time step, st the state at t, and at the action at

t.

Markov Property is the key assumption of a MDP. When we consider how the

environment responsed to an action, say a, the chances for various outcomes may

depend on the entire history, described in (Sutton and Barto, 1998) as

Pr{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, · · · , r1, s0, a0}.

for all s′, r, and all possible values of the past events: st, at, rt, · · · , r1, s0, a0. The

Markov property is a property that the environment’s next response to an action

only depends on the current environment state and action and is independent of

the entire history. In other words, Markov property describes the environment with

one-step dynamics, as follows

Pr{st+1 = s′, rt+1 = r|st, at}
1This reward function allows the reward to depend on the action and also the outcome. A simpler

but also commonly used reward function is Ra(s), where the immediate reward depends only on the
action but not the outcome.

39

If the environment satisfies Markov property, the next state (transition proba-

bility) as well as the reward (reward function) then can be predicted based on the

current state as well as the action taken in that state.

Another important assumption made in a MDP is the full observability of the

world meaning that an agent knows which states they are in with complete certainty.

Definition 2 (Infinite Horizon and Finite Horizon). Infinite horizon and finite

horizon is a fundamental property for a sequential decision problem. In a finite

horizon decision problem, the agent is only allowed to take a finite number of actions.

However in an infinite horizon decision problem, the number of actions an agent can

take is unlimited.

This thesis focuses on infinite horizon MDPs, thus we introduce the definitions

(e.g. policy, utility, and basic solutions to derive optimal policy) assuming that they

are for the infinite horizon problems. However since an agent can behave dramatially

under different problem setting, we will provide some brief discussion on the impacts

of this property.

Definition 3 (Policy). Policy (also be called as strategy or plan) is the solution to

answer what action an agent should do at a state. Formally, we denote a policy by

π, and π(s) is the action recommended by the policy π for state s. With a complete

specification of policy, an agent will always know what to do for any state.

Each time a policy gets executed starting from the initial state, the stochastic

nature of environment will leads an agent to be in a different environment history.

Therefore, the performance of a policy can be measured by the expected value of

all possible environment histories generated by this policy. We use π∗ to denote an

optimal policy which has highest expected value.

A policy derived for an infinite horizon problem is stationary in the sense that

40

the selection of an action at a particular time does not differ from the selection that

would be made at any other time. If a problem has a finite horizon (the game is

over in a finite number of steps), the optimal action in a given state could change

over time (policy under finite horizon is nonstationary). For example, if an agent

has unlimited time to find a route to exit a maze, it can take its time to well explore

the maze. In the case of a finite horizon situation, an agent near a wall at a later

time would head directly to the exit while it may wander around the wall when the

game just begain. More detailed theoretical discussions on various classes of policies

ranging from randomized, history-dependent policies to stationary deterministic

policies can be found in (Puterman, 2009).

Definition 4 (Value Function). Let V π(s) denote the expected value (also be called

utility) for executing the policy π starting from initial state s0. We can derive this

value by calculating the expected sum of all the rewards collected throughout all

possible environment histories (Russell et al., 2010)

V π(s0) = E[
∞∑
t=0

γtR(st)]

where γ is a discount factor and the expectation is with respect to the probability

distribution over state sequence determined by s and π.

A optimal policy is thus the one that can yield highest value

π∗s0 = argmaxπV
π(s0)

As we consider infinite horizon MDPs where policies are stationary, we have

π∗s0 = π∗s1 = · · · = π∗st for any t

41

Thus, we use a general notation2 πs that

π∗s = argmaxπV
π(s)

The value of a state given a policy is derived based on expected total discounted

reward criteron which is the most widely used criteron. The discount factor γ is both

mathematically attractive and semantically intuitive. With rewards being discounted

over time, the value of an infinite state sequence is finite. It has been shown that the

value is in fact has a upper bound with the maximal reward (if γ < 1) (Russell et al.,

2010). Facing a decision problem, the discount factor represents the agent’s take on

the importance of the near future. If the discount factor is 0, the agent is considered

short-sighted as it only cares about the return of the current action. The larger the

discount factor is, the more far-sighted an agent is.

Expected total reward criteron and Expected average reward criteron are two other

alternative criteria to calculate the value of a policy. (Detailed analyses can be found

in (Puterman, 2009)), but in this thesis we will stick with the discounted reward.

The value function allows an agent to act optimally by selecting an action that

will yield the highest expected values of the next state

π∗(s) = argmaxa∈A(s)
∑
s′

Pa(s, s
′)V π∗(s′)

where A(s) is the state-action function to determine the scope of actions an agent is

allowed to take in state s.

Definition 5 (Partially Observable Markov Decision Process). When full knowledge

of the environment is not available (full observability assumption does not hold), for

example a player does not know which state it is in, then this player can no longer

2This no longer holds for finite horizon problems as the policies are non-stationary.

42

execute policy π(s) even if it has one. Partially observable Markov decision process

(abbrev. POMDP) is a generalization of a MDP that address sequential decision

problems within partially observable environment.

POMDPs have key elements as a MDP but has an additional observation space

ω and an observation function Oa(s
′, o). Formally, a discrete-time finite partially

observable markov decision process (abbrv. POMDP) is defined as a 6-tuple

(S,A,O, Pa(s, s
′), Ra(s, s

′), Oa(s
′, o)) (Kaelbling et al., 1998; Russell et al., 2010),

where

• S is a finite set of states S = s1, s2, · · · , sn.

• A is a finite set of actions A = a1, a2, · · · , am.

• O is a finite set of observations that an agent receive.

• Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) is the probability that action a in state

s at time t will lead to state s′ at time t+ 1.

• Ra(s) = E(rt+1|st = s, at = a) is the expected value of reward by taking action

a at state s.3

• Oa(s
′, o) = Pr(ot+1 = o|st+1 = s′, at = a) that o ∈ O is the probability of

making observation o of the actual landed state s′ by taking action a.

If an agent has obtained full knowledge of the environment, then we have O = S

(Braziunas, 2003).

3.1.2 Algorithms

This section describes algorithms to find optimal policies. We will cover two popular

classes of algorithms: value iteration and policy iteration with their varients. Consid-

3Note that the reward function specified for POMDP differs from the one specified for a MDP.
For a POMDP, we consider a reward to only depend on the action but not its outcome.

43

ering an optimal policy π∗, we will have the following relationship (Sutton and Barto,

1998)

V π∗(s) = max
a

∑
s′

Pa(s, s
′)[Ra(s, s

′) + γV ∗(s′)]

In fact, this is the Bellman optimality equation (Bellman, 1956). As the other

quantities are all specifieid in a MDP already, we will have thus n unknowns (states)

and n equations. However, each equation has a max operator thus we need to solve n

nonlinear equations. The value iteration algorithm uses an interative approach that

is guaranteed to converge (proof of convergence can be found at (Puterman, 2009)).

The basic idea is as follows: the algorithm starts with initial values for states (can

be either arbitrary or be all zero). Then, the algorithm updates the value of each

state by turning the Bellman optimality equation into a Bellman update rule shown

below. When the value change for states is smaller than the pre-defined constant Θ

(the final solution is thus referred to as Θ-optimal), the algorithm exits. The value

iteration algorithm is shown in Figure 3.1.

V (s)← max
a

∑
s′

Pa(s, s
′)[Ra(s, s

′) + γV (s′)]

The max operator in the value interation algorithm makes it harder to derive

the exact solution efficiently. The policy iteration algorithm effectively tackles this

problem when we already have a policy in mind. The Bellman equation for a policy

πi is mapped to

V πi(s) =
∑
s′

Pπi(s)(s, s
′)[Rπi(s)(s, s

′) + γV πi(s′)]

Note that this equation no longer has the max operator and thus the exact solution

for all state values can be derived by solving system of linear equations. The policy

44

Input: States plus terminal state S+

Input: Transition probability table P a
ss′

Input: Reward table Ra
ss′

Input: Discount factor γ
Input: Small positive constant Θ
Output: Deterministic policy π such that

π(s) = arg maxa
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]

1 var vector V ← initToZero(S+);

2 repeat
3 var ∆← 0;
4 foreach s ∈ S do
5 var v ← V (s);
6 V (s)← maxa

∑
s′ P

a
ss′ [R

a
ss′ + γV (s′)];

7 ∆← max(∆, |v − V (s)|);
8 until ∆ < Θ;

Figure 3.1: Value Iteration (Sutton and Barto, 1998)

iteration algorithm consists of two steps, beginning from some initial policy π0 (Russell

et al., 2010).

• Policy evaluation: given a policy πi, calculate Vi = V πi which is the value for

each state if the policy πi is executed.

• Policy improvement: calculate a new policy πi+1 using one-step look-ahead

based on Vi.

• Stopping rule: the algorithm terminates if the policy improvement step does

not result in changes in values.

Even though we can compute the exact value of all states given a known policy,

it could still require a computational complexity O(n3) if standard linear algebra

methods are used. The high computational complexity is problematic for a MDP

with a large number of states. Therefore, instead of calculating exact values, we

can use an iterative policy evaluation to reach a good approximation. The policy

45

iteration algorithm (with iterative policy evaluation) is shown in Figure 3.2.

46

Input: States plus terminal state S+

Input: Transition probability table P a
ss′

Input: Reward table Ra
ss′

Input: Discount factor γ
Input: Small positive constant Θ
Output: Deterministic policy π such that

π(s) = arg maxa
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]

1 1. Initialization;
2 var V (s) ∈ R and var π(s) ∈ A(s) arbitrarily for all s ∈ S;

3 2. Policy Evaluation;
4 repeat
5 var ∆← 0;
6 foreach s ∈ S do
7 var v ← V (s);

8 V (s)←
∑

s′ P
π(s)
ss′ [R

π(s)
ss′ + γV (s′)];

9 ∆← max(∆, |v − V (s)|);
10 until ∆ < Θ;

11 3. Policy Improvement;
12 policy-stable ← true;
13 foreach s ∈ S do
14 var b← π(s);

15 π(s)← argmaxa
∑

s′ P
π(s)
ss′ [R

π(s)
ss′ + γV (s′)];

16 if b 6= π(s) then policy-state ← false

17 if policy-stable then
18 stop;
19 else
20 go to 2;

Figure 3.2: Policy Iteration using Iterative Policy Evaluation
(Sutton and Barto, 1998)

3.2 Reinforcement Learning

In fact, the process of learning within a MDP environment for the purposes of deter-

mining optimal behavior is reinforcement learning. According to (Sutton and Barto,

1998),

“Reinforcement learning is learning what to do—how to map situations

to actions—so as to maximize a numerical reward signal. The learner

47

is not told which actions to take, as in most forms of machine learning,

but instead must discover which actions yield the most reward by trying

them.”

This definition of reinforcement learning illustrates the fundamental difference be-

tween reinforcement learning and supervised learning - reinforcement learning focuses

on learning through interaction while supervised learning focuses on learning directly

from collections of environment histories. In other worlds, reinforcement learning

exploits the structure of the environment while supervised learning does not.

MDPs are important to the theory of reinforcement learning for the situation

where the decision problem satisfies Markov property. In the previous section, we

introduced two basic methods (value iteration Algorithm 3.1 and policy iteration

Algorithm 3.2) to derive optimal policies when the full knowledge of environment is

available. An agent may still have full observation of the environment that knowing

the current state it is in with full certainty, however the agent may not know the

dyanmics of environment which is captured in the transition probabilities Pa(s, s
′)

and immediate rewards Ra(s, s
′) (also called sense). Sutton (Sutton and Barto, 1998)

has described an intuitive example summarized here as follows

Blackjack is a popular casino card game. The objective is to obtain cards

with a sum as great as possible and not exceeds 21. The game between

a player against a dealer begins with two cards dealt to both dealer and

player. One of the dealer’s card is faceup and the other card is facedown.

If the player does not have exact 21 whn the game begins, the player then

can require additional cards until either he/she stops or goes bust (sum

exceeds 21). Once the player stops, the dealer can require additional cards

until either he/she stops or goes bust. Whenever either the player or the

48

dealer goes bust, he loses the game. Otherwise, whoever has a larger final

sum wins.

The game can be formulated as a MDP. The decision a player faces depends on three

variables: his current sum of cards (11-21), the dealer’s faceup card (ace-10), and

whether or not he holds a usable ace4.

In the blackjack problem, the player has full knowledge of the environment: he

can observe the three variables of the environment with full certainty, and he knows

what are the actions he is allowed to take at each state. What he may not know

is Pa(s, s
′) and Ra(s, s

′) as it is hard to determine the cards the dealer may get

under different situations and to determine the expected reward that follows. Even

if a good estimation can be obtained, the situation may be too complex to be fully

analyzed.

We introduce two classes of reinforcement learning methods that approximate

value functions when full knowledge of the enviroment is not available: one class

of methods is called Monte Carlo methods and another class of methods is called

temporal difference methods. Both methods learn from simulated experience. In

general, monte carlo methods estimate value functions on an episode-basis while

temporal difference methods estimate value functions on a step-basis.

Considering a collection of simulated episode experiences by executing a policy

π, a Monte Carlo method can learn a state-value function V π
s based on the return

of visiting state s in each episode. An every-visit MC method estimates V π
s as the

average of the returns following all the visits to s in all experience and a first-vist

MC method estimates V π
s as the average of the return following the first visit to s in

4The most detailed description of the blackjack game can be found in (Sutton and Barto, 1998),
p.112-114

49

1 1. Initialization;
2 var π ← policy to be evaluated;
3 var V ← an arbitrary state-value function;
4 var Returns(s)← an empty list, for all s ∈ S;

5 repeat
6 (a) Generate an episode using π;
7 (b) For each state s appearing in the episode:;
8 R← return following the first occurrence of s;
9 Append R to Returns(s);

10 V (s)← average(Returns(s));

11 until;

Figure 3.3: First-visit MC Method for Estimating V π

(Sutton and Barto, 1998)

all experience (Sutton and Barto, 1998). The procedure for first-visit MC methods is

shown in Figure 3.3. The update equation for first-visit α-constant MC method is

V (st)← V (st) + α[Rt − V (st)]

where Rt is the total return after time t within this episode.

The simplest temporal difference method TD(0) is

V (st)← V (st)α[rt+1 + γV (st+1)− V (st)]

where rt+1 is the immediate return after visiting state s at time t. These two simple

equations illustrate the essence of how MC methods and TD methods differ. The

procedure for TD(0) is shown in Figure 3.4.

Q-learning is the most famous off-policy TD method developed by Watkins

(Watkins, 1989). A one-step Q-learning methods is as the following

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, a)]

50

1 1. Initialization;
2 var V (s) initialized arbitrarily;
3 var π is the policy to be evaluated;

4 repeat
5 foreach episode do
6 Initialize s;
7 repeat
8 foreach step in the episode do
9 a← action given by π for s;

10 Take action a; observe reward r and next state s′;
11 V (s)← V (s) + α[r + γV (s′)− V (s)];
12 s← s′;

13 until until s is terminal ;

14 until;

Figure 3.4: Temporal Difference Method to Estimate V π

(Sutton and Barto, 1998) p. 135

Q-learning estimate an action-value function rather than a state-value function.

The estimation has been shown to converge with probability 1 to the Q∗ (Sutton and

Barto, 1998). The procedure of Q-learning for shown in Figure 3.5.

Definition 6 (Action-Value Functions). We consider action value methods in making

action selection decisions. The simplest action selection rule is to select the action

with highest estimated action value. The action chosen using this rule is called greedy

action, as

Qt(a
∗) = max

a
Qt(a)

This method exploits current knowledge of the environment without considering in-

ferior actions which generate a higher value in the future. Therefore, ε-greedy action

selection rule selects the greedy action for most of the time but selects a random

action with a probability of ε.

An ε-greedy action selection rule has two potential issues: 1) it is likely to choose

51

1 1. Initialization;
2 var Q(s, a) initialized arbitrarily;

3 repeat
4 foreach episode do
5 Initialize s;
6 repeat
7 foreach step in the episode do
8 Choose a← from s using policy derived from Q (e.g, ε− greedy);
9 Take action a; observe reward r and next state s′;

10 Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)];

11 s← s′;

12 until until s is terminal ;

13 until;

Figure 3.5: One-step Q-learning Method Estimate Q(s, a)
(Sutton and Barto, 1998) p. 149

worst actions due to the random selection, 2) it can take a while to pick the optimal

action when the size of actions is large. The softmax action selection rule effectively

addresses these issues is to vary the action probabilities as a graded function of es-

timated values. The most common softmax methods uses a Gibbs, or Boltzmann

distribution. It chooses an action a at time t with probability (Sutton and Barto,

1998)

eQt(a)/τ∑n
b=1 e

Qt(b)/τ

where τ is a positive parameter called the temperature.

3.3 Bayesian Knowledge Bases

This section introduces Bayesian Knowledge Bases - a probabilistic knowledge repre-

senation with capabilities of answering probabilistic questions. Bayesian Knowledge

Bases encodes domain knowledge in a graphical representation by specifying “If-then”

rules between states of variables. Bayesian Knowledge Bases allow knowledge to

52

be incomplete - conditional probabilities between two random variables need not to

be fully specified, allows cycles in the knowledge. In addition, the fusion algorithm

provides capability to merge multiple BKBs into one BKB but still with individual

source fragments identifiable.

We first describe the graphical representation of BKB (Santos Jr and Santos,

1999), the fusion algorithm (Santos Jr et al., 2009), and how probabilistic inferences

are derived (Rosen et al., 2004). Then, we introduce a few new concepts such as

decomposability and substitutability that allow us to derive a linear solution for prob-

ability computations.

3.3.1 Knowledge Representation

In this section, we first provide a formal definition of Bayesian Knowledge Bases

(Santos Jr and Santos, 1999) which is a probablistic representation of knowledge.

Then, we describe the fusion algorithm (Santos Jr et al., 2009) which allows us to

merge multiple BKBs into one BKB without violating semantic and probablistic

soundness.

Definition 7 (Correlation Graph). A correlation graph G = (I ∪ S,E) is a directed

graph such that I and S are disjoint, and E ⊆ {I × S} ∪ {S × I}. Furthermore, for

all a ∈ S, (a, b) and (a, b′) are in E if and only if b = b′. {I ∪ S} are the nodes of G

and E are the edges of G. A node in I is called an instantiation node (I-node) and a

node in S is called a support-node (S-node).

I-nodes represent the various instantiations of ramdom variables (r.v.s), that is,

an assignment of a value to a random variable. S-nodes, on the other hand, explicitly

embody the relationships (conditional (in)dependence) between the I-nodes.

Notation. Let a be any node in I ∪S. headG(a) = {b|(b, a) ∈ E} are the immediate

predecessors of a in graph G. tailG(a) = {b|(a, b) ∈ E} are the immediate descendants

53

of a in graph G. In addition, we denote the r.v. of an I-node a by rv(a), and its value

assignment by assn(a).

Let π be a partition on I. Each cell in π will denote the set of I-nodes (instanti-

ations) which belong to a single r.v. and are mutually exclusive instantiations. For

a variable X, we denote the set of all its possible instantiations by D(X) - this set

corresponds to the partition cell for variable X. In BKBs, we can represent ran-

dom variables with discrete but multiple instantiations. We use RV to denote the

collection of all r.v.s.

Definition 8. G is said to respect π if

1. for any S-node b ∈ S, the predeccessor I-nodes of b, headG(b), assigns at most

one instantiation to each r.v.

2. for any two distinct S-nodes b1 and b2 in S such that tailG(b1) = tailG(b2), there

exists an I-node in headG(b1) whose r.v. instantiations contradicts an I-node in

headG(b2). Furthermore, b1 and b2 are said to be mutually exclusive.

The above two conditions guarantees that the conditional (in)dependencies are mean-

ingful especially during reasoning as we shall see later. The first condition simply

prevents conditionals of the form P (A = a| . . . , B = b, . . . , B = b′, . . .) where b 6= b′.

For the second condition, consider some given head (or consequent) and the tals (or

antecedent) of any two distinct S-nodes that share this head. If the two tails are

not mutually exclusive (also called compatible), then they should be combined into a

single more detailed condition. Condition two guarantees that no compatible S-nodes

occur.

Definition 9 (Bayesian Knowledge Base). A Bayesian knowledge base (BKB) K is

a 3-tuple (G,w, π) where G = (I ∪ S,E) is a correlation graph, and w is a function

from S to [0, 1], π is a partition on I, and G respects π. Furthermore, for each a ∈ S,

w(a) is the weight of a.

54

Notation. We denote a cell of π by π(i) and we denote the number of I-nodes

contained in each cell by |π(i)|.

Definition 10 (BKB Fusion). BKB Fusion (Santos Jr et al., 2009) is a process to

fuse a collection of source BKBs into one BKB. Let K ′ = (G′, w′, π′) denote the

target BKB to fuse from a collection of source BKBs {Ki,i∈{1,...,m} = (Gi, wi, πi)}

where Gi = (Ii ∪ Si).

K ′ is built by iterating through all the S-nodes in each source BKB. Basically, for

each S-node, add a new I-node pointing to this S-node. The purpose of this new I-

node is to denote the source of this S-node, thus, the name of the new I-node denotes

the name of S-node’s tail while the state of this I-node is the label of the source BKB.

As we need to make sure the new graph G′ respects π′, we add an additional S-node

supporting this new I-node. Intuitively, all the new S-nodes are prior nodes with

no immediate predecessors. The immediate predecessors and immediate decendents,

connected by a S-node, is a subgraph of source BKB. After adding the new I-node

and the new S-node, simply merge this subgraph with K ′. We have these relationship

between each source BKB with the fused BKB:

• ∀Ki, Ii ⊆ I ′

• ∀Ki, Si ⊆ S ′

Notation. Let I ′s ⊆ I ′ denote the set of new I-nodes, S ′s ⊆ S ′ denote the set of new

S-nodes, and RV ′s ⊆ RV ′ denote the set of new r.v.s introduced in the process of

fusion. We have G′ = (I ′ ∪ S ′, E ′) where I ′ = ∪mi=1{Ii} ∪ I ′s and S ′ = ∪mi=1{Si} ∪ S ′s.

K ′ has the following properties:

1. |I ′s| =
∑m

i=1(|RVi|). The number of new I-nodes is the sum of the number of

r.v.s. in each source BKB.

55

2. |I ′s| ≤
∑m

i=1(|{Si}|). The number of new I-nodes is at most the same size as the

number of S-nodes in all source BKBs.

3. |S ′s| = |I ′s|. The number of new S-nodes is the same as the number of new

I-nodes.

4. |RV ′s | = | ∪ {RVi}|. The number of new r.v.s is the size of unions of r.v.s sets

from all source BKBs.

The weight function w′ for any S-node b in the new BKB K ′ is as the follows:

w′(b) =


w′′(b) if b ∈ S ′s

wi(b) if b ∈ Si

All the weights of S-nodes from the original source BKBs are preserved. All the

new S-nodes are supporting prior I-nodes. Function w′′ assigns a weight to a prior

I-node which is a new source node added in the process of fusion. As multiple I-

nodes may be instantiations of the same r.v., the total sum of the weights should not

exceed 1.0. One example of such a weighting function w′′(b) is to assign the S-node to

each instantiation the same weight. Alternatively, the weight function can also take

additional reliability information of each source BKB, and gets normalized so that

the weights of all sources for a given random variable cannot exceed 1.0.

3.3.2 Probabilistic Inferencing

In probablistic reasoning, Bayesian Knowledge Bases can determine the probabilities

of the following form P (A1 = a1, . . . , Am = am|B1 = b1, . . . , Bn = bn) where the r.v.s

A1, . . . , Am are our target r.v.s and B1 = b1, . . . , Bn = bn are our evidence. Using

these probabilities, we can answer questions such as:

1. What is the most probable state of the world given the evidence?

56

2. What is the most likely state of a r.v. given the evidence?

3. What is the most probable composite state of a set of r.v.s given the evidence?

In this section, we first describe inference graphs that is the key to computing

probablities for the above questions. Then, we introduce some new definitions on the

graphical relationship between source fragments with the fused fragment. Third, we

describe how we compute probabilities.

BKB is a graphical structure of conditional (in)dependencies. The central idea

is to consider relevant subgraphs of the BKB called inference graphs. Intuitively,

these inference graphs represent partial instantiations to the world through their

I-nodes while the product of the probabilities on their S-nodes will denote the joint

probabilities of the partial instatiation.

Let r = (I ′ ∪ S ′, E ′) be a subgraph of our correlation-graph G = (I ∪ S,E)

where I ′ ⊆ I, S ′ ⊆ S, and E ′ ⊆ E. Then, r has a weight w(r) defined as follows:

w(r) =
∏

s∈S′ w(s).

Definition 11. An I-node a ∈ I ′ is said to be well-supported in r if there exists an

edge (b, a) in E ′. Furthermore, r is said to be well-supported if for all I-nodes a in I ′,

a is well-supported.

Each I-node must have an incoming S-node in r.

Definition 12. An S-node b ∈ S ′ is said to be well-founded in r if for all (a, b) ∈ E,

(a, b) ∈ E ′. Furthermore, r is said to be well-founded if for all S-nodes b in S ′, b is

well-founded.

If an S-node b is present in r, then all incoming I-nodes (conditions) to b in G

must also be present in r.

57

Definition 13. An S-node b ∈ S ′ is said to be well-defined in r if there exists an

edge (b, a) ∈ E ′. Furthermore, r is said to be well-defined if for all S-nodes b in S ′, b

is well-defined.

Each S-node in r must support some I-node in r.

Definition 14 (Inference Graph). r is said to be an inference over K if r is well-

supported, well-founded, well-defined, acyclic, and for all cells σ in π, |I ′ ∩ σ| ≤ 1,

i.e., each r.v. has at most one instantiation in r. Furthermore, r is said to be a

complete inference over K if for all cells σ in π, |I ′ ∩ σ| = 1, i.e., each r.v. has one

unique instantiation in r. r is said to be maximal in K if no proper superset of r is

an inference over K.

Product w(r) is the joint probability of the r.v. instatiations contained in the

I-nodes of r.

In the previous section, we introduced the concept of fusion that combines

multiple BKBs into one BKB. Through fusion, the joint probability distribution

from each source BKB are fused into one global joint probability distribution. At

the same time, each source BKB is still preserved and retrievable from the fused BKB.

Carefully selecting the inferences we consider, we can answer the various queries

we described earlier. For example, suppose we wish to determine the most prob-

able state of the world when given evidence set U . We only consider r.v. states

that are reachable or can be reached from the evidence. If there is no undirected

path from an r.v. state to evidence in U , the evidence is independent of the r.v. state.

58

We construct R(U) as follows: Inference r is in R(U) if r is connected, r is

maximal, and U ⊆ span(r)5. Our goal is to determine the inference r∗ with highest

probability over all inferences in R(U).

P (r∗|U) = max
r∈R(U)

P (r|U) (3.1)

Note that P (r|U) = P (r,U)
P (U)

= P (r)
P (U)

. Since P (U) is a constant, we only need to

determine the most probable instantiation-set r∗ in R(U) such that r ⊆ r∗.

P (r∗|U) = max
r∈R(U)

w(r) (3.2)

The most probable instantiation-set contains the most probable state of the

world. If we are interested in the state of a particular r.v. A given evidence set

U . The question now becomes: What is the most likely state of the world for an

instantiation of a of A that is consistent with U? Similarly, we can construct R(U) as

follows: Inference r is in R(U) if r is connected and a ∈ span(r), and r is consistent

with U . We can answer it by translating this question to the one above. Both this

question and the previous one are belief revision type queries.

There is another type of reasoning query called belief updating : What is the

likelihood of state of a r.v.s X given evidence U? We can answer this question

by computing through belief revision. As BKB accommodates incompleteness in

the knowledge, the exact probability is not available due to incomplete knowledge.

However, we can obtain a lower bound and upper bound of the probablities for

instantiations of r.v. X. The lower bound of P (X|U) can be derived by summing

up the joint probablities for all the inferences r that are in R(U). To compute the

5We define the span of a set of I-nodes or an inference to be all the r.v.s instatiations involved in
that set of inference.

59

upper bound of P (X|U), we further construct a set of inferences R′(U) from R(U) by

removing all the descendants of instantiations of X in each inference from R(U). The

upper bound is derived by summing up the joint probabilities for all the inferences

of instantiations of X in each inference from R′(U). Formally, we have:

P (X|U) ≥
∑

r∈R(U)

P (X|U) (3.3)

P (X|U) ≤
∑

r∈R′(U)

P (X|U) (3.4)

Note that P (X|U) = P (X,U)
P (U)

= P (X)
P (U)

and the approximations we derive by summing

all relevant inferences are both smaller or equal to the real lower and upper bounds.

∑
r∈R(U)

P (X|U) ≈ [
∑

r∈R(U)

w(r),
∑

r∈R(U)

w(r)] (3.5)

where [
∑

r∈R(U)w(r),
∑

r∈R(U)w(r)] denotes lower and upper bound of the approxi-

mation.

Now we discuss relations between a collection of BKBs and the BKB fused from

them.

Definition 15 (Source Fragment-Compatible Subgraph). Let K ′ = (G′, w′, π′) be

a BKB fused from set {Ki = (Gi, wi, πi) : i ∈ {1, . . . ,m}}. A subgraph g of K ′

is compatible with a source fragment Ki if g is well-supported, well-founded, well-

defined, IKi ⊂ Ig, and (IKi \ Ig) ⊆ I ′s where I ′s is a set of source I-nodes.

A subgraph compatible with a source fragment would contain all its I-nodes plus

the additional new source I-nodes inserted in the process of fusion.

The relation between source fragments and source fragment-compatible subgraphs

is surjective. In details, we have:

60

1. Each g is compatible with multiple source fragments if they have the same

set of I-nodes. These source fragments can have different S-nodes and weight

functions.

2. For every source fragment K, there exists exact one compatible g.

3. The union of all subgraphs g is the same as fused BKB K ′.

Notation. We use compat(K ′, K) to denote the subgraph of K ′ compatible with the

source fragment K.

Definition 16 (Decomposable Subgraph). Let K ′ = (G′, w′, π′) be a BKB fused from

set {Ki = (Gi, wi, πi) : i ∈ {1, . . . ,m}}. A subgraph g = compat(K ′, Ki,i∈{1,...,m}) is

decomposable if all maximal inferences in g are complete.

Notation. We use decom(K ′) to denote the set of decomposable subgraphs in K ′.

We have 0 ≤ |decom(K ′)| ≤ m as the number of source fragments is m.

Definition 17 (Decomposable BKB). Let K ′ = (G′, w′, π′) be a BKB fused from

set {Ki = (Gi, wi, πi) : i ∈ {1, . . . ,m}}. A BKB K ′ is decomposable if all its source

fragment-compatible subgraphs are decomposable. For a decomposable BKB, we can

answer the questions by integrating partial results from reasoning the question over

each g. We can answer the belief revision type queries by answering the question on

each g ∈ decom(K ′). Formally, we have 6:

P (r∗, U) ≈ max
g∈decom(K′)

(max
r∈Rgr(U)

w(r)) (3.6)

As belief updating can be derived through belief revision, we can also answer the belief

update type queries by answering the question on each g ∈ decom(K ′). Formally, we

have:

P (X|U) ≈
∑

g∈decom(K′)

(
∑

r∈Rgr(U)

w(r)) (3.7)

6The probability value is an approximation, ref to Equation 3.2.

61

Chapter 4

Double Transition Model

This chapter formally introduces Double Transition Model to address the learning

aspect of an opinion formation task. In this chapter, first we will provide an overview

of our effort in Phase I with a focus on justification of a new cognitive model. Next,

we provide formal definitions of a DTM in mathematical terms. Then, we describe

each component of a DTM independently: 1) the memory transition graph in a DTM,

2) the query transition graph in a DTM, 3) the links formed within a DTM. As a

DTM is a cognitive model, in Section 5, we also compare it against a well-adopted

cognitive architecture SOAR (Lehman et al., 2006) to highlight the differences.

4.1 Overview

In Phase I, our objective is to address the learning aspect of an opinion formation

task; here learning means the internalization of external influence. There are a

variety of things researchers have confirmed that can be internalized. Thus this

phase focuses on the design of a cognitive model capturing the internal mechanisms

embodying internalization.

We realize that a new design of a cognitive model is needed mainly for the

62

reason that the majority of existing cognitive architectures follow a “divide-and-

conquer” paradigm - the cognitive processes are treated independently and the

variety of knowledge reprsentations are modeled separately as well (See the memory

structure of SOAR (Lehman et al., 1996, 2006) in Figure 4.1a as a reference.). There

are two main weaknesses with regards to the “divide-and-conquer” design:

• Human engineering effort

Models designed with the philosophy of “divide-and-conquer” often results in

more components. The research approach then turns to focus on the design of

each individual component (what each component does, what each component

contains) and the design of how these components interact with each other. The

components are often of hetegenous type, i.e., one component is knowledge, an-

other component can be a cognitive process.

The main weakness of this design is expensive human engineering effort in ini-

tializing each component, e.g., Cyc has been a 30-year effort in assembling a

comprehensive ontology1 of everyday common sense knowledge.

• Butterfly effect

The second weakness of this design is that the errors/assumptions in one com-

ponent can have a butterfly effect on the performance of the entire system.

Daniel Kahneman (Daniel, 2011) and Amos Tversky (Kahneman and Tversky,

1984) introduced the notion of cognitive biases to describe the mistakes indi-

viduals constantly and consistently make. Their studies suggested that human

cognitive activities may not be in accord with existing mathematical models

(Kahneman and Tversky, 1972). Therefore, the more components are manually

engineered, the more likely that some components may have too many implicit

assumptions that are not compatible with Bounded Rationality.

1The new release of OpenCyc has 239,000 terms, 2,093,000 triples downloadable from http:

//www.cyc.com/platform/opencyc.

63

Therefore we realize that a cognitive model with compact structure and minimal

requirement of human engineering effort highly desired; that is, a model can be fully

instantiated by observables from individuals without the needs for precoded domain

knowledge. We are then triggered to propose the following idea: if we store the

snapshots of all the states a cognitive model has experienced before, then the links

between two connecting snapshots naturally capture the differences in knowledge

and so forth. This was the origin idea that inspired us to design a Double Transition

Model (see Figure 4.1b). For simplicity, we consider two forms of knowledge to

build a DTM: learning episodes represent perception of the environment, and queries

representing requests of opinions. A DTM is a networked space of cognitive states,

from each of which an opinion can be derived as a combination of the knowledge and

the query within that state.

There are a couple of challenges in designing a DTM to embody the inter-

nalization of external influence. We summarize them here and the detailed approach

to tackle them will be provided in the following sections. The key challenge for this

phase is to make sure the space of cognitive states is sufficient to reflect diversities

in human reasoning. This is extremely challenging particularly in the situation that

the causes of diversified human reasoning have not reached an agreement yet by

researchers. Thus the transformation rules between connecting states are driven by

the desire to be flexible with the main theories of bounded rationality.

4.2 Definitions

A Double Transition Model (DTM) may be viewed as the cross product of two tran-

sition graphs — the query transition graph and the memory transition graph.

64

(a) Memory Structure in SOAR Cognitive Architecture
from (Lehman et al., 2006)

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

(l2,d12)	

(l4,d34)	

(l3,d23)	

Action	

Perception	

DTM	

(b) Double Transition Model

Figure 4.1: Comparison of SOAR and DTM

Definition 1 (Query Transition Graph). A query transition graph Q is an undirected

graph (V Q, EQ), where V Q is a collection of partial instantiation of the random vari-

ables, such as (A1 = a1, A2 = a2, A3 = a3)... Each Ai is a random variable and the

corresponding ai is the value or instantiation associated with the Ai. There is an edge

between two vertices vQ1 and vQ2 in V Q if and only if vQ1 can be transformed into vQ2

using a single query transformation. It is clear from the definition of query transfor-

mation that if vQ1 can be transformed into vQ2 using a single query transformation, so

can vQ2 be transformed into vQ1 using a single query transformation.

65

Definition 2 (Memory Transition Graph). A memory transition graph K is an undi-

rected graph (V K , EK), where V K is a knowledge base (BKB in our case). There is an

edge between two vertices vK1 and vK2 in V K if and only if vK1 can be transformed into

vK2 using a single domain knowledge transformation. It is clear from the definition

of domain knowledge transformation that if vK1 can be transformed into vK2 using a

single domain knowledge transformation, so can vK2 be transformed into vK1 using a

single knowledge transformation.

Definition 3 (Double Transition Model). Let Q = (V Q, EQ) be a query transition

graph and K = (V K , EK) a domain knowledge transition graph. A DTM T induced

by Q and K is the undirected graph (V T , ET) where V T = V Q × V K and there is

an edge between vT1 = (vQ1 , v
K
1) and vT2 = (vQ2 , v

K
2) in V T if and only if 1) vQ1 = vQ2

or (vQ1 , v
Q
2) ∈ EQ and 2) vK1 = vK2 or (vK1 , v

K
2) ∈ EK . In other word, T is the cross

product of Q and K.

4.3 Memory Transition Graph

4.3.1 Motivation

An interesting observation from RAS model is that political survey responses are

a function of the most immediately accessible considerations at the time when the

survey respondent is trying to make a decision on his/her altitutde towards the

survey question. People make decisions “on the top of their head” with the most

salient consideration. People arrive at their attitudes by averaging across the relevant

negative and positive considerations (Zaller, 1992).

These empirical findings implies the important role of knowledge in the opinion

formation process and also implies there can be a strong relationship between the

working-memory chosen to derive an opinion. This section focuses on building a

66

memory transition graph that is compatible with main theories in bounded rational-

ity. There is significant body of work describing three types of reasoning: inductive

reasoning (Angluin and Smith, 1983), deductive reasoning (Rips, 1994), and abduc-

tive reasoning (Magnani, 2001). The discovery of three reasonings was inspired by

observations of human reasoning. However, it has been consistently reported that

human mix these types of reasoning to solve problems but the conditions for switching

between different reasoning schemes are not clear (Arthur, 1994). Furturemore, even

just conducting inductive reasoning, it has been consistently disocvered that human

differ in the level of generality of knowledge to rely on (Hintikka, 1970).

In this thesis, we address the problem with regards to varying degree of generality

in human reasoning. We cover two forms of inductive reasoning: episodic-based

reasoning inferences over all features but is selective on learning episodes to include,

and feature-based reasoning inferences over all learning episodes but is selective on

features to consider. The episodic-based reasoning is consistent with theories on

memory recall (Coleman and Mizel, 1968) and has also been found as one of the

human heuristics to simplify a reasoning problem (Kahneman and Tversky, 1972;

Nilsson et al., 2008; Schwenk, 2006). The needs to cover different levels of generality

in inductive reasoning has been naturally addressed by the existing probabilistic

inferencing, thus we would not cover it here. The capabilities for episodic-reasonings

are fulfilled by the fushion methods (Santos Jr et al., 2009).

Another challenge we try to address is the incompleteness of perceptions of

environment; it is natural that values of some features cannot be observed. It is

important to capture incompleteness into the knowledge representation directly as it

can also be later on used to trace the origins in different opinions. Furthermore, cur-

rent methods that estimate missing values (Schafer and Graham, 2002; Troyanskaya

67

et al., 2001) may introduce biases into the data for both whether this feature is truly

observed and the reliabilities of the value under various contexts. To avoid adding

biases into our framework, we choose Bayesian knowledge bases due to its nature

in handing incomplete knowledge. Other methods can also be adopted to explore

different possibilities, in this thesis we stick to BKB for all the system implementions

and mathematical definitions.

The following section describes procedures to build a memory from perceived

learning episodes, and methods to reduce computational complexity, in particular as

follows:

1. Method to convert a learning episode (in the form of a vector) to a BKB frag-

ment.

2. Method to convert a set of learning episodes (in the form of a matrix) to a BKB

fragment.

3. A linear solution (algorithm) to compute joint probability of a query.

4.3.2 Knowledge Construction

Definition 4 (Feature Matrix). A feature matrix, L, stores all the learning expe-

riences. The matrix is m by n where m is the number of learning episodes and n

is the number of features. Each row ri,i∈1,...,m of L is a learning episode and each

column cj,j∈1,...,n is a feature vector. Furthermore, we use a[i, j] to denote a matrix

cell and a[i, j] ∈ C ∪ {?}. The set C is a finite collection of values each cell can take,

that C ⊂ Z and |C| = C. An example of a binary class can be C = {0, 1}. For

convenience, we call C the scope of L.

Notation. We label all features of L as “A1”,. . .,“An” and label all learning episodes

as “B1”,. . .,“Bm” consistent with the subscripts in the feature matrix.

68

An episode of learning may involve one to many objects. One may learn by

observing features of one object (called single-object learning) but may also learn by

comparing features among multiple objects (e.g., pair-wise learning compares two

objects). In the case of single-object learning, the value of a feature can refer to

presense/absense of a property (e.g. A duck does not have tails.), discrete values from

discretizing numerical-valued property (e.g. A duck has two feets.), or a qualitative

description (e.g. A duck has small feets.). It is important to note that the value of a

feature can be missing, which we denote its value by {?}.

Pair-wise learning can be obtained via direct observation or via combining two

single-object learning episodes. Relations for a feature between two objects can be

obtained directly via perception. For instance, one can learn that building A is taller

than building B because he can see B’s roof but cannot see A’s. Therefore, one does

not need to know the exact height of a building nor whether each building is tall or

short to conduct a comparison. Alternatively, one can derive a pair-wise learning by

mapping features for two single-object learning episodes to a multi-class set C∪ {?}.

An example of such a multi-class set is C = {1, 2, 3} where 1 refers to a large than

relationship, 0 refers to a smaller than relationship, and 2 refers to equivalance. Here,

a larger than relationship is derived from a literal comparison of feature values which

may not equate with semantic meaning behind the feature values. Furthermore, if

any of these two objects has a missing value for the same feature, that feature value

of the pair-wise learning is considered be missing as well.

When there are numerical-valued features, a discretization procedure may be

needed to transform a continuous space into discrete states. For instance, one

may discretize a continuous space [0, 40] to two discrete states 10 and 30. Values

between [0, 20) are mapped to 10 and values between [20, 40] are mapped to 30. All

69

values within the same interval are considered equal. Discretization is not needed if

learning episodes are comparative learning episodes (e.g. pair-wise) thus comparative

properties for numerical-valued features are preserved.

Another advantage of pair-wise learning episodes are the controllable size of class.

If the target feature has a wide range of values, the inference task may become a

multi-class classification task where the size of class can be large. However, the size

of class can be as small as two (equal, else) or three (smaller, large, equal).

Similarly, we can classify questions into single-object question (Type I), pair-wise

object question (Type II), and multi-object question (Type III). If a question asks a

comparative relationship among two objects, it is straightforward to utilize pair-wise

learning episodes. We can construct L′ of pair-wise learning episodes from L of single-

object learning episodes. On the other hand, if a question only focuses on one object,

it is straightforward to utilize a L of single-object learning episodes but harder to

utilize one of pair-wise learning episodes. In the later chapter, we will provide more

in-depth discussion on the generality of questions and learning episodes. Basically,

we propose an approach that can answer single-object type questions, pair-wise object

type questions, and multi-object type questions based on an L of single-object learning

objects without needing to constructing other matrices.

Definition 5 (Single-rooted Bayesian Knowledge Base). Given a learning episode r

with scope C in the form of a vector representation, our goal is to convert it into a

BKB representation. As a BKB is a graphical representation, here we describe how

to convert a vector into a BKB rooted at a target feature X.

We first construct a set of I-nodes I. For each cell ri∈{1,...,n}[i]: If ri 6= {?}, we

create one I-node a that rv(a) = Ai and assn(a) = ri; if the value is missing, we create

a set of I-nodes with size C where each I-node represents a possible instantiation of

70

rv(a) = Ai. After creating I-nodes for each cell, we add all these elements to set I.

Let π be a partition over I.

Next step is to construct a correlation graph G. We construct a family of sets

{Ii|span(Ii) = RV, Ii ⊂ I, |Ii| = n}. Intuitively, each subset of I contains exact one

instiation of each r.v.. We call the root r.v. as X. For every subset Ii, we create a

S-node connecting I-node a ∈ Ii such that rv(a) = X with all the other I-nodes in

Ii. This S-node supports a and have other I-nodes as immediate predecessors. For

every I-node b ∈ Ii that rv(b) 6= X, we create a S-node supporting it. All the S-nodes

along with the I-nodes connected by these S-nodes forms a subgraph. We build one

subgraph for every Ii and merge it to graph G.

Notation. We use KX
r = (GX

r , w
X
r , π

X
r) to denote a BKB representation of a learning

episode r rooted at r.v. X (can be called as a feature-rooted BKB).

We compute the weight of a node b ∈ S such that headG(b) 6= φ as follows:

w(b) =



1
|C| if assn(X) = {?}

1.0 if assn(descG(b)) = assn(X)

0.0 if assn(descG(b)) 6= assn(X)

The weight of a prior node b ∈ S is computed as follows:

w(b) =


1
|C| if |π(headG(b))| 6= 1

1.0 else

Definition 6 (Non-Rooted Bayesian Knowledge Base). The r.v. a BKB is rooted

at denotes a dependency between its immediate predecessors and the rooted r.v.

However, we may not know which r.v. is the target when elicitating the knowledge.

When we do not have sufficient knowledge on the target r.v. or in general terms the

71

dependency structure, one solution is to build a family of BKBs each rooting at a

different r.v. Then we can fuse these single-rooted BKBs into a non-rooted BKB.

Notation. Let KX
r denote a BKB of learning episode r rooted at feature X. Let

Kr = (Gr, wr, πr) denote a non-rooted BKB of learning instance r by fusing source

BKBs K
Aj
r where j = 1, . . . , N denoting each feature of the feature matrix.

Definition 7 (BKB Representation of Learning Experiences). We construct a BKB

K(L) to cover all learning experiences by fusing all the BKB representation of each

learning episode. This is achieved by using the fusion algorithm.

Notation. Let KX(L) = (GX(L), wX(L), πX(L)) denote a BKB of L fused from a

collection of single-rooted BKBs {KX
ri
|i ∈ {1, . . . ,m}}.

Let K(L) = (G(L), w(L), π(L)) denote a BKB of L fused from a collection of non-

rooted BKBs {Kri|i ∈ {1, . . . ,m}}.

We use RVA to denote r.v.s present in L and use RVL to new r.v.s inserted in the

process of BKB construction. We have RV = RVA ∪RVL and RVA ∩RVL = φ.

Theorem 8. Let KX(L) (abbrev. KX) be a base knowledge from source fragments

{KX
i : 1 ≤ i ≤ m,m ∈ N}. KX is decomposable.

Proof. According to Definition 5, every maximal inference in a source fragment is

complete. Formally, for every maximal inference r in KX
i , span(r) = |RVKi |. For

a subgraph g compatible with this source fragment, formally g = compat(KX , Ki),

every maximal inference r′ in g is also complete as span(r′) = 2|RVKi | = |RVg|.

Theorem 9 (Conditional Probability). Now we discuss how to derive a closed-form

solution for conditional probabilities. We can derive it via computing joint probabil-

ities:

Pg(X = xi|U) =
Pg(X = xi, U)∑C
i=1 Pg(X = xi, U)

(4.1)

72

As we are interested in the order of all states of X rather than the exact probablistic

value, we can compare the joint probability rather than the conditional probability.

Related proofs and the algorithm can be found in Appendix A and Appendix B.

4.4 Query Transition Graph

4.4.1 Motivation

In a query transition graph (See Figure 1.3), a query is a statement (a1, . . . , an),

which can be more explicitly written as (A1 = a1, A2 = a2, . . . , An = an) where

A1, . . . , An represent random variables (e.g. color) and a1, . . . , an represent values

(e.g. red) for the associated random variable. A query “color = red, shape = round”

can be read as “color is red, and shape is round”.

As we described as one of the key challenges/issues in Chapter 1, Does the

vector representation of a query suffice to represent human opinion requests?

The answer is: unfortunately not. Natural language is our linguistic system

for communication. Therefore, we need to explore first how realistic it is to represent

a query in the form of vector representation.

The way humans initialize an opinion query is similar with how they initial-

ize a search query for information seeking. In the process of information seeking,

one raises the needs to seek additional information (called information needs). To

describe his information needs to some one else, he further translates his thoughts

into a communicatable form (called information request). The information request is

usually represented through natural language but it may be further translated into

key words or meta-info (called a search query) so that information retrieval systems

73

can process (Baeza-Yates et al., 1999).

In the process of initializing an opinion query, one either receives an opinion

request from someone else or forms one by himself from his initial opinion needs. In

order to reason on it, one further translates an opinion request into a set of opinion

queries that are of less ambiguity.

There may be many ways and situations under which opinion queries can be

formed. In this thesis, we focus on forming opinion queries from an opinion request

expressed through natural language. Now, we focus on addressing two important

aspects in the rest of this section: 1) It is feasible to handle opinion requests that

are in the form of natural language. We would like to demonstrate that even though

a request can be in various linguistic forms, it is feasible to translate one form to

another. 2) We can formalize an opinion task as a choice problem.

To ask for one’s opinion, an opinion request must be in a form of a question. A

question is an expression to make a request for information. Many categorization

schemes exist regarding types of questions but we approach the problem using the

following linguistic categorization:

• Yes-no question

In linguistics, a yes-no question, formally known as a polar question, is a ques-

tion whose expected answer is “yes” or “no”. Formally, they present an exclusive

disjunction, a pair of alternatives of which only one is acceptable. An example

question is: Is today thanksgiving?

• Alternative question

An alternative question (Karttunen, 1977) is formally known as a close-ended

74

question, is a question whose expected answer is one from a given set of choices.

For instance: “Is this building high or short?”

• Wh-questions

Wh-questions use interrogative words to request information. Wh-questions is a

type of open-ended questions, where the scope of the answers are not provided.

• Tag questions

Tag questions are a grammatical structure in which a declarative statement or

an imperative is turned into a question by adding an interrogative fragment,

such as “right”. For example: Today is thanksgiving, is not it? A tag question

can also be answered by a “yes” or “no”. The difference between a tag question

and a yes-no question lies in the intent behind the question. A person raising a

tag question aims to request an information to confirm his own answer. How-

ever, a person raising a yes-no question is mostly likely requesting an answer.

Since the grammatical structure of tag questions can be converted to yes-no

questions and there is no need to differentiate the intent behind a question, we

consider tag questions being subsumed by the type of yes-no questions in this

thesis.

An opinion request can be either expressed by a close-ended or open-ended question

(Schuman and Presser, 1979). In the case of a close-ended opinion request, the

scope of the answers is provided/implied by the request itself. We treat the task

of answering an opinion request as a choice problem; that is, to select a value

from ones included in the scope. Regarding alternative questions, the scope of

answers are directly provided in the request. For instance, the scope of answer

is “tall” or “short” for a request: Is this building tall or short? In the case of a

yes-no question, the scope of answers are “yes” and “no”. When it comes to an

open-ended question, even though the question does not imply the answers in a

75

scope, however the opinion provider often has a scope in his own mind. For example,

an open-ended opinion request could be: Who is the current president of United

States? The opinion provider has a list of candidates that he can evaluate one by one.

Yes-no questoins, Wh-questions, and Tag questions can be translated to alterna-

tive questions. A possible translation solution between different types of questions

are illustrated in Figure 4.2.

For instance, a yes-no question “Is this building tall?” is translated to an

alternative question “Is this building tall or short?”. A tag question , e.g. “This

building is tall, is not it?”, can first be translated into a yes-no question, e.g. “Is this

building tall?”, by modifying its grammar structure and then be further translated

into an alternative question, e.g. “Is this building tall or short?”.

When a yes-no question gets translated into an alternative question, we need to

specify the full membership of alternative answers. However, it is worth paying atten-

tion to the scope of answers as they may not match between an opinion provider and

an opinion requestor. For example, regarding a yes-no question: “Is Barack Obama

the current president of United States?”: the opinion requestor may be only uncertain

whether the current president is Obama or Romney, but the opinion provider may

consider all the past and current presidents of United States but not considering the

presidential candidates. When we model an opinion provider’s opinion formation

process, we consider the scope of answers in the opinion provider’s mind rather then

that of the opinion requestor’s mind. Taking differences in scopes of answers between

an opinion provider and an opinion requestor is considered one important future work.

A Wh-question can be directly translated to an alternative-type question by

76

Opinion Needs

Wh-questions Yes-no questions Alternative questions Tag questions

Opinion Queries {Q1,…,Qp}

Q

Figure 4.2: A Conversion Solution among Four Types of Questions

setting alternatives to be the candidate answers in an opinion provider’s mind. It

is important to note that not every Wh-question can be translated. For example, a

question “What does a cloud look like?” is too abstract to be mapped to a scope of

answers.

4.4.2 Query Construction

In this section, we address the knowledge representation of an opinion request, that

of an opinion query, and translation between an opinion request to opinion queries.

An opinion request is closely related to a question linguistically described by human.

In last section, we discussed four different types of questions: Yes-no questions,

Alternative questions, Wh-questions, and Tag questions. In general, a question is a

linguistic expression to make a request for information, we define an opinion request

as a question that makes a request for opinions.

In order to be able to answer an opinion request using our proposed frame-

work, we discussed the feasibility and the scope of questions we can cover in the

framework. We pointed out that: 1) it is feasible to cover both close-ended (yes-no,

tag questions, alternative-type questions) and open-ended questions (Wh-questions),

and 2) Yes-no questions, Wh-questions, and Tag Questions can be transformed to

77

the alternative-type quesitons if sufficient information has been supplied.

As such, we design the knowledge representation of an opinion request in

the form of alternative-type questions. We represent an opinion request using propo-

sitional logic where the description of the question is represented by the conjunction

ϕo11 ∧ϕo22 ∧ . . .∧ϕokp and alternative candiate answers are represented by a disjunction

ζ?o1 ∨ . . . ∨ ζ
?
ok

, formally:

ϕo11 ∧ ϕo22 ∧ . . . ∧ ϕokp |= ζ?o1 ∨ . . . ∨ ζ
?
ok

where a ϕ represents a premise, the subscript denotes the index and the superscript

denotes the object this premise refers to. A ζ represents a conclusion, the subscript

denotes the object this conclusion refers to and the symbol ? is the probability at-

tached to the conclusion given all the premises. Considering an opinion request “Is

this building tall or short?” with the observation on its age, the propositional logic

representation of this request looks like this:

(age of the building=old) |= (height=tall) ∨ (height=short)

with one premise being:

ϕo1 = (age of the building=old)

and two conclusions each representing a candidate answer (a.k.a an opinion):

1st conclusion : ζo1 = (height=tall)

2nd conclusion : ζo1 = (height=short)

78

We can interprete the propositional logic representation of this opinion request

as: By knowing that the age of this building is old, how to make a conclusion that a

building is tall or short? Whether the entailment holds true or not is evaluated by

assessing the probability of each conclusion; that is, the probability of the building

being tall considering it is an old building, and the probability of the building short

considering it is an old building. As the conclusions each describe an alternative

answer, therefore we require that the conjunctive normal form of each conclusion is

different.

In the premise, “age of the building=old” is a positional variable where “age

of the building” is a propositional string while “old” is an interpretation of this

propositional string. Propositional logic allows us to represent a complex logic using

logic connectors (e.g. ∨,∧,¬). For example:

ϕo1 = [((type of the building=business) ∧ (age of the building=old))

∨ ((type of the building=government) ∧ (age of the building=young))]

In this premise, multiple aspects are connected by the disjunctive operator ∨ while

the multiple features expected to satisfy together are connected by the conjunctive

operator ∧. Similarly, a conclusion can be described by complex logic.

Now, within the premise, what is the vocabulary of propositional variables?

It is intuitive to relate a propositional variable to a feature, but how about an object?

As a question may be concerned with a relationship between multiple objects, it is

beneficial if the model can handle relational questions. For instance, the question

may look like: “Which building is taller, building A or building B?” Furthermore,

more information may be supplied describing characteristics of each building to

79

facilitate answering this question. In designing the syntax of the propositional logic

expression of an opinion request, we include entity of a premise or a conclusion to

denote the object it refers to.

Now we proceed with the representation of an opinion query. As an opin-

ion query guides opinion reasoning, thus its representation is closely related to the

knowledge representation of domain knowledge and inference mechanisms. In this

thesis, Bayesian Knowledge Bases is our choice of knowledge representation since it

models incomplete knowledge, with inference capabilities to answer different forms

of probablistic questions.

We now provide formal definitions of an opinion request, an opinion query,

and most importantly how an opinion request maps to opinion queries. We begin

with the terms of propositional logic we use in this thesis to avoid confusion on

terminology usage.

Terms of Propositional Logic:

Propositional variables :

{A1, . . . , An} where Ai denotes a feature in our opinion model.

Multi-valued Interpretation:

Interpretation of a propositional variable is a value assignment to the variable.

For instance, “height=tall” is a proposition where “height” is a propositional vari-

able represented by a string and “tall” is an interpretation of variable “height”. A

propositional variable may have multiple interpretations.

Proposition:

A propositional variable along with an interpretation forms an atomic proposition.

Logical Operators :

80

A logical operator is a symbol to connect two or more propositions. Some common

logical connectives include: ∨,∧,¬, =⇒ , |= etc. A proposition can be considered

as either atomic propositions, and composite propositions that are composed by

recursively applying logical operators to propositions.

Premise and Conclusion:

A premise and a conclusion is a proposition plus an additional entity mark. In the

case of a premise, the object the premise refers to is denoted by a subscript. In the

case of a conclusion, the object the conclusion refers to is denoted by a superscript.

The entity mark facilitates the process to map an opinion request to a set of opinion

queries and the latter can be used to select one from all candidate answers. However,

it does not change the propositional language itself.

Definition 10 (Representation of an Opinion Request).

An Opinion Request R is formalized as:

ϕo11 ∧ ϕo22 ∧ . . . ∧ ϕokp |= ζ?o1 ∨ . . . ∨ ζ
?
ok

(4.2)

where ϕo11 ∧ϕo22 ∧ . . .∧ϕokp are premises and ζ?o1 ∨ . . .∨ ζ
?
ok

are conclusions drawn from

premises. p denotes the total number of premises and k denotes the total number of

alternatives. In addition, we have:

For an object, say o1, 0 ≤ |ϕo1j | ≤ p such that j is an index of a premise and j ∈ N.

For an object, say o1, 0 ≤ |ζo1| ≤ k.

Intuitively, for each object, we can have zero to many premises and conclusions about

it.

Definition 11 (Representation of an Opinion Query).

An Opinion Query is formalized as:

Q = (A1 = a1, . . . , An = an) (4.3)

81

where n ∈ N. Aj that j ∈ N denotes a r.v. in a BKB which corresponds to a

propositional varialbe in an opinion request. Aj = a denotes a value assignment a

to r.v. Aj that corresponds to an atomic proposition in an opinion request. For any

two r.v.s, say Ai and Aj that i, j ∈ N, we have i 6= j.

We call the set of instantiations of various r.v.s specified in an opinion query as a

state of a world. The span of the world is defined as the number of r.v.s included in

an opinion query. We have 1 ≤ |span(state)| ≤ n.

Definition 12 (Translation of an Opinion Request).

We define function Γ(R) = {Qk : k ∈ N} as a translation function from an opinion

request to a set of queries.

Given an opinion request R, the function Γ(R) generates a list of queries:

Step 1: Partition all premises and conclusions into partition sets π1 (for premises)

and π2 (for conclusions) according to it entity mark. As a result, all premises or

conclusions in the same cell have the same entity marks.

Step 2: For each conclusion ζoi that i ∈ N in a cell σ1 ∈ π2, find the cell in σ2 ∈ π1

with the same entity marks. Then, connect all the premises with same entity mark

by conjunctive operators, denoted by τoi .

Step 3: For every pair (ζoi , τoi) with the same entity mark, we form a set of

opinion queries. First we translate both ζoi and τoi into disjunctive normal form.

Then, for every conjunctive in a disjunctive normal form of ζoi , we form one query

for every conjunctive in τoi . To make it clearer, if we have m conjunctive terms in

the disjunctive normal form of ζoi , m queries will be formed.

82

4.5 Transformations

In this section, we define rules to transform an opinion query and a working memory.

In brief, we define rules of transforming a query in order to select worlds and define

rules of transforming a working memory in order to rewrite the content in these worlds.

To illustrate our idea, let us take a look at a simple knowledge representa-

tion in the form of a matrix (Figure 4.3a). Say we are concerned with feature A5

that may have a value 0 or 1, we can imagine two sets of worlds. Within one set of

worlds, the feature A5 in every possible world has value 0. In the other set of worlds,

the feature A5 in every possible world has value 1. In Figure 4.3a, we have A5 = 0

in the set of worlds {w3} and A5 = 1 in the set of worlds {w1, w2}.

Now in a new world, an individual cannot observe the value for feature A5

for some reason. He may try to infer a likely value for A5 by examining the values of

this featue in the worlds he had been in in the past. It may be safe to claim that the

value for A5 is 1 simply because he has seen 1 twice but only seen 1 once in the past.

Perhaps he has observed values for others feature that are relevant to feature A5, he

may selectively look at the previous worlds in which observations match. Let us say

he has observed that A1 = 0 and A3 = 1 which are relevant to feature A5 of interests.

By just relying on observation that A1 = 0, he would be undecided (situation in

Figure 4.3b, the worlds that match are circled by red-dotted rectangles). When he

relies on both observations A1 = 0 and A3 = 1, he is likely to conclude that A5 = 1

(situation in Figure 4.3c).

The worlds can also be rewritten; that is, the worlds can be refactored. Some

examples of rewriting are shown in Figure 4.3d-4.3f. Worlds of less importance may

be removed to allow new space to store more important worlds. Similarly, features

83

w1 w2 w3
A1 0 1 0
A2 1 0 1
A3 1 1 0
A4 0 1 1
A5 1 1 0

(a) Matrix of Three Worlds

w1 w2 w3
A1 0 1 0
A2 1 0 1
A3 1 1 0
A4 0 1 1
A5 1 1 0

(b) A1 = 0

w1 w2 w3
A1 0 1 0
A2 1 0 1
A3 1 1 0
A4 0 1 1
A5 1 1 0

(c) A3 = 1, A1 = 0

w2 w3
A1 1 0
A2 0 1
A3 1 0
A4 1 1
A5 1 0

(d) Remove World w1

w1 w2 w3
A3 1 1 0
A4 0 1 1
A5 1 1 0

(e) Remove Features A1,
A2

w1 w2 w3
A1 0 0 0
A2 1 0 1
A3 1 1 0
A4 0 1 1
A5 1 1 0

(f) Flip Feature Value

Figure 4.3: Feature-Rooted BKBs over Feature A3 for Different Learning Episodes

that are rarely involved may be removed from the worlds as well. With different

transformation rules of knowledge applied, the final worlds being looked at can be

dramatically different. In Figure 4.3d, no world gets retrieved by retrieving worlds

containing A1 = 0, A3 = 1 from the worlds with world w1 removed. In Figure

4.3e, rows of feature A1 are removed which relax the searching criteria for worlds

containing A1 = 0 and A3 = 1.

Through transformation, the final knowledge determines how the worlds would

look like (content) and the final query determines what worlds to look at. The final

query and knowledge altogether determine the knowledge that will be relied upon

for reasoning. In this section, we define rules of query transformation motivated by

this idea of selection; that is, the query guides how stored memory gets retrieved.

We define rules of knowledge transformation motivated by the idea of rewriting ; that

is, the rewriting guides how the working memory might look like.

84

4.5.1 Query Transformation

A query is in the form of a1, . . . , an (as an abbreviation of A1 = a1, . . . , An = an).

We define two transformation rules on a query: insertion rule to insert a new

instantiation into a query and deletion rule to remove an instantiation from a query.

Let IK denotes the set of all possible instantiations available from a BKB. Let Iq

denotes the set of all instantiations (states) in a query and we have: IK = Iq ∪ (I¬q).

Definition 13 (Rule of Insertion). The rule of adding a new instantiation can be

formalized as an operation of moving one element from set I¬q to Iq.

Notation (Notation). We denote this operation by a(x) where x is an instantiation.

Definition 14 (Rule of Deletion). The rule of removing a state can be formalized as

operation of moving one element from set Iq to set I¬q.

Notation (Notation). We denote this operation by r(x) where x is an instantiation.

4.5.2 Memory Transformation

As we have illustrated at the beginning of this section, the roles of query transfor-

mations are to select worlds while the role of memory transformation are to rewrite

these worlds. However, how to rewrite the worlds? What are the principles behind

rewriting these worlds? Furthermore, what are the impacts of the rewriting rules to

the BKB representation?

Before provide mathmatical descriptions of the memory transformation rules, we

first point out a few problems with possible memory transformation rules. Some

examples of desirable world rewritting are: removing worlds (Figure 4.3d), decreasing

the resolution of worlds (Figure 4.3e), and creating new worlds due to value changes

85

in old worlds (Figure 4.3f).

Worlds are called inference graphs in a BKB. A world can be represented

as a chain of if-then rules in a BKB and its probability can be obtained by multiply-

ing the weights of all if-then rules. As a BKB is natural to incompleteness implies

that it is flexible with different operations on if-then rules (removal, rewiring, inser-

tion) as long as a BKB still remains valid and does not violate mutual-exclusivity.

Here we introduce one principle for knowledge engineering: Every world has full

value assignments for all features. Two examples of transformation rules that violate

this principle are shown in Figure 4.4a and 4.4b. When only half a world is removed

(Figure 4.4a), it becomes ambiguous when the query attempts to select worlds. As

the value for A3 is now inaccessible in world w1, should a query collect this world

or go examine the next one? The same ambiguity exists when parts of a feature

are removed from all worlds (Figure 4.4b). Thus, the principle has resulted in the

following consequences of knowledge transformation rules:

1) Full elimination of one or more features result in lower resolution of the

knowledge (since all values of a feature must be removed from all worlds).

2) Full elimination of one or more worlds result in lower size of the knowledge

(since all values of a feature in that world must be removed).

3) No elimination of features and worlds but the weights of worlds are modified.

4) Other types of modifications on if-then rules can result in a hybrid of 1), 2),

and 3).

We can define a set of memory transformation rules and requirements that

guarentee the worlds would still have full value assignments after transformation.

However, the rules will be hard to use for knowledge engineers to express how

they want to transform memory. To provide full flexiblity for knowledge engineers

86

w1 w2 w3
A1 0 1 0
A2 0 1
A3 1 0
A4 1 1
A5 1 0

(a) Remove World w1

w1 w2 w3
A1 0
A2 1 0 1
A3 1 1 0
A4 0 1 1
A5 1 1 0

(b) Remove Feature A1

Figure 4.4: Undesirable Transformation Results

to define the knowledge transformation they want to study/model, we define the

transformation rules in the form of graph substitution.

As a BKB is a graphical representation of a collection of if-then rules, the

memory transformation can be defined as modifying these if-then rules. Thus, the

substitution rule requires two inputs, one being the original if-then rules within the

memory and the other being the new if-then rules to replace the old ones. Both

if-then rules can be considered as a correlation graph of a BKB.

Definition 15 (Rule of Substitution). Let K denotes memory, and pair (K1 ⊆ K,K ′1)

denotes one piece of auxiliary memory. We have K = (G = (I∪S), w, π), K1 = (G1 =

(I1 ∪ S1), w1, π1), and K ′1 = (G′1 = (I ′1 ∪ S ′1), w′1, π′1). We require I ′1 = I1. In addition,

we also require that a source I-node cannot support a different I-node. In details, an

instantiation of r.v. SAi such that 1 ≤ i ≤ n must point to a S-node linking to an

instantiation of r.v. Ai.

The rule of substitution is an operation to replace all If-then rules captured in

one BKB K1 in K by all If-then rules defined in another BKB K ′1. In other words,

K1 marks the If-then rules to remove from K and K ′1 defines the new If-then rules to

insert into K.

Notation. We denote this operation by subst(K,K ′) where K is a BKB containing

If-then rules to be replaced by ones in K ′ that will result in a valid BKB with full

value assignments after transformation.

87

A1=1	

 A2=1	

A3=1	

1.0	

 1.0	

1.0	

SA3=3	

0.25	

SA1=3	

0.25	

SA2=3	

0.25	

(a) K1

A1=1	

 A2=1	

A3=1	

SA3=3	

SA1=3	

 SA2=3	

(b) K ′1

Figure 4.5: Removal of One World

To illustrate how subsitution rule can rewrite the worlds, we demonstrate three

examples of knowledge transformation. In Figure 4.5, we demonstrate a piece of

auxiliary memory (K1, K
′
1) that instructs removal of a world (A1 = 1, A2 = 1, A3 =

1, SA1 = 3, SA2 = 3, SA3 = 3). An If-then rule is graphically represented as a S-

node with its parents and children. An S-node may have no parents (For example,

the S-node pointing to I-node SA1 = 3.). K ′1 has instructed that all the If-then rules

that are in K1 should be removed from memory K. According to K1, K
′
1, we can

now transformation memory K into K ′ by removing the marked If-then rules. The

world (A1 = 1, A2 = 1, A3 = 1, SA1 = 3, SA2 = 3, SA3 = 3) then gets removed from

memory, the size of the memory is reduced by 1.

Figure 4.6 demonstrates the case of modifying the weight of a world (A1 = 1, A2 =

1, A3 = 1, SA1 = 3, SA2 = 3, SA3 = 3). Both K1 and K ′′1 have been instructed to

replace the If-then rules pointing to the prior I-nodes with the ones with probability 0.

The weight of the world in the memory K can be calculated simply by multiplying all

the weights of involved If-then rules: P = 0.25×0.25×1.0×1.0×0.25×1.0 = 0.015625

and now it becomes P ′′ = 0.

88

A1=1	

 A2=1	

A3=1	

1.0	

 1.0	

1.0	

SA3=3	

0.25	

SA1=3	

0.25	

SA2=3	

0.25	

(a) K1

A1=1	

 A2=1	

A3=1	

1.0	

 1.0	

1.0	

SA3=3	

0.0	

SA1=3	

0.0	

SA2=3	

0.0	

(b) K ′′1

Figure 4.6: Modify the Weight of a World

Figure 4.7 demonstrates the case of removing features SA1 and SA2. By

removing If-then rules connecting features SA1 and SA2 with other I-nodes in a

BKB, these two features are no longer reachable. Thus, the resolution of the memory

is reduced by 2.

The 3rd example may violate the requirement that a transformed memory

needs to have full value assignments. For example, let us assume the memory looks

like the one in Figure 5.5. After removing this If-then rule, the resolution of the

world is reduced by two. However, the resolution of other worlds remain the same.

The inconsistent resolution of worlds violates the requirement that all worlds have

full value assignments. Therefore, we require that the substitution rule must result

in a valid BKB with full value assignments. We can fix the problem presented in this

example by explicitly including all I-nodes of feature SA1 and SA2 and removing all

If-then rules involving them.

89

A1=1	

 A2=1	

A3=1	

1.0	

 1.0	

1.0	

SA3=3	

0.25	

SA1=3	

0.25	

SA2=3	

0.25	

(a) K1

A1=1	

 A2=1	

A3=1	

1.0	

SA3=3	

0.25	

SA1=3	

0.25	

SA2=3	

0.25	

(b) K ′′′1

Figure 4.7: Remove Features

90

Chapter 5

Modeling Opinion Formation

In the previous chapter, we described the design of the DTM including the internal

reasoning mechanisms, construction of the knowledge representation, and construc-

tion of queries, to the translation from an opinion request expressed by natural

language to queries. In this chapter, we provide a walkthrough example on how

a DTM computes an opinion. As the DTM only addresses the learning aspect of

opinion formation tasks, here we demonstrate the examples motivated by interesting

problems we observe in opinion diversity (motivated and described by a toy problem

in the first section).

Then, we evaluate the design of a DTM by modeling four commonly-accepted

human reasoning heuristics.

5.1 A Toy Problem

Consider a world with two rooms. Multiple agents walk around and can observe fea-

tures of the objects in each room. The features of each object are partially observable

to each agent. The agents cannot see the objects in the other room. From time to

91

time, an agent in one room may ask the agents in the other room to give an “opinion”

in one of these forms:

1. Type I: state of a single feature of an object. (e.g. Is object o1 tall or short?)

2. Type II: relationship of a feature between two objects. (e.g. Is object o1 taller

than object o2?)

3. Type III: relationship of a feature among multiple objects. (e.g. Among objects

o1, o2, and o3, which object is tallest?)

An example of such a world is shown in Figure 5.1. The tower room has three

objects o1, o2, and o3 and the bridge room has objects o4, o5, and o6. Agents α and

δ walk in the tower room, and agents β and γ walk in the bridge room. Every agent

gathers learning episodes (shown in Table 5.1) by observing objects in its own room.

In Table 5.1, each column represents a feature or property of an object and each row

captures the observed values for all features for a particular object. The symbol ? in

the table indicates a missing value.

Imagine that agent β wants to know more about features of objects in its

room that it cannot perceive, it may ask agents α and δ who it considers to be

capable of providing better opinions:

Q1: What is the value of feature A4 for o4? (Type I Question)

Q2: Compared to o5, is the value of feature A4 for o4 larger or smaller? (Type II

Question)

Q3: What is the value of feature A5 for o4? (Type I Question)

Q4: Compared to o5, is the value of feature A5 for o4 larger or smaller? (Type II

Question)

Q5: What is the value of feature A6 for o4? (Type I Question)

Q6: Among all the objects o4, o5, and o6, which one has the highest value for

92

feature A6? (Type III Question)

o1	

o2	

 o3	

Tower Room	

 Bridge Room	

o4	

o5	

o6	

β

δ

α

ϒ

Figure 5.1: A World of the Toy Problem (Toy Problem 1)

Table 5.1: Learning Episodes Gathered by Agents (Toy Problem 1)

Room Learning Episode Object A1 A2 A3 A4 A5 A6

Tower Room
r1 o1 1 0 1 2 ? 1
r2 o2 0 1 0 3 ? ?
r3 o3 0 0 0 1 ? ?

Bridge Room
r4 o4 0 1 1 ? ? ?
r5 o5 1 0 1 ? ? 1
r6 o6 0 0 0 1 1 ?

Although it seems simple, the toy problem captures some basic knowledge sharing

phenomena within a society. Humans are in their own “sandboxes” – their occu-

pations in a social hierarchy, their information channels and so forth to form their

own learning experiences. One observes “objects” in his own sandbox and when one

wants to know more, he either thinks on his own or asks others. If he needs to ask

someone else, he can either ask other individuals in the same sandbox or asks other

individuals in other sandboxes. Among all the sandboxes, some sandboxes have more

objects relevant to his question - we call the individuals living in those sandboxes

subject-matter experts. Intuitively, one would prefer getting opinions from a sandbox

of subject-matter experts rather than from a randomly chosen sandbox. With the

use of World Wide Web, we have more sandboxes available to choose from. As a

93

consequence, the presence of the web has made experts reachable, identifiable, and

searchable. But more importantly, one can easily obtain multiple opinions at once

from the web (e.g. A student looks up ratings of a book provided by a large number

of readers on Amazon.) which is a paradigm shift from how knowledge sharing

occurs in the real world (e.g. A student asks for a librarian’s opinion on a book.)

crowd-sourcing.

This increasing use of the web has also brought attention to these two problems:

1. How to find the “right” individual of wisdom?

2. How to find the “right” sandbox of wisdom?

The significance of the first problem is self-evident: We do not have any good

means to evaluate whether a group has provided a wise opinion. In the real-world,

individuals both learn and reason differently which result in different opinions to

deliver. For example, agent α only walks in the room during the day time and agent

δ only comes out during the night. Naturally, agent δ may neglect a few objects

due to poor lighting conditions. On the other hand, α may not be able to perceive

features that are only observable during night time. For example, one feature can be

the color of the neon light but the neon light only gets turned on at night. In terms of

reasoning, everyone has his own choices of approaches in deriving an opinion. Agent

α may neglect the color of a neon light as it is inexperienced with how this feature

relates to the target question (e.g. Is this light expensive?). Agent β may only rely

on part of its learning experience in order to speed up the process of delivering an

opinion. If a sandbox is full of “quick-thinkers”, β may wish to find another sandbox

of “slow-thinkers” to seek more diverse opinions. It is hard to evaluate whether

opinion differences are results of differences in learning and reasoning or results of

errors or biases.

94

To illustrate the significance of the second problem, let us take a look at

some complexities in answering questions Q1 to Q6 for the toy problem. To answer

Q1, the agents in the sandbox (tower room) are more likely to provide a better answer

compared to the ones in the bridge room. The agents in the tower room are more

experienced with regards to feature A4 as they have three learning episodes with

explicit observations. On the other hand, the agents in the bridge room have only one

learning episode with explicit observation. This also explains why agent β attempts

to ask the agents in the other room as its experience with feature A4 is limited. Re-

garding Q1, it is likely that β would benefit from the wisdom of the crowd in the tower

room. However, the situation is not as clear for question Q3 and Q5. The agents in

two different rooms have about the same experience on Q5 (one learning episode with

explicit values) and agents in the tower room are more experienced in answering Q3.

As β cannot see the objects in another sandbox, it may end up relying on a less ro-

bust opinion, and more ironically, β is already the most experienced one to answer Q3.

Currently, the main research effort has been to investigate effective indica-

tors of high-quality and low-quality opinions, however the common problem is its

cross-domain incompatibilities. An indicator/method that works for one problem

domain may no longer be as effective when migrated to another problem domain.

In addition, we still have many long-standing questions and controversies on the

topic of human reasoning and learning that are unresolved. This thesis is motivated

towards reaching a better understanding on the process of opinion formation and to

come up with a means to better tackle these two challenging problems.

95

5.2 Examples

5.2.1 Opinion Formation Process

We use a sample toy problem described below.

Task Specification

o1	

o2	

 o3	

Tower Room	

 Bridge Room	

o8	

o5	

o6	

β

δ

α

ϒ o4	

o7	

η

λ

Figure 5.2: A World of the Toy Problem (Toy Problem 2)

Table 5.2: Learning Episodes Gathered by Agents (Toy Problem 2)

Room Learning Episode A1 A2 A3

Tower Room

o1 ? 1 0
o2 0 1 ?
o3 1 1 1
o4 ? ? ?

Bridge Room

o5 0 1 ?
o6 1 0 ?
o7 ? 0 ?
o8 0 1 ?

The world has two sandboxes: tower room and bridge room. Each room has four

objects and three agents as shown in Fig. 5.2. We have four explicit rules for the

world:

1. All the agents in the same room acquire the same learning experience.

2. The agents can only see the objects in their own room.

96

3. Features are only partially observable.

4. All observations are binary valued.

Table 5.2 shows the learning experience of each agent. A1, A2, A3 are fea-

tures observed (e.g. whether an object is tall or short) by each agent. Rows 1-4

are learning experiences for agent α, δ and η, rows 5-8 are learning experiences for

agent β, γ, and λ (rule #1 and #2). All the agents obtained partial observations for

features A1 − A3(rule #3).

Now agent β is interested in knowing more about the missing value, thus

he poses the following question:

Question: “What is value for feature A3 of object o5?”

As our focus is on modeling the behavior behind opinion formation, we as-

sume that β decides to obtain opinions from the agents (α, δ, and η) in the tower

room. In the following sections, we will illustrate how our framework models the

opinion formation process of agents α, δ, and η. To illustrate the idea, we first

demonstrate how a non-regret opinion is formed; that is, neither the working memory

nor the queries are modified.

Forming an Opinion

We begin with the opinion request posed by agent β: “What is value for feature A3

of object o5 with observations that A1 = 0 and A2 = 1?” This is an opinion request

expressed in the form of a Wh-question. To model the opinion formation process,

we first translate this question expressed by natural langauge to an opinion request

expressed by propositional logic. An example of a possible translation looks like this:

97

Opinion Request : (A1 = 0)o51 ∧ (A2 = 1)o52 |= (A3 = 0)?o5 ∨ (A3 = 1)?o5 .

This opinion request can be read as: “Given observations on two features

(A1 = 0, A2 = 1) of object o5, is the value of feature A3 0 or 1?” Now, the opinion

model translates this opinion request to a set of opinion queries following the pro-

cedure described in Definition 12 in Chapter 4. The opinion queries generated look

like the following:

Opinion Queries : Q1 = (A1 = 0, A2 = 1, A3 = 0), Q2 = (A1 = 0, A2 = 1, A3 = 1)

Each opinion query specifies the state of a world for each candidate answer.

Now the DTM can reason the probability of each world via conducting belief updates

over memory. To illustrate this simple case, we do not transform either an opinion

query nor the memory itself.

As illustrated in Figure 5.3, the process of opinion formation is a series of

two walks over the DTM: The first walk begins with state X1 whose query is

A1 = 0, A2 = 1, A3 = 0 and the second walk begins with state X3 whose query

is A1 = 0, A2 = 1, A3 = 1. As we can see from the figure, states X1 and X3 are

two steps away: one can walk from state X1 to X3 by the transformation sequence

r(a1)a(a2) (a1 denotes A3 = 0 and a2 denotes A3 = 1) and can walk from state X3

to state X1 by the transformation sequence r(a2)a(a1). In addition, r(a1) denotes a

deletion rule that removes a1 from a query and a(a2) denotes an insertion rule that

adds a2 to a query. We have demonstrated how an opinion request gets translated

to a set of opinion queries determining the series of walks over of a DTM, now we

98

Opinion Request

Opinion

X0 X2 X3

r(a1)(R)

r(a2)(L) a(a1)(L)

a(a2)(R)

0.2 0.3 0.1

X1 X1 X2 X2

r(a1)(R)

r(a2)(L) a(a1)(L)

a(a2)(R)

0.2 0.3 0.1

X3

walk 1 walk 2

X0

0.4

a(b1)(R)

r(b1)(L)
X4

0.3

r(b1)(R)

a(b1)(L)

Figure 5.3: Process of Opinion Formation over a DTM

describe how a working memory is formed.

First, we show how to convert L into Bayesian Knowledge Bases. The construc-

tion of a BKB representing an agent’s learning experience is a two-step process.

First we convert the vector representation of each learning episode into a BKB

representation. Figure 5.4 shows the individual feature-rooted BKBs over feature A3

for each learning episode in the Tower Room. The second step is to fuse all these

BKBs. Figure 5.5 shows the fused BKB which is the base knowledge K.

K is the base memory that is formed by encoding all learning episodes which is

the domain knowledge of state X1 and X3. The probability emitting from X1 and X3

are:

P (X1) = 0.21875 and P (X2) = 0.109375

Thus, the opinion distribution for (X1, X3) is (0.21875, 0.109375). In the tower

room, agents α, δ, and η infer that there is a higher probability that the value for

feature A3 is 0 - this is the opinion they will form and communicate to agent β.

99

A1=0	

 A1=1	

 A2=1	

A3=0	

0.5	

 0.5	

 1.0	

1.0	

 1.0	

(a) KA3
r1

A1=0	

 A2=1	

A3=1	

1.0	

 1.0	

0.5	

 0.5	

A3=0	

(b) KA3
r2

A1=1	

 A2=1	

A3=1	

1.0	

 1.0	

1.0	

(c) KA3
r3

A3=1	

 A3=0	

A1=0	

 A1=1	

 A2=0	

0.5	

 0.5	

 0.5	

0.5	

 0.5	

A2=1	

0.5	

0.5	

0.5	

 0.5	

 0.5	

 0.5	

0.5	

(d) KA3
r4

Figure 5.4: Feature-Rooted BKBs over Feature A3 for Different Learning Episodes

5.2.2 Task Transformation

In this section, we demonstrate some examples of task transformation via 1) query

transformation, and 2) memory transformation. To make the examples more mean-

ingful, we examine the results of various task transformations with implications for

opinion diversity.

We continue with the sample toy problem illustrated in this chapter. In the

last section, we demonstrated how a DTM was trained from a collection of learning

episodes with capabilities to answer probabilistic questions. To recap, as the objective

of a DTM is to model human reasoning behavior in delivering an opinion, we notice

the importance of comprehending questions posed by humans expressed through

100

Figure 5.5: BKB Representation K of L

natural language. Therefore, we provided an approach that translates human opinion

needs into opinion queries that a DTM understands. In particular, we proposed to

describe an opinion request in the form of propositional logic which closely assembles

how human express their logic. An opinion request then gets translated into a set of

opinion queries signaling how inferences should be done inside a DTM. Since human

decision-making behavior is an inexact science, we provide a default decision criteria

based on probability results from answering the sequence of opinion queries in a

DTM. However, the default decision criteria is open for scholars to investigate its

relation to the final opinion.

The novelty of a DTM is its capability of modeling task transformation in

opinion formation. In this section, we demonstrate how query and memory transfor-

101

mation may result in opinion shift, which can be viewed as a type of opinion change

from the original opinion that is never formed and communicated externally.

Query Transformation

In this section, we demonstrate query transformations with regards to different

“sandboxes”. These two imaginary sandboxes have only one object in difference.

The Tower Room in the sample toy problem is referred to as the first sandbox s1 and

let us imagine the other sandbox s′1 consists of experts from World Wide Web (we

call it a Virtual Room here). As shown in Table 5.3, agents in s1 can perceive o1 but

cannot see o9 while agents in s2 can perceive o9 but not o1.

Table 5.6 shows some common query transformations that can occur in ful-

filling agent β’s question: “What is the value for feature A3 of object o5 with

observations that A1 = 0 and A2 = 1?”. The 1st row (r1) in Figure 5.6b shows the

reasoning result of the opinion model with no query transformation nor knowledge

transformation. Thus, an agent in the Tower room may conclude that value for fea-

ture A3 of object o5 is 0. In Figure 5.6a, rows r2 to r4 show the query transformation

by applying the rule of evidence deletion. In r2 and r3, only one observation of object

o5 is involved in reasoning and no observations is involved for case r4. However,

even though different questions are asked, it is unlikely that an agent shifts its opin-

ion as the probability value for value 0 is still significantly higher than that of value 1.

In cases r1 to r4, the query is feature-driven in the sense that the query retrieves

knowledge related to perceived evidence. In cases r5 to r8, the queries become

episode-driven in the sense that a query recalls one past episode containing specific

knowledge rather than general knowledge aggregated from a collection of episodes.

By specifying the index of an episode for all features, only the information of that

102

Table 5.3: Two Different Sandboxes

Room Learning Episode A1 A2 A3

Tower Room

o1 ? 1 0
o2 0 1 ?
o3 1 1 1
o4 ? ? ?

Virtual Room

o2 0 1 ?
o3 1 1 1
o4 ? ? ?
o9 ? 0 0

A1 A2 A3 SA1 SA2 SA3

r1 0 1

r2 0

r3 1

r4

r5 1 1 1

r6 2 2 2

r7 3 3 3

r8 4 4 4

r9 1 0

r10 1

r11 0

(a) 11 Reasonings with Different Queries

P(A3=0) P(A3=1) # worlds for A3=0 # worlds for A3=1

r1 0.21875 0.109375 36 24
r2 0.226562 0.117188 39 27
r3 0.382812 0.273438 60 48
r4 0.398438 0.289062 66 54
r5 0.015625 0 2 0
r6 0.0078125 0.0078125 1 1

r7 0 0.015625 0 1
r8 0.0078125 0.0078125 4 4

r9 0.0078125 0.0078125 3 3

r10 0.171875 0.171875 27 27
r11 0.015625 0.015625 6 6

(b) Reasoning Results

Figure 5.6: Opinion Formation for Agents in Tower Room

episode gets involved in the reasoning. For example, row r5 inferences over the 1st

episode by setting all the source I-nodes (SA1, SA2, SA3) to be 1. As shown in the

results, if memory for the 3rd episode is relied upon for inferencing, an opinion shift

occurs since P (A3 = 1) > P (A3 = 0). The results for the other reasoning over a

single episode have equal probability meaning that an opinion is undecided with

information from one single episode.

With the capability of query transformation, it is possible to evaluate the

impacts of an undesired mistake/inaccuracy. The rows r9 to r11 demonstrate the

cases where the perceived observations are incorrect. The results have shown some

interesting findings: the opinions become undecided for all cases with incorrect

103

observations. The finding has two implications: 1) the DTM trained from learning

episodes gathered in the tower room is robust to errors in perception, and 2) this

DTM has low dependency on observations.

Among 11 common cases of query transformation, 5 of which result in no

opinion shift, 5 of which result in undecided opinion, and 1 of which results in a

possible opinion shift. In summary, the examples have revealed some interesting

phenomena such as: 1) incorrect information may not result in opinion shift (cases r9

to r11), 2) opinion shift occurs when the information relied upon tells another story

(case r7), 3) more information may not necessarily indicate better results (cases r2

to r4), and, 4) an individual can be biased by learning episodes (P (A3 = 1) is rarely

higher than P (A3 = 0) according to a sample of 11 cases).

Now let us discuss possible opinions formed by the agents in the Tower Room

with only query transformations. If we assume these 11 query transformations are

chosen with equal chance and the chance of picking any other query transformation

is 0, we can calculate the following:

1. The chance that three agents all end up with an opinion shift is 0.17%.

2. The chance that three agents have no opinion shift is 21.33%.

3. The chance that one or more agents ends up with an opinion shift is 14.68%.

4. The chance that one or more agents are undecided is 73.37%.

The results have revealed that: even though the chance of group think (every member

delivers the same incorrect opinion) is low (0.17% for this case), the chance of having

members with undecided opinions are high. When the size of the group is small, it

raises concern of how to aggregate opinions supplied from an individual member.

104

Now let us look at the individual opinions formed in the Virtual Room.

The agents in the virtual room also have access to o2, o3, o4, and additionally

a new object o9 (The BKB representation of o9 is shown in Figure 5.7a). However,

the agents do not have access to object o1. Conflicting observations can be per-

ceived from objects o1 and o9, where the value for feature A2 is 1 for o1 while it is

0 for o9. However, the value for the target feature A3 is the same for these two objects.

We conducted the same 11 experiments where the query is transformed by

setting different evidences. As shown in the results (Figure 5.7b), 3 among them

result in an undecided opinion, 3 result in opinion shift (from opinion A3 = 0 to

A3 = 1), and 5 result in no opinion shift. Due to different objects that agents in each

room have access to, their opinions can end up to be quite different from each other.

Compared to the results derived for the Tower Room, the following findings can be

drawn from query transformations:

1. robustness to perception error : lower compared to agents in the Tower Room.

2. dependency on observation: higher compared to agents in the Tower Room.

3. stability of opinion: lower compared to agents in the Tower Room.

In addition, we also compare group performance for the Virtual Room. If we assume

there are also three agents in the virtual room, then we can derive the following:

1. The chance that three agents all end up with an opinion shift is 5.21%.

2. The chance that three agents have no opinion shift is 24.13%.

3. The chance that one or more agents end up with an opinion shift is 50.97%.

4. The chance that one or more agents are undecided is 47.49%.

105

A1=0	

 A1=1	

 A2=0	

A3=0	

0.5	

 0.5	

 1.0	

1.0	

 1.0	

(a) BKB Representation of Ob-
ject o9

P(A3=0) P(A3=1) # worlds for
A3=0

worlds for
A3=1

r1 0.078125 0.078125 18 18
r2 0.148438 0.273438 30 24
r3 0.226562 0.117188 39 27
r4 0.398438 0.289062 66 54
r5 0.015625 0 2 0
r6 0.0078125 0.0078125 1 1
r7 0 0.015625 0 1
r8 0.0078125 0.0078125 4 4
r9 0.0703125 0.0234375 12 6
r10 0.109375 0.140625 21 24
r11 0.140625 0.046875 24 12

(b) Reasoning Results

Figure 5.7: Opinion Formation for Agents in Virtual Room

We can see that the chance of having at least one agent delivering an alternative

opinion is dramatically higher (14.68% in Tower Room and 50.97% in Virtual Room).

We can draw a preliminary conclusion that the members in the Tower Room are wiser

than the members in the Virtual Room as the ones in the Tower Room have more

similar objects (compare to the target object o5) to observe.

Memory Transformation

In this section, we demonstrate two simple scenarios of knowledge transformation

with the sample toy problem. The first scenario explores the impacts of learning

episodes and the second scenario explores the effect of recency factors in memory.

In the sample toy problem, we have in total four objects in each room. In

the previous section, we were curious about whether including more observations

about the target object would increase that chance of delivering a reliable opinion.

On the other hand, the same question is concerned with whether fewer observations

would result in opinion shift and even group think. In this section, we can explore

another question that is often investigated by researchers: Would more training

106

samples increase the chance of delivering a reliable opinion?

In the first scenario, we conduct knowledge transformations where two learning

episodes (learning episode regarding o1 and o3) are eliminated. It is intuitive from a

human perspective that elimination of learning episodes would speed up the process

of delivering an opinion. We conduct nine experiments each with a different query

transformation (the observation included in each query is shown in Figure 5.8a). As

shown in Figure 5.8b, the number of worlds involved in the reasoning with two objects

is considerably smaller than the number of worlds involved in the reasoning with

four objects. Despite with the fact that only half of the original learning episodes

are included, we can observe from the results that only one query transformation

results in opinion shift (case r6). When reasoned with the same query, the opinion

formed with four learning episodes and the opinion formed with two are the same.

The finding may seem counter-intuitive, but it also has implication that: If the right

information is retrieved, it can speed up the process of forming an opinion without

trade-off with performance.

Another interesting finding is that less information considered in the rea-

soning may increases one’s uncertainty of his opinion. As shown in Figure 5.8b, for

four of nine reasonings, there are reasoning results only for one value of the feature.

Therefore, one may feel certain about his opinion as he is only able to see one side

of the coin. Furthermore, we would like to point out that the proposed DTM may

not yield any results if the information considered in the reasoning does not match

up with the observations of the target feature (cases r9 and r11).

The second scenario demonstrates how knowledge transformation can be used

to explore the effects of memory recency. In order to compare results, we also

107

A1 A2 A3 SA1 SA2 SA3

r1 0 1

r2 0

r3 1

r4

r5 1 1 1

r6 2 2 2

r9 1 0

r10 1

r11 0

(a) 9 Reasonings with Different Queries

P(A3=0) P(A3=1) # worlds for A3=0 # worlds for A3=1

r1 0.125 0 2 0

r2 0.125 0 2 0

r3 0.5 0.375 6 4

r4 0.5 0.375 6 4

r5 0.125 0 2 0

r6 0 0.125 0 1

r9 0 0

r10 0.375 0.375 4 4

r11 0 0

(b) Reasoning Results

Figure 5.8: Memory Transformation - Case 1

A1 A2 A3 SA1 SA2 SA3

r1 0 1

r2 0

r3 1

r4

r5 1 1 1

r6 2 2 2

r9 1 0

r10 1

r11 0

(a) Results with Different Queries

P(A3=0) P(A3=1) # worlds for A3=0 # worlds for A3=1

r1 0.02 0 2 0

r2 0.02 0 2 0

r3 0.2 0.72 6 4

r4 0.2 0.72 6 4

r5 0.008 0 2 0

r6 0 0.512 0 1

r9

r10 0.18 0.72 4 4

r11

(b) Reasoning Results

Figure 5.9: Memory Transformation - Case 2

consider only two objects (o1 and o3) for this experiment. In addition to knowledge

transformation in eliminating two learning episodes, we also substitute the knowledge

regarding the importance measure of an episode. Recall that in the original base

memory, equal weights have been assigned to all the source I-nodes meaning that

each episode is equally important. Here, we substitute these S-nodes pointing to

prior I-nodes with new ones encoding how recent each episode is. Assume that an

agent learns about object o3 after it learns about object o1, we substitute the S-nodes

pointing to I-nodes SA1 = 1, SA2 = 1, and SA3 = 1, with new S-nodes with weights

0.8. Furthermore, we substitute the S-nodes pointing to I-nodes SA1 = 3, SA2 = 3,

and SA3 = 3 with new S-nodes with weights 0.2.

108

We conduct the same 9 experiments on the opinion models with transformed

knowledge, the results of which are shown in Figure 5.9a and Figure 5.9b. Among

nine experiments, four result in opinion shift, two yields no results due to insufficient

information, and three result in no opinion shift. The results from this scenario

imply that the recency of an episode can be misleading to humans. In particular,

memories of objects with similar values for features that are perceived earlier can be

faded out quicker and even fail to be recalled and included into working memory.

Due to such reasons, opinion shifts may occur by relying upon on the more recent

learning episodes. Furthermore, in the cases with opinion shifts, there is a significant

distance between P (A3 = 1) and P (A3 = 0) meaning that agents do not only result

in opinion shifts and they are possibly quite certain with their opinions also.

5.3 Experimental Results

This chapter validates our method of modeling opinion formation by modeling the

prevalent heuristics that humans have adopted in reasoning. To begin with, we de-

scribe studies about these heuristics and then describe how each heuristic is formu-

lated in our model.

5.3.1 One-Episode Heuristics

The family of one-episode heuristics only rely on one past experience in the process of

inferencing; that is, the result is independent of other past experiences. In this work,

we cover one type of one-episode heuristics: Recognition. In brief, Recognition recalls

one past episode referring to the same entity as in the one currently examined.

109

Recognition

Considering an alternative-question that asks one to compare two cities: Which city,

Hong Kong or Kai Feng, has a larger population? The Recognition heuristics work

as follows: If one of the two objects is recognized and the other is not, then infer

that the recognized object has the higher value (Gigerenzer and Brighton, 2009).

If someone has never heard of the city Kai Feng but has heard of Hong Kong, he

may consider Hong Kong to have a larger population. Even though the heuristic

sounds overly-simplified, it often works better than random guessing under the

circumstances where there are insufficient learning experiences.

The recognition heuristic for a pair-wise comparison can be considered as a

series of two walks over an instantiated Double Transition Model. The purpose of

the first walk is to evaluate the probability of a recalled episode referring to object

o1 and the second walk is to evaluate the probability of a recalled episode referring

to object o2. The shortest paths in these two walks are as follows:

w1 = a(SA1 = idx(o1)) . . . a(SAn = idx(o1))

w2 = a(SA1 = idx(o2)) . . . a(SAn = idx(o2))

where each r.v. with prefix SA is an I-node denoting the source of the S-node it

points to. Here, each walk starts with a state in which the query is empty and

domain knowledge is the base memory. idx(o1) and idx(o2) are functions to retrieve

the index of a learning episode involving that object. If the index of an episode

involving the desired object cannot be found, we will have an index valued −1. By

fully specifying the sources of all features, the transformed query allows us to retrieve

one learning episode from the entire memory.

110

We may consider such query transformations as a simulation of memory re-

call. All learning episodes are stored in the memory and the individual memory is

recalled based on recall cues. (Here, the recall cue is the object involved in a learning

episode.) The functions idx(o1) and idx(o2) implemented have a perfect matching

between an episode and an object. In other words, the function will never fail to

recall an episode given an object. Similarly, the function will never recall an episode

that mentions the wrong object.

According to the recognition heuristic, the city being recalled is a positive

indicator of it being larger. Thus, the heuristic ignores the observation associated

with the city. It is possible that both of the two cities in the questions are small and

an individual remembers one city being small. However, as he has not heard of the

other city, he may draw a conclusion that the other city is even smaller. When we

model this heuristic, as the actual observations for the feature population are ignored,

there is no need to translate an opinion query into multiple queries each specifying

one possible observation. In the perspective of probability computations, it can be

viewed such that the probability without specifying the state of the target feature

is the sum of probabilities of all worlds each with a different state of the target feature.

The approach to model the recognition heuristic can also be generalized to

comparisons between multiple objects. Formally, to compare a group of objects

o1, . . . , ok, we conduct a series of k walks over the DTM.

w1 = a(SA1 = idx(o1)) . . . a(SAn = idx(o1))

. . .

wk = a(SA1 = idx(ok)) . . . a(SAn = idx(ok))

111

A simple decision criteria for the Recognition heuristic looks as follows:

feature(o1) > feature(o2) if P (w1) > 0 and P (w2) = 0

feature(o1) < feature(o2) if P (w2) > 0 and P (w1) = 0

However, the decision criteria can be relaxed to be:

feature(o1) > feature(o2) if P (w1) > P (w2)

feature(o1) < feature(o2) if P (Q2) > P (w1)

A decision criteria is the procedure that finalizes an opinion from an opinion

distribution. As we have described earlier, an opinion distribution is a probability

distribution for different queries. Each query can be understood as an evaluation on

one “aspect” that needs to be examined. Intuitively, an opinion distribution can be

of small size as one may only evaluate a small number of aspects but can also be of

large size indicating a more careful enterainment of aspects.

With an opinion distribution, one can form a final opinion using different

criteria. As illustrated for this heuristic, one may conclude that Hong Kong has a

larger population than Kai Feng if he has heard of one but not the other. However,

he may relax his criteria by comparing the probabilities of these two cities. In this

case, the city with a higher probability of having a population is considered to have

a larger population than another one.

5.3.2 One-Feature Heuristics

The family of one-feature heuristics only relies on one feature in the process of infer-

encing; that is, the result is independent of the values of other features. In this work,

we cover three types of heuristics called Minimalist, Take the Best, and Take the Last

112

(Brighton, 2006; Gigerenzer and Brighton, 2009; Gigerenzer and Gaissmaier, 2011).

In brief, minimalist randomly picks a feature to reason upon, take-the-best picks a

feature following the order of feature validity (prediction accuracy), and take-the-last

picks a feature following the order of episode recency.

Take the Best

The take-the-best heuristic relies on one distinguishing feature, at the same time also

the one with highest validity in effectively classifying learning episodes. Take-the-

best follows the order of validity of features and examines whether the chosen feature

distinguishes the given task also. The steps of take-the-best heuristics described in

(Gigerenzer and Goldstein, 1999) are:

1. Step 0. If applicable, use the recognition heuristic; that is, if only one object

is recognized, predict that it has the higher value on the criterion. If neither is

recognized, then guess. If both are recognized, go on to Step 1.

2. Step 1. Ordered Search: Choose the feature with the highest validity that has

not yet been tried for this task. Look up the feature values of the two objects.

3. Step 2. Stopping Rule: If one object has a positive cue value (“1”) and the

other does not (i.e., either “0” or unknown value) then stop the search and go

to Step 3. Otherwise go back to Step 1 and search for another cue. If no further

cue is found, then guess.

4. Step 3. Decision Rule: Predict that the object with the positive cue value has

the higher value on the criterion.

The validity of the ith feature is computed as the following:

vi =
number of times feature i makes a correct inference

number of times feature i discriminates between objects

113

Given a pair of objects, a feature is said to discriminate between the objects

if two objects have different values for this feature. For a feature to discriminate

correctly, the object which has the higher criterion value must also have a feature

value representing presence of the property represented by the feature. In simple

terms, the validity of a feature can be thought of as a measure of how many correct

inferences are made using this feature alone.

Within the base memory, the probability of a value of a feature (except the

target feature), e.g. P (A1 = 0), reflects the frequency of seeing feature A1 to

be 0 in all the possible worlds. In the earlier chapters, we have shown that

P (A1 = 0), . . . , P (A1 = |C|) matches the counting of each possible value of feature

A1 in the learning episodes. The probability encodes frequency as an importance

measure for a feature; that is, the more frequently an observation is perceived, the

more dominant this observation is. However, under some situations other types of

important measures can be more effective in delivering an opinion. The validity

measure of each feature adopted by take-the-best heuristic is an example of such

other importance measures. When comparing two or many objects, an observation

may have high occurrence, but the feature may not distinguish different objects at

all. Validity directly encodes how effective a feature is in distinguishing these objects.

As we have described in Chapter earlier, each auxiliary knowledge represents

knowledge induced from the base memory of all learning episodes. Here, an auxiliary

BKB encodes the validity measure of a corresponding feature. An example of an

auxiliary BKB (part) is shown in Figure 5.10. The validity measure can be computed

from all the learning episodes by conducting pair-wise comparisons exhaustively. As

the BKB is a probabilistic formalization, the validity value cannot be directly used

114

A1=1	

 A2=1	

A3=1	

1.0	

 1.0	

1.0	

SA3=3	

0.25	

SA1=3	

0.25	

SA2=3	

0.25	

(a) K1

A1=1	

 A2=1	

A3=1	

1.0	

SA3=3	

0.25	

SA1=3	

 SA2=3	

0.707	

 0.595	

(b) K ′1

Figure 5.10: Auxiliary BKB (Take the Best)

as the prior probability of each feature. However, as long as the order of validity is

preserved and the results of probabilistic inferences over the modified memory are

the same as those would be produced by take-the-best heuristic, it will produce the

same answer. Thus, we propose to encode the prior probabilities in each auxiliary

BKB according to the following: For an I-node Ai = ai, the weight of S-node b

pointing to it is computed as:

a
1
2

rank(Ai)−1

where 1 ≤ i ≤ n and a is a constant bigger than 1, rank(Ai) denotes the rank of its

validity value among all features.

For instance, if we have three features with validity ranks 1, 2, 3, their cor-

responding weights for the S-nodes are 2−
1
2 = 0.707, 2−

3
4 = 0.595, 2−

7
8 = 0.545 if we

let constant a = 2. As shown in Figure 5.10b, the prior probability for A1 = 1 is thus

modified to 0.707 and the prior probability for A2 = 1 is modified to 0.595.

115

Take-the-best heuristic for a pair-wise comparison can be considered as a series

of two walks over an instantiated Double Transition Model. The first walk aims to

evaluate the probability of the first object on a transformed BKB and the second

walk aims to evaluate the probability of the second object on the same transformed

BKB. The shortest paths in these two walks look like the following:

w1 = subst(K1, K
′
1)a(A1 = a1) . . . a(An = an)

w2 = subst(K1, K
′
1)a(A1 = a′1) . . . a(An = a′n)

where in walk w1, the transformation sequence a(A1 = a1) . . . a(An = an) are formed

according to observations of object o1. In the 2nd walk w2, the transformation se-

quence a(A1 = a′1) . . . a(An = a′n) are formed according to observations of object

o2.

Minimalist

The minimalist heuristic relies on one distinguishing feature, no matter the degree

of its validity, to conduct inferencing. The following are the steps of the minimalist

heuristic:

• Step 0. If applicable, use the recognition heuristic; that is, if only one object

is recognized, predict that it has the higher value on the criterion. If neither is

recognized, then guess. If both are recognized, go on to Step 1.

• Step 1. Random Search: Draw a cue randomly (without replacement) and look

up cue values of the two objects.

• Step 2. Stopping Rule: If one object has a positive cue value (“1”) and the

other does not (i.e., either “0” or unknown value) then stop search and go onto

116

Step 3. Otherwise go back to Step 1 and search for another cue. If no further

cue is found, then guess.

• Step 3. Decision Rule: Predict that the object with the positive cue value has

the higher value on the criterion.

Compared to the take-the-best heuristic, the minimalist heuristic only differs in Step

1. We model the minimalist heuristic as a variation of take-the-best heuristic. The

main idea is to add a perturbation in the rank(Ai) function to simulate the effect of

vague memory where an individual may not have an exact order of validity values.

Then, based on the new validity values with perturbations applied, an auxiliary

BKB, say K2 and K ′2, can be constructed according to the new ranks. The rest of

the steps are the same as take-the-best heuristic.

w1 = subst(K2, K
′
2)a(A1 = a1) . . . a(An = an)

w2 = subst(K2, K
′
2)a(A1 = a′1) . . . a(An = a′n)

where in walk w1, the transformation sequence a(A1 = a1) . . . a(An = an) are formed

according to observations of object o1. In the 2nd walk w2, the transformation se-

quence a(A1 = a′1) . . . a(An = a′n) are formed according to observations of object

o2.

Take the Last

The take-the-last heuristic relies on one distinguishing feature, following the order

of recency, to conduct inferencing. Take-the-last heuristic differs from take-the-best

only in Step 1, which becomes:

Step 1. Einstellung Search: If there is a record of which cues stopped search on

previous problems, choose the cue that stopped search on the most recent problem

117

and has not yet been tried. Look up the cue values of the two objects. Otherwise

try a random cue and build up such a record.

We model take-the-Last also via memory transformation. In the take-the-

best heuristic, an individual follows the order of validity values of features. In the

take-the-last heuristic, an opinion provider follows the order of how recent a feature

worked in comparisons. It is reasonable why an individual will prefer a recent

successful feature rather than the feature that distinguishes the best. For instance,

whether a city having a metro system is the strongest indicator of whether a city has

a large population. However, depending upon where the opinion request comes from,

the opinion provider may be frequently asked to compare two cities both with no

metro systems. The validity value of a feature is independent of its frequency value;

for example, an observation of a feature may only occur once per a hundred times but

every time it occurs, it can successfully compare the objects. Thus, the importance

measure in take-the-last heuristic can be treated as a hybrid of the validity and

frequency value as measuring how important a feature is.

We model take-the-last heuristic via memory transformation by replacing the orig-

inal frequency-based importance measure of features with a modified validity-based

importance measure. Similar with the way we model take-the-best, we first construct

an order of how recent a feature worked for a comparison problem. Then, we use the

same formulation to compute the new importance measure for a feature in the mem-

ory. With the new importance measure, now we construct auxiliary memory, say K3

and K ′3, for memory transformation. We also construct a series of two walks {w1, w2},

each of which evaluating the probability for one object given its observations.

w1 = subst(K3, K
′
3)a(A1 = a1) . . . a(An = an)

118

w2 = subst(K3, K
′
3)a(A1 = a′1) . . . a(An = a′n)

where in walk w1, the transformation sequence a(A1 = a1) . . . a(An = an) are formed

according to observations of object o1. In the 2nd walk w2, the transformation se-

quence a(A1 = a′1) . . . a(An = a′n) are formed according to observations of object

o2.

119

Chapter 6

Modeling Opinion Formation with

External Influence

This chapter formally describes how to solve episodic opinion formation tasks. Section

1 and Section 2 provide an overview and the motivation for Phase II. Section 3

provides justification for modeling the process of an opinion formation task as a

Markov decision process. Section 4 provides formal definitions of a MDP using DTMs

and then illustrates five different cases by varying parameters of goal functions in

Section 5. Section 6 describes how to solve this task under a stochastic environment.

6.1 Overview

The objective of this section is to provide an overview of Phase II as presented

in Chapters 6 and 7. In Phase I, a DTM is capable of conducting a non-episodic

opinion formation task which consists of only one opinion formation process (see

Figure 6.1a). A non-episodic opinion formation task in Phase I is solved under the

assumption of knowing the cognitive state in use. We validated the design of a DTM

by modeling four commonly-accepted heuristics in reasoning to show that the design

120

was powerful to derive a space of cognitive states that can cover the ones humans use.

Determining the cognitive state currently in use remains an open question for

the research community. Phase II aims to mitigate this problem through modeling

episodic tasks. An episodic opinion formation task consists of a sequence of opinion

formation and opinion change processes a single issue. We exploit the close relation-

ship between opinion formation and opinion change processes within an episodic task

to learn the induction of state(s) in a DTM.

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

(l2,d12)	

(l4,d34)	

(l3,d23)	

Action	

Perception	

DTM	

task: t1 | t2 | t3 | t4 | t5 | t6 |	

l1	

 l2	

 l3	

 q1	

 q2	

 l4	

o1	

 o2	

non-episodic tasks	

(a) Non-Episodic Opinion Formation
Tasks

episodic task	

o2	

q2	

 o3	

 l4	

task: t1 | t2 | t3 | t4 | t5 |	

l1	

 l2	

 l3	

 q1	

 o1	

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

obv(f5)	

pasrmv(l4)	

intadd(l3)	

Action	

Perception	

Reinforcement Learning	

DTM + RL	

actadd(l1)	

(b) Episodic Opinion Formation Tasks

Figure 6.1: Non-Episodic (Ch. 4-5) and Episodic (Ch. 6) Opinion Formation Tasks

Chapter 6 solves an episodic opinion formation task (see Figure 6.1b) by defining

it as a Markov decision problem: At each time step, determine what is the best action

to take to accomplish one’s goal. We formulate a goal function that considers two

aspects: 1) minimizing the gap between two players’ opinions for next time step,

and 2) minimizing the change between his own opinions between two steps. It is

very important to emphasize here that: an episodic opinion formation task subsumes

a non-episodic opinion formation task by defining a finite-horizen MDP with the

121

horizon equal to one. This is a simple yet powerful generalization so that the episodic

and non-episodic tasks can now be both modeled as MDPs.

episodic task	

o2	

q2	

 o3	

 l4	

task: t1 | t2 | t3 | t4 | t5 |	

l1	

 l2	

 l3	

 q1	

 o1	

Task	

Cognitive State	

Cognitive State	

Cognitive State	

Cognitive State	

obv(f5)	

pasrmv(l4)	

intadd(l3)	

Action	

Perception	

Reinforcement Learning	

DTM + RL	

actadd(l1)	

Figure 6.2: Dynamic Opinion Formation Tasks (Ch. 7)

In this chapter, we assume that each individual can fully observe his interlocutor’s

DTM and has complete knowledge of his interlocutor’s reactions. Theoretically, the

Markov decision problems we define in this chapter are guaranteed to have optimal

solutions. However, the necessary assumption can be too strong under situations

where we do not have perfect knowledge of other individual’s DTMs in various

real-world situations. Thus, we further developed in Chapter 7, a Q-learning method

which uses a model-free reinforcement learning algorithm. If training experience

is available, a Q-learning method can improve an agent’s strategy by repetitively

participating in episodic opinion formation tasks.

With approximation methods such as Q-learning methods (see Algorithm 3.5)

and exact solutions such as value-iteraction (see Algorithm 3.1) and policy-iteraction

methods (see Algorithm 3.2), the framework can handle dynamic opinion formation

tasks that consist of a sequence of opinion formation and change processes with

122

external influences from multiple sources. As shown in Figure 6.2, a non-episodic

opinion formation task t4 and an episodic opinion formation task t5 form a dynamic

opinion formation task assuming both these two tasks occur within a short period of

time. The framework with DTMs plus reinforcement learning methods as its funda-

mental building blocks now becomes a complete framework of computational opinions.

To proceed, we shall explicitly state the differences between Phase I and

Phase II. As the main focus of Phase I is to design a cognitive model compatible with

well-recognized theories in bounded rationality, social theories, and in reasoning,

we focused on the representational flexibility of the cognitive model. To reduce the

complexity of the work in Phase II, we have made the following simplifications:

• Within one opinion formation task, individuals never switch queries.

• Individuals always correctly interprete the query and never modify it during

inferencing (e.g. discard an evidence).

• An individual can send up to one message to another individual each time.

6.2 Approach

6.2.1 Motivation

In Chapter 4, we proposed a double transition model as a cognitive model. In a

DTM, each node is a cognitive state of reasoning that emits a probability. Each

edge within a DTM denotes differences in either knowledge or query between two

connected nodes. The choice of a working memory and the choice of a query in

forming an opinion is modeled as undergoing a sequence of transitions (e.g. select

a heuristic in reasoning to simplify the opinion formation task) starting from the

long-term memory and a full specification of the query. We have demonstrated in

123

Chapter 5 that four known human reasoning heuristics can be formed as a sequence

of such transitions. Aside from our approach, such a unifying solution has not yet

been found in existing cognitive frameworks.

The modeling challenge for the DTM itself is the difficulty to figure out the

actual sequence of transitions that take places to form the initial opinions. In

general,

• Which reasoning heuristic is in use?

• Why is a reasoning heuristic chosen over another heuristic?

• What are other possible ways individuals choose to simplify problems?

• How, where, and what with regards to internal and external influents?

The objective of Phase I is to design and construct a DTM that can cover a

sufficient and meaningful space of cognitive states, from each of which an opinion can

be derived. However, how this state space is searched is not available from the DTM

itself. Formally, the challenges we face in Phase I can be addressed by answering this

question:

How do we know which cognitive state is in use for deriving an opinion?

Basically, what is the choice of a working memory k and the choice of a

query q?

This question can be further translated into a question on opinion formation and

another question on the mechanisms of opinion formation:

• Assuming we know an individual’s opinion o1, what is the choice of working

memory k and the choice of query q?

• Assuming we do not know an individual’s opinion o1, what is the choice of k

and that of query q?

124

Clearly, the second question is harder than the first one. Both questions are essen-

tially a search problem over the state space of a DTM but the second one has a much

larger space when compared to the first question.

We hope to better answer these two questions in Phase II. The external in-

fluence that results in opinion change has been the focus in the research community

especially with evidence having shown that external influence may persist longer

than internal influence (e.g. gaining new information through reading) (Hoekstra,

1995; Watts and Dodds, 2007; Watts and Holt, 1979; Zaller, 1992). As the social

theories have implied, the search function changes from one formation task to another

formation task. If the search functions are the same, then the persistence of opinion

change will be present in all situations. Therefore, answering the second problem

will significantly help advance the state-of-art in this area.

Unfortunately, this is a really challenging problem itself mainly due to the

massive size of the space to search and complexity inherent in human cognitive pro-

cesses. However, we can address this problem as a learning problem rather than as a

search problem. The key difference is that a search problem needs a particular target

while a learning problem induces one by itself. We realized this after recognizing the

learning nature of opinion change and decision-making nature of opinion formation:

essentially what has been learned through internalizing an external influence guides

how decisions are made by externalizing internal cognitive processes.

Intuition

To tackle this challenging problem, we scope down the problem by focusing on

modeling the interplay between opinion change and formation within one formation

task. Within each opinion formation task, we assume that we know about the initial

125

opinion (the choice of k and q). If we can model an opinion formation task by truly

internalizing external influence which in turn changes how it externalizes the internal

cognitive processes, it may provide insights on how we can address this grand prob-

lem. The challenges for building a computational framework lies in modeling both

the learning and decision aspects for the entire opinion formation task. Our insight to

address this modeling challenge is that we recognize that an individual performing an

opinion formation task is essentially a sequential decision problem with a goal in mind.

Internal and External Influents

To understand what decisions are made in an opinion formation task, let us first

introduce the concept of influents. We specify two categories of influents by their

sources: internal influents (e.g. re-evaluate possessed knowledge) and external

influents. Examples of external influents can be messages gained through reading,

through debates and discussions and questions posed by another individual, or per-

ception of others’ behavior (e.g. abusive, psychotheraputive, etc.). We concentrate

on influents in the form of messages. What can be internalized is unclear as it all

happens within a human brain that is inaccessible to others. A variety of social

theories have identified that the internalization may include the knowledge basis

from which an opinion is formed, the value system, sentiments towards entities, and

so forth. Here, we concentrate on the underlying knowledge basis and the reasoning

process from which an opinion can be derived.

Now, we formally define an internal influent to be any information originated inside

a human brain and an external influent to be any information from the environment.

Note that an individual can also generate external influents to others (e.g. sending

messages to someone else). An influent is a directed flow of a message and its direction

126

refers to the source of the flow - an influent being a message sent from A to B is thus

different from an influent sent from B to A even if the content is the same. The

concept of influence places emphasis on the changes that are triggered by an influent.

Modeling Episodic Opinion Formation Tasks

An individual can go through an interactive process of delivering his opinions

(generating external influents to others) and processing feedbacks (external influ-

ents) of the opinions that may yield changes in internal cognitive processes (internal

influents). We define this interactive process to be an episodic opinion formation task.

We formally define two tasks of which an individual is asked to provide opinions:

• Non-episodic opinion formation task: An individual is asked to provide his

opinion (represented by a probability) on an issue (represented by a query) but

no feedback is given.

• Episodic opinion formation task: An individual engages in a sequence of opinion

exchanges with another individual. In each round, an individual may receive

an opinion from another individual, reports his own opinion, receives a message

explaining the opinion, or sends a message explaining his opinion.

These two tasks are both representative of common opinion exchange situations.

Asking a librarian’s opinion can be considered a non-episodic opinion formation

task where one individual tends to be the domain expert and the other one asks for

his expert opinions. Note that non-episodic opinion formation tasks can be either

goal-driven or goal-free. On the other hand, episodic opinion formation tasks are

also common. For example, if two people are estimating the weight of a cow in a

photo, they can go through several iterations to describe their estimation as well as

their reasons. We describe episodic opinion formation tasks as goal-oriented tasks -

127

where a feedback is originated by either a goal of minimizing the gap between two

individuals’ opinions or to confirm the presence of a gap.

To restate, Phase II focuses on modeling episodic opinion formation tasks as the

opinions and the message from another individual are external influences. The inter-

nalization of external influence resulting in an episodic task will shed light on how

an individual conducts an opinion formation task in general. Now the questions is:

How to model an episodic opinion formation task that captures the learning nature

of opinion change and decision nature of opinion formation given that we focus on

influents in the forms of messages?

6.3 Markov Decision Problem

By explicitly modeling internal and external influents, the edges in a DTM can be

exploited to model how an opinion formation process gets induced and affected. In

Phase I, a DTM does not differentiate causes of either query or memory transitions.

We were inspired to convert these undirected edges into directed ones to differentiate

the source of stimulus that may trigger a transition from one state to another.

As we have described earlier, an individual performing an opinion formation task is

essentially solving a sequential decision problem with a goal. We describe the decision

problem in an episodic opinion formation task between two persons as follows:

Decision Problem: Two agents are exchanging influents with each other

guided by their respective goals. At each time step, an agent e1 needs to

decide an action to take.

128

The goal function for e1 can be defined as

lim
t→+∞

{γ1|ot+1
1 − ot1|+ ζ1|ot+1

1 − ot+1
2 |} = 0

where γ1,ζ1 ∈ [0, 1] are control parameters. The first term represents the degree of

opinion change between time t and t+ 1 for e1 while the second term represents the

gap in two agents’ opinions at time t+ 1.

Similarly, the other agent e2 also has a goal function defined as

lim
t→+∞

{γ2|ot+1
2 − ot2|+ ζ2|ot+1

1 − ot+1
2 |} = 0

where γ2,ζ2 ∈ [0, 1] are control parameters. The first term represents the degree of

opinion change between time t and t+ 1 for e2 while the second term represents the

gap in two agents’ opinions at time t+ 1.

The goal function is defined by the needs to cover two possible ways to reduce

the gap between two agents: one by moving e1’s opinion towards e2’s and other way

by moving e2’s opinion towards e1’s.

What are the meanings of the two parameters γ1 and γ2? Intuitively, γ1 and γ2

are on a malleability-idealism scale from 0 to 1 representing an agent’s willingness to

change its own opinion; while parameters ζ1 and ζ2 are on a passivity-activism scale

from 0 to 1 representing an agent’s eagerness for reaching a consensus. The higher

the malleability-idealism score is, the more idealistic an agent is (i.e., more unwilling

to change its opinion). The higher the passivity-activism score is, the more active an

agent is (i.e., more eager to reach a consensus). We can thus characterize an agent

by four different canonical styles in pursuing its goal by setting γ and ζ as follows:

129

• Idealistic-Active (abbrv. IA) Style: γi = 1 and ζi = 1 that i ∈ {1, 2}.

Agent ei does not change its opinion but changes the other agent’s opinion to

match his own.

• Malleable-Passive (abbrv. MP) Style: γi = 0 and ζi = 0 that i ∈ {1, 2}.

Agent ei has no particular goal.

• Idealistic-Passive (abbrv. IP) Style: γi = 1 and ζi = 0 that i ∈ {1, 2}.

Agent ei does not change its opinion and does not care to change the other

agent’s opinion.

• Malleable-Active (abbrv. MA) Style: γi = 0 and ζi = 1 that i ∈ {1, 2}.

Agent ei changes opinion to match the world.

Among these four types of agents, an IP-style agent has little interests in persuading

others and in modifying its own opinion. We can consider IP-style e1 to be a reference

of opinion; that is, other agents in the environment can observe its opinion which is

stationary over time. An IA-style agent is interested in changing others’ opinion but

has no interests in changing its own. On the other hand, a MA-style agent exhibits

an opposite preference compared to an IA-style agent; it is keen to be adaptive but

has no interests in changing others’ opinion. A MP-style agent has no particular

preferences on the changes of two agents’ opinions.

It is useful to explain why the goal function is defined at the level of individuals

rather than at the group level (in this case, a group has two agents). Primarily, the

group level goal (e.g. finds best actions to reduce the gap) is only instructive to

individuals but cannot dictate how exactly each agent accomplishes this goal. For

instance, the goal of a medical appointment held between a doctor and a patient is

to reach an informed decision on how to proceed with the patient’s case. There is

a general goal in place (even if not explicitly stated) that the entire medical team

130

shoots for. However, the exact goal in each individual’s mind is neither demanded

nor planned in advance leaving it unclear how an individual establishes his/her own

goal. Briefly speaking, both the patient and the doctor can either choose to convince

the other or choose to adjust himself. Therefore, we choose to model the problem on

the level of the individuals as it is clearer with less ambiguity.

At first, we focus on the goal functions at defined above. However, this does not

need to be the only choice. Later in this section, we will show that any goal function

that is defined in terms of DTMs can be used in defining a MDP. We stick to the

above goal function for now in order to demonstrate why a MDP is a natural choice

for modeling this decision problem.

The goal function is used to assess how desirable each transition between states is

for an agent. An agent with high malleability-idealism score prefers transitions with

small changes in its own opinion while an agent with high passivity-activism score

prefers a transition into a state with smaller opinion gaps. As both agents’ opinions

are used in evaluating the goal, a state at a time step needs to include both agents’

opinions. In order to transition from one state to a desired state according to the

goal, every agent needs to decide on the actions to take. As described in the previous

section, we simplify the problem that each external influent contains one message

(corresponds to a learning episode in our framework). Therefore in Phase II we

construct a DTM with states connected only if the difference between their domain

knowledge is one learning episode. Therefore, each action is an influent containing

one learning episode. A state of the environment can be as simple as a pair (two

agents’ opinions) or as complex as a 4-tuple (two agents’ opinions plus a message

each agent wants to send).

131

Next, we consider the scope of actions e1 can take. Which knowledge can

it communicate with others? Where do we obtain this knowledge? How realistic is

the scope of actions? The relationship between the scope of actions and the cognitive

basis from which an opinion gets formed is the main challenge in modeling opinion

formation with external influence. To tackle this challenge, we imagine a maze

problem where an agent identifies the actions it can take by observing the room it is

in: checking the doors that are unlocked, examining the ceilings and floors for hidden

pathways, and even considering digging a hole through a thin wall.

We thus define a state-action function that maps each state to a set of actions

that e1 can take. We assume that the scope of actions is independent of the other

agent’s opinion; that is, we will have a state-action function for each agent, formally

defined as A1(st) and A2(st). A DTM now defines the state-action function, as follows

A1(st) = A1(D
t
1)

where st is the state of the environment at time t and Dt
1 is the current cognitive

state in e1’s dtm.

A2(st) = A2(D
t
2)

where st is the state of the environment at time t and Dt
2 is the current cognitive

state in e2’s DTM. Intuitively, if one learning episode say l is not in e1’s current

working memory Kt
1, how can it say anything about l? Similarly, if l is already in

e1’s current working memory Kt
1, accepting l from another agent may not result in

any opinion change1. Thus we can see how a DTM constructed from a collection

of perceptions over time now provides a good basis of how the state-action function

1This is an assumption made here. It is possible that the importance of a message gets reinforced
over time which increases the persistence of opinion change in the long run.

132

may look like.

Up to this point, we have illustrated the main components that form a decision-

making process for agent e1 to solve the problem:

1) e1’s goal function to evaluate the desirability of a state.

2) States of the environment (can be in the form of a 2-tuple, 3-tuple, and

4-tuple).

3) e1’s state-action function that determines the set of actions e1 can take.

4) e2’s goal function to evaluate the desirability of a state.

5) e2’s state-action function that determines the set of actions e2 can take.

The problem now can be solved in the following way: Starting from an initial state

(assuming both agents’ opinions are observable to agent e1), agent e1 first identifies

all the actions it can take from this state. By an accurate estimation of what action

e2 would perform, e1 can identify all the states that it can transit to. Finally, agent

e1 selects the action that leads to the most desirable state as evaluated by its goal

function. This solution requires some knowledge of the other agent (component 4)

and 5) in the list above).

What we have derived up to this point is precisely a Markov decision problem. In

the next section we provide formal definitions of Markov decision processes derived

from DTMs and goal functions.

6.4 Definitions

We formally present our methodology in this section - modeling a Markov decision

process (abbrv. MDP) for e1 based on two agents’ DTMs and goal functions. It is

133

important to clarify that we are solving agent e1’s decision problem, not to solve

agent e2’s decision problem. As we described in the previous section, we are neither

solving a cooperative nor collaborative decision problem on the level of a group.

Instead, each agent has its own goal function which is independent of how the other

agent obtains its goal function. An interpretation of agent e2 is that it is part of the

environment for agent e1.

To define a MDP for e1, e1’s DTM defines the scope of its own knowledge-based

behavior while e2’s DTM is e1’s knowledge-based behavior model of e2. By assuming

that e1 has complete knowledge of e2 (goal function and the DTM), we can directly

solve the problem we stated in this chapter by deriving the optimal policy from a

MDP. We shall note that with the assumption of complete knowledge (both full

observability and complete knowledge of e2’s dynamics), e1 and e2 will have identical

DTMs.

Both these two assumptions that e1 has complete knowledge of e2’s DTM and is

aware of e2’s goal function may not be very realistic. Under certain situations, e2’s

DTM can be extremely hard to obtain due to insufficient understanding of e2. For

example, due to limited communication, a doctor is unlikely to know how a patient

would react to certain opinions and what medical knowledge the patient has. On the

other hand, the goal function of a patient is likely to be explicitly stated before or

elicited during their discussions. In adversarial situations, a complete knowledge of

e2’s DTM may be obtainable through intensive studies and repetitive encounters but

e2 may try to hide or disguise his/her goal function. In the next chapter, we describe

how we address these two assumptions via model-free reinforcement learning methods.

134

Here, we formally define an augmented DTM as the first step towards achieving

our Phase II goals. The basic idea is to convert an undirected graph into a transi-

tion model, and the probability along the edge denotes the validity of an action for

transition between two cognitive states.

Definition 1 (Augmented Query Transition Graph). An augmented query transition

graph Q is a triple (Q,AQ, CQ) where Q = (V Q, EQ) is a query transition graph, AQ

is finite set (of actions), and CQ is a function from V Q × AQ × V Q into [0, 1] such

that
∑

v2∈VQ C
Q(v1, a, v2) = 1 for all v1 ∈ VQ and a ∈ AQ.

We shall use the same Q to denote both the augmented query transition graph

and the query transition graph involved, if no ambiguity is likely to arise.

In the above definition, CQ(v1, a, v2) represents the transition probability that

given query v1 and action a, the current query will be transformed to query v2.

Definition 2 (Augmented Memory Transition Graph). An augmented memory tran-

sition graph K is a triple (K,AK , CK) where K = (V K , EK) is a memory transition

graph, AK is finite set (of actions), and CK is a function from V K × AK × V K into

[0, 1] such that
∑

v2∈VK C
K(v1, a, v2) = 1 for all v1 ∈ VK and a ∈ AK .

We shall use the same K to denote both the memory transition graph and the

augmented memory transition graph involved, if no ambiguity is likely to arise.

In the above definition, CK(v1, a, v2) represents the transition probability that

given domain knowledge in a memory v1 and action a, the current domain knowledge

will be transformed to domain knowledge in v2.

Definition 3 (Augmented Double Transition Model). An augmented DTM D =

(Q × K) where Q is an augmented query transition graph and K is an augmented

memory transition graph. In addition, if Q consists of only one state, then D is a

simple DTM. In this case, we shall use K to denote D.

135

When using MDPs for generating and modifying opinions, it is easy to see how

one could obtain an MDP M from a simple augmented DTM K. In this case, each

vertex in K corresponds to a state in M , the action set of M is equal to the action

set in K, and the transition probability in M is equal to the corresponding transition

probability in K. The only item missing for M is the reward function which can

directly derived from a given goal function.

The goal function captures how desirable a state is for an agent based on which

the utilities (value) of a state can be computed to instruct an agent’s action (policy).

In this work we define a goal function based on the differences of opinions between

two agents, but other variations of goal functions can also be designed to instantiate

a MDP problem. For example, a goal function from an adversarial perspective can

be that an agent deliberately looks like opinion divergence with another agent - in

this case the a state with smaller gap between two agents will have a lower reward

value.

In the rest of this chapter, we restrict our attention to the case where only two

agents are involved and only certain actions are allowed. Since the goal function

for e1 and e2 plays an important role in their opinion dynamics, we describe the

formulations of a Markov decision process in five situations: 1) MA-MA interaction,

2) IA-MA interaction, 3) MA-IA interaction, 4) IA-IA interaction, and 5) Mixed-goal

vs. Mixed-goal interaction. For conciseness, we only provide full details on the MA-

MA case in this chapter, details of the other four cases can be found in Appendix C.

These situations will help illustrate and demonstrate the representational power of

DTMs direct transformations to MDPs.

136

We specify four attributes for each a ∈ AK according to our discussion on external

influents in the section “internal and external influents”.

• direction: from agent ei to ej where i, j ∈ {1, 2}

• source: ei that i ∈ {1, 2}

• type: add, remove, and do nothing

• content: a learning episode lj for j = 1, 2, . . . ,m

Since all the attributes are symmetric, i.e., applicable to both e1 and e2, in what

follows, we shall not distinguish between e1 and e2. We specify seven types of actions

from these four attributes as the follows:

• intremove(lj) denotes an internal action to exclude learning episode lj from

working memory.

• intadd(lj) denotes an internal action to include learning episode lj into working

memory.

• pasadd(lj,ei) denotes an action to include learning episode lj into working mem-

ory suggested by the other agent ei.

• pasremove(lj,ei) denotes an action to exclude learning episode lj from this work-

ing memory suggested by the other agent ei.

• actadd(lj) denotes an action to suggest the other agent ei to include learning

episode lj into working memory.

• actremove(lj,ei) denotes an action to suggest the other agent ei to exclude learn-

ing episode lj from working memory.

• donothing.

137

We consider these seven types of actions in solving deterministic and stochastic

tasks in the next section, as well as for solving dynamic tasks in Chapter 7.

6.5 Deterministic Task

Even though we have provided mathematical definitions of MDP based on two agents’

DTMs and their goal functions, in this section we demonstrate step-by-step what

each ingredient of a MDP looks like and how they are assembled. Furthermore, the

MDPs defined for the MA-MA interaction, IA-MA interaction, MA-IA interaction,

IA-IA interaction, and Mixed-Goal versus Mixed-Goal interaction are the MDPs

used in the experiments we conduct in Chapter 7.

For the purposes of experimentation, we focus on interactions between active

agents (MA-style agent or IA-style agent) in Chapter 7. However, other types of

agents such as MP-style agent and IP-style agents are also worthy of attention. A

MP-style agent can be used to model an individual who is less cognitively involved

into an opinion formation task as it does not have any particular desire to reach a

consensus with the other agent. In contrast with an IP-style agent, a MP-style agent

does not mind changing its own opinion which may result in situations that it is

likely to accept messages even if they are conflicting. The MP-style agent fits well for

modeling individuals with low cognitive-awareness (Receive-Accept-Sampling model).

An IP-style agent does not have the desire to reach a consensus, however it also does

not like changing its own opinions. An IP-style agent fits well at modeling stubborn

individuals (Yildiz et al., 2011) and closed-mind individuals (Vacchiano et al., 1969).

138

6.5.1 Malleable-Active vs. Malleable-Active Agent

A malleable-active agent seeks to adapt its opinion to the other’s and is not interested

in instructing how the other agent should behave. At each time step, the primary

MA-style agent makes a decision on the proper knowledge transformation to pursue

in order to converge to the other agent’s opinion. For instance, it can consider

discarding some learning episodes that seem irrelevant, or including information that

was previously neglected, or do nothing after re-examining all the information it has

collected so far.

When one-to-one communication is limited (e.g. online forums), the decision-

making problem can be defined as a MA-MA Markov decision problem. One may

analyze the source of information that results in differences in their opinions, and

then adapt to the other by reconsidering the information to draw conclusions from.

A state of the environment s ∈ S is a pair (Kt
1, K

t
2) where Kt

1 is the knowledge

base relied upon by agent e1 at time t, and Kt
2 is the knowledge base relied upon by

agent e2 at time t. Set S is thus a cross product of set V K
1 and set V K

2 capturing all

possible combinations of knowledge agents e1 and e2 may use to derive their opinions

at a given time. We do not provide full details here but it is straightforward to

derive the number of states in which consensus is reached (e.g. o1 = o2 such that

P (K1|q1) = o1 and P (K2|q2) = o2) or the number of states where opinion divergence

is present (e.g. |o1 − o2| < δ where δ is a threshold).

We now consider the seven forms of actions: intadd, intremove, pasadd, pas-

remove, actadd, actremove, and donothing. As a malleable-active agent does not

communicate, we only need to consider intadd, intremove, donothing actions for the

MA-MA case. The exact learning episode for an action depends on the learning

139

episodes included in the knowledge base currently in use. Each action functions is

independent of the other agent’s state

A1(s
t) = A1(K

t
1)

and

A2(s
t) = A2(K

t
2)

where Kt
1 is the domain knowledge agent e1 relies upon at time t, Kt

2 is the domain

knowledge agent e2 relies upon at time t.

Then, the action function for e1 and e2 is defined as

a ∈ Ai(st) such that i ∈ [1, 2] if:


type(a) is intadd, and value(a) /∈ Kt

i

type(a) is intremove, and value(a) ∈ Kt
i

type(a) is donothing, and value(a) = φ

The derivation of transition probabilities are broken down into two parts: the

first part considers the validity of a transition for agent e1 while the second part

considers the validity of a transition for agent e2

P (st, a1, st+1) =


1.0 if P (Kt

1, a1, K
t+1
1) = 1 and P (Kt

2, a
∗
2, K

t+1
2) = 1

0 otherwise

where P (Kt
1, a1, K

t+1
1) is the probability of resulting in a knowledge base Kt+1

1 by

applying change a1 to the current knowledge base Kt
1. P

(Kt
2, a
∗
2, K

t+1
2) is the prob-

ability of resulting in a knowledge base Kt+1
2 by applying change a∗2 to the current

knowledge base Kt
2. For instance, if agent e1 does nothing (type(a1) = donothing),

then we should have Kt
1 = Kt+1

1 . We assume the environment to be non-stochastic

140

(e.g. information-processing produced is always correct); that is, a valid knowledge

transformation action has a probability of 1.0. We formally specify the transition

probability as the following:

P (Kt
1, a1, K

t+1
1) =


1.0 if one of the conditions below holds

0 otherwise

• type(a1) = donothing,Kt+1
1 = Kt

1

• type(a1) = intadd,Kt+1
1 = Kt

1 ∪ value(a1)

• type(a1) = intremove,Kt
1 = Kt+1

1 ∪ value(a1)

and

P (Kt
2, a
∗
2, K

t+1
2) =


1.0 if one of the conditions below holds

0 otherwise

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = donothing,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intadd,Kt+1

2 = Kt
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intremove,Kt

2 = Kt+1
2 ∪ value(a∗2)

where a∗2 is the greedy action e2 decides according to its own goal function.

The reward function for e1 and e2 is derived from the goal function

Ra(s, s
′) = −|ot+1

1 − ot+1
2 |

where P (Kt+1
1 |qt+1

1) = ot+1
1 and P (Kt+1

2 |qt+1
2) = ot+1

2 . Due to our simplifications in

Phase II, we focus on one query and do not consider diversifications on the query.

Thus, we have qt1 = qt2 for all values of t.

141

Now, we have provided a complete definition of a MDP (states, action function,

reward function, and probability transition function) for a MA-MA case. Detailed

specification of the key ingredients of a MDP for IA-MA interaction, IA-IA interac-

tion, MA-IA interaction, and Mixed-Goal versus Mixed-Goal interaction can be found

Appendix C.

6.6 Stochastic Task

So far, we have considered a purely deterministic case for an episodic opinion for-

mation task. Here, we relax the requirement for determinism and briefly consider a

stochastic version we call stochastic opinion formation.

Determinism is achieved in our previous formulations due to the following

assumption: Agent e2’s action at time t is uniquely determined based on agent e1’s

action at time t and agent e2’s greedy policy (e.g., minimizes |ot+1
2 −ot2|+ |ot+1

1 −ot+1
2 |

for IA). Recall that agent e1’s possible actions are constrained by its DTM D1

coupled with agent e2’s single greedy choice which results in a unique state transition

to st+1. Interactions only occurred when learning episodes are sent between agents

or requests to eliminate learning episodes are made from one agent to the other.

As we saw earlier, MA-MA was the case of no interactions except for observing the

emitted probability values, ot1 and ot2. Now, instead of a greedy deterministic policy

for agent e2, assume that agent e2’s choice of action with respect to agent e1’s action

is probabilistic. Of course, certain action pairs between the agents remain tightly

coupled such as one agent can only accept a learning episode if the other agent sends

it. Note, when one agent requests the other to remove a learning episode, the other

can choose to remove it with pasremove or decide independently to remove with

intremove. Still, the effects are the same given the current model definitions in which

142

the states and greedy function are unaffected. Intuitively, this means that for either

case, the space of available actions A1 and A2 at a given state st can be limited with

certain actions having 0 probability (as in the former case).

As such, this stochastic version modifies the transition probability function

P (st, a1, st+1). It still remains the case that the particular choice of actions for

each agent will dictate the outcome state st+1 = (Kt+1
1 , Kt+1

2). For example, if

a1 = intremove(l) and a2 = donothing, then Kt+1
1 = Kt

1 − {l} and Kt+1
2 = Kt

2.

However, the action choice for agent e2 is now probabilistic.

We use st −−−−−→
<a1,a2>

st+1 to denote the transformation from state st applying

actions < a1, a2 > to state st+1.

In essence, when in state st and agent e1 has selected action a1, agent e2

now probabilistically selects its action a2. Based on this selection, each a2 will po-

tentially result in a different outcome state st+1. As such, the transition probability

function P (st, a1, st+1) will be equal to the probability of selection an a2 that ends

up in state st+1. There is a wide variety of possible stochastic agents that can be

formulated. Here we illustrate one using a uniform distribution to select actions.

Let A2(st|a1) ⊆ A2(st) be the set of possible actions for agent e2 as con-

strained by agent e1 having selected action a1. This can be readily defined as follows:

For all learning episodes lj for j = 1, 2, . . . ,m,

• For a1 ∈ {intremove(lj), intadd(lj), donothing}, A2(st|a1) = A2(st) −⋃m
i=1{pasadd(li, e1), pasremove(li, e1)}.

• For a1 = pasadd(lj, e2), A2(st|a1) = {actadd(lj, e1)}.

143

• For a1 = pasremove(lj, e2), A2(st|a1) = {actremove(lj, e1)}.

• For a1 = actadd(lj, e2), A2(st|a1) = A2(st) −
⋃m
i=1{pasremove(li, e1)} −⋃m

i=1
i 6=j
{pasadd(li, e1)}.

• For a1 = actremove(lj, e2), A2(st|a1) = A2(st) −
⋃m
i=1{pasadd(li, e1)} −⋃m

i=1
i 6=j
{pasremove(li, e1)}.

A1(st|a2) ⊆ A1(st) can be similarly defined.

We can now redefine our transition function stochastically as follows:

P (st, a1, st+1) =
∑

a2∈A2(st|a1)s.t.
st−−−−−→

<a1,a2>
st+1

1

|A2(st|a1)|
.

This can be readily generalized to some probability distribution over A2(st|a1). Thus,

this is the only modification needed.

In Chapter 7, e2 will employ probabilistic transitions in terms of ε-greedy and

τ -softmax as described in the background chapter.

144

Chapter 7

Modeling Opinion Formation in

Dynamic Situations

7.1 Dynamic Task

In Chapter 6, we have assumed that we have complete knowledge of the environment

and the decision-making style of the other player. Consider the following simple

scenario: A used car salesman tries to sell a car by convincing customers that

they should buy the car. Customers on the other hand may accept the salesman’s

argument or provide their own arguments to the salesman of why they should not

buy the car (in hopes of getting a better deal). Over time, the salesman eventually

learns a policy from experiencing many different customers. Clearly, the information

requirements of the earlier formulations may not be met in this scenario. Here, we

show how our approach can also account for this scenario.

Let us assume that the car salesman can get a sense of what cars a cus-

tomer has already looked at, say from their opening conversation. This implies that

the salesman knows the DTM for the customer and thus Kt
2. However, each customer

145

is still likely to be quite different in terms of their individual goals which ultimately

impacts the reward value and thus we are unlikely to have any information regarding

transition probabilities.

Cast in terms of our framework, the salesman is aware of the DTMs, avail-

able actions, and reward values over time as well as across customers. This problem

is classified as an online learning problem (Sutton and Barto, 1998). We can formu-

late it as follows: the state of the environment is defined by st = (Kt
1, K

t
2). Agent e1,

the salesman, has the following goal:

lim
t→+∞

{γ1|ot+1
1 − ot1|+ ζ1|ot+1

1 − ot+1
2 |} = 0

where γ1, ζ1 ∈ [0, 1] are constants.

This alone is a model-free reinforcement learning model that requires on-line

experience, i.e., learning as you go or learning on the job. Each customer represents

an episode which is a finite sequence of time steps (called episodic tasks)(Sutton

and Barto, 1998). Our car salesman problem can be solved using Q-learning for

reinforcement learning. Recall from our description of Q-learning in Chapter 2, we

can determine a good policy for the salesman by iterating over Q(st, a) which is

based on prior values of Q and the reward.

For our problem, we modified the algorithm more specifically as shown in

Figure 7.1. We define the following:

• A is the action table where for each state st, a1 ∈ A(st) is the set of valid actions

for e1 such that there exists an action a2 that is compatible with a1 as defined

earlier.

146

• ∆ is a non-positive constant value assigned as the reward value for actions that

are not valid for st.

• st is a terminal state if |ot1 − ot2| < ε for some small positive ε.

Each episode is a customer and thus the selection criteria of e2 (customer) will

be the basis for determining the next state. Since each customer Ci is potentially

different, the choice of customer action can be different for each episode which results

in different state transitions and reward values. However, the Q-learning algorithm

does not need to know the specific customer action selection (or even goals). For our

car salesman, the reward function is some function based on the salesman’s goal above.

By using Q-learning methods, we now can model dynamic opinion formation tasks

as consisting of a sequence of (non-)episodic opinion formation tasks each of which

may interact with different individuals.

7.2 Multi-agent Task

Up to now, we have provided solutions to model various forms of opinion forma-

tion tasks: episodic and non-episodic opinion formation tasks are concerned with

whether the task is interactive between two entities; deterministic versus stochastic

refers to varying degrees of uncertainties in the interactions between two entities;

and, dynamic versus non-dynamic tasks concern with whether the task contains a

sequence of atomic opinion formation tasks1. All the solutions we have provided so

far considers two interacting agents.

What if multiple agents are involved in opinion exchanges? An opinion formation

task among multiple agents can be cast into dynamic opinion formation tasks, each

1An atomic opinion formation task cannot be divided into multiple opinion formation tasks.

147

Input: States including terminal states
Input: Discount factor γ ∈ [0, 1]
Input: Maximum steps T some positive integer
Input: Action table A
Input: Step size α ∈ [0, 1]
Input: For C1, C2, . . . , CN , Ci is an episode (customer)
Input: Maximum steps T
Input: s1 is the starting state for e1 (salesman)
Output: Deterministic policy π such that π(s) = arg maxaQ[s][a]

1 var matrix Q[s][a]← ∆ if a 6∈ A(s), 0 otherwise.

2 foreach episode (customer) Ci do
3 var τ ← 1;
4 var s2 ← randomly selected starting state for e2 (customer Ci);
5 var s← (s1, s2);
6 while s is not terminal and τ <= T do
7 Choose action a← from A(s) using ε-greedy policy derived from Q;
8 Take action a; observe reward r and next state s′;
9 Q(s, a)← Q(s, a) + α[t+ γ arg maxa′∈A(s′)Q(s′, a′)−Q(s, a)];

10 s← s′;
11 τ ← τ + 1;

Figure 7.1: Q-learning Algorithm for Dynamic Opinion Formation Tasks

of which is an episodic task between two agents. This treatment is intuitive as

typically one only listens to or talks to another individual due to cognitive limits in

communication.

An alternative way is to define a multi-agent task considering opinion exchanges

among them in one opinion formation task.

Definition 1 (Multi-agent MDP). Let n be a positive integer > 1. Let M =

{M1,M2, · · · ,Mn} be a collection of n MDPs where for each i = 1, 2, · · · , n, Mi =

(S,A, Pi, Ri). Let α = {α1, α2, · · · , αn} be an stochastic vector, i.e.,
∑n

i=1 αi = 1. The

joint MDP induced byM and α is the MDP Mσα = (S,A, P,R) where for each s, s′ ∈

S and a ∈ A, P (s, a, s′) =
∑n

i=1(αi∗Pi(s, a, s′)) andR(s, a, s′) =
∑n

i=1(αi∗Ri(s, a, s
′)).

Let σ = {σ1, σ2, · · · , σn}, where for each i = 1, 2, · · · , n, σi is a policy of Mi. The

148

joint policy σα with respect to σ and α is a randomized policy in the sense that at

each time step t, the policy σi is selected with probability αi, and applied to Mi.

Thus, the value function of σα, for all s ∈ S, is

Vσα(s) =
∞∑
t=0

γt
∑
s′∈S

n∑
i=1

αi ∗ Pi(s, σi, s′) ∗Ri(s, σi, s
′)

for some γ ∈ [0, 1].

Given stochastic vector α, σα is maximal with respect to α if and only if for all

joint policy σ∗α, Vσα(s) > Vσ∗α(s) for all s ∈ S.

Theorem 2 (Optimality for Multi-agent MDP). Given a collection of M of MDPs,

and a corresponding collection of policy σ. For any stochastic vector α, σα is maximal

if and only if for each i, σi is an optimal policy of Mi.

Proof : The result follows from the Definition of Vσα(s).

The above Theorem provides a method for determining the maximal randomized

policy for multiple MDPs by determining the optimal policy of each individual MDP.

If the S’s and/or the A’s are not the same in the MDP’s, we can always take the

union of all such Ss and the union of all such As and define the rest accordingly.

Thus, there is no loss of generality by assuming that all the Ss are equal, as well as,

all the As are equal.

Moreover, if the reward function is the same for all the MDPs, then the reward

function for Vσα(s) is equal to the common reward function. This is true regardless

of the αs.

149

7.3 Case Study

7.3.1 A Case Study on Training Design

We study the following hypothetical problem:

Problem Setting : We want to train advocates at Dartmouth College that

are proficient at convincing others to believe it is a great university. We

have materials about different universities, but unfortunately we cannot

recruit too many people with a wide variety of backgrounds (personality,

holding different opinions, preferences in communication) to practice with.

Target Problems : What types of training are critical to provide? What

suggestions (strategies) can we provide the advocates to increase their

skills in debating immediately?

In Chapter 6, we introduced goal functions with two control parameters ζ and γ.

ζ can be intepreted as the passivity-activism scale from 0 to 1 representing an agent’s

eargerness for reaching a consensus and γ can be intepreted as malleability-idealism

scale from 0 to 1 representing an agent’s willingness to change its own opinion. In

the experiments, we focus on situations where consensus is actively sought for but

individuals differ in the way to reach consensus. Thus in this case study, we focus on

two goal profiles: IA profile (γ = 1 and ζ = 1) and MA profile (γ = 0 and ζ = 1).

7.3.2 Dataset Construction

We designed a synthetic dataset in the following manner: First, we collected and

pre-processed the U.S. News 2013 College Data2. The College data (in Table 7.1)

contains seven attributes of five universities. Table 7.2 shows the five universities we

2Data is collected from http://colleges.usnews.rankingsandreviews.com/best-colleges/

rankings/national-universities

150

have chosen (randomly) for this case study along with the discretized feature vectors.

Table 7.1: U.S. News 2013 College Data

Feature Value#0 Criteria#0 Value#1 Criteria#1

Ranking 0 < 100 1 ≥ 100
Tuition total enrollment 0 < $25, 000 1 ≥ $25, 000
Fall 2011 acceptance rate 0 < 35.00% 1 ≥ 35.00%

Average freshman retention rate 0 < 86.00% 1 ≥ 86.00%
6-year graduation rate 0 < 71.05% 1 ≥ 71.05%

Classes with under 20 students 0 < 47.00% 1 ≥ 47.00%
SAT/ACT 25th-75th percentile 0 < 1, 010 1 ≥ 1, 010

Table 7.2: Feature Vectors for Five Universities

University Feature Vector

University of California-Los Angeles 0 0 1 0 1 1 1 1 1
Columbia University 0 1 1 0 1 1 1 1 1

Georgia Institute of Technology 0 0 1 1 1 1 0 1 1
Stevens Institute of Technology 1 1 0 1 1 1 0 1 1
Worcester Polytechnic Institute 1 1 0 1 1 1 1 1 1

Next, we simulated trainees, trainers and testers. Trainees refer to the advocates

at Dartmouth College, and trainers refer to individuals that are recruited to practice

with the trainees. Testers are the individuals who trainees must aim to convince

them that a Dartmouth College is a tier 1 university. We can imagine trainers and

testers to be prospective or current students, family members of students, partners

and even competitors.

We consider two goal profiles for each trainee: either MA-style (malleability and

active) or IA-style (idealist and active). A MA-style trainee is a listener, he would

be willing to adjust his opinions in order to reach a conesensus. An IA-style trainee

is aggressive, he does not adjust his opinion but seeks ways to convince the other one

151

to reach a consensus.

We consider a wide range of trainers and testers to cover individuals with different

backgrounds. We generated 18 different types of trainers and testers who differ in

both goal profiles (See Table 7.3) and their behavioral styles. We simulate three

behavior styles: pureGreedy, ε− greedy(0.05), and τ − softmax(1.0).

Table 7.3: Goal Profiles for Trainers and Testers

Goal Profile Parameters

pureIA γ = 1.0 and ζ = 1.0
pureMA γ = 0.0 and ζ = 1.0
pureMP γ = 0.0 and ζ = 0.0
pureIP γ = 1.0 and ζ = 0.0

mixedImixedP (mImP) γ = 0.75 and ζ = 0.25
mixedMmixedA (mMmA) γ = 0.25 and ζ = 0.75

To complete our design for this dataset, we consider the following queries shown

in Table 7.4. The feature with value x is the target for the opinion, which in this case

is the ranking of a university. The feature with ? represents a missing value.

Table 7.4: Feature Vector for Two Queries

Query Feature Vector

q1 x 1 ? ? ? ? ? ? 1
q2 x ? ? ? ? ? 1 ? 1

7.3.3 Simulations

We simulate opinion formation tasks a trainee may engage in regarding all possible

trainers and testers. Every simulated trainee has a knowledge basis for his initial

opinion (one out of 32 possible combinations of university vectors), a goal profile

(MA or IA). As we use Q-learning methods in this case study, all the trainees have

152

the same behavior style ε − greedy(0.05). Every simulated trainer and tester has a

knowledge basis for his intial opinion (one out of 32), a different goal profile (one out

of six shown in Table 7.3), and a different behavior style (one out of three).

We consider two forms of dynamic opinion formation tasks - tasks where a trainee

interacts with the same type of trainer (or a tester) and tasks where a trainee interacts

with trainers (or testers) of different types. Every dynamic opinion formation task (we

refer it as one behavioral run) has 1000 episodic opinion formation tasks. Within a

dynamic opinion formation task, the trainee keeps changing its opinion by interacting

with trainers (or testers) in a sequential manner. If a pair of individuals do not reach

consensus, we terminate their discussions after ten rounds of interactions and the

trainee then continues to the next one in the queue. The initial opinion is randomly

generated for the trainer (or a tester) in each opinion formation task. Within one

behavioral run, a trainee may talk to agents of different types. For example, a trainee

talks to pureIA-style agents for 500 times and talk to pureIP-style agents for 500 times.

In particular, for our testbed, the nine composite behavioral runs are as follows (these

were randomly generated):

#2 (pureIA, ε-greedy) , (mMmA, ε-greedy)

#2 (pureIP, τ -softmax), (pureMA, ε-greedy)

#2 (mMmA, pure-greedy), (pureIA, ε-greedy)

#2 (pureMP, ε-greedy), (mImP, pure-greedy)

#2 (pureMP, pure-greedy), (pureMA, ε-greedy)

#5 (pureIA, ε-greedy), (mMmA, ε-greedy), (pureMP, pure-greedy), (pureMA, ε-

greedy), (pureIP, τ -softmax)

153

#5 (pureMa, ε-greedy), (pureMP, ε-greedy), (mImP, pure-greedy), (mMmA, pure-

greedy), (pureIA, ε-greedy)

#10 (pureIA, ε-greedy), (mMmA, ε-greedy), (pureMP, pure-greedy), (pureMA, ε-

greedy), (pureIP, τ -softmax), (pureMA, ε-greedy), (pureMP, ε-greedy), (mImP,

pure-greedy), (mMmA, pure-greedy), (pure-IA, ε-greedy)

#10 (mImP, τ -softmax), (mImP, ε-greedy), (mImP, τ -softmax), (pureMA, ε-greedy),

(pureIP, τ -softmax), (pureIP, ε-greedy), (pureMP, pure-greedy), (mMmA, ε-

greedy), (pureMP, ε-greedy)

We conducted simulations for both all pairs of trainee-trainer and pairs of trainee-

tester. In total, we have around 140, 000 behavioral runs completed. Each behavioral

run represents one dynamic opinion formation task consists of 1000 episodic opinion

formation tasks. The parameters in our specific Q-learning algorithm are as follows:

Table 7.5: Parameters for Q-learning Methods

Parameter Value
Discount Factor 0.5

Step Size 0.1
Epsilon Termination 0.005

∆ Illegal Action -100
ε-greedy value 0.05

Max Turns 10
of behavior runs 1000

7.3.4 Results

To facilitate our discussion we introduce two situations during training: proper train-

ing and improper training. Proper training refers to situations where the training

experience a trainee receives matches the problems he encounters with testers. In

other words, the type of trainers a trainee interacts within a training run is the

154

same as the type of testers a trainee interacts within a testing run. In the situation

with composite behavioral runs, it is considered proper training if the composite is

the same for both training and testing cases. On the other hand, improper training

refers to situations where the training experience a trainee receives does not match

the problems he encounters later with testers.

Improper training is a very typical situation we face in the real world: providing

sufficient coverage of training is labor expensive and time-consuming. A doctor in

a hospital gains more experience on how to convince patients or how to effectively

reach a consensus by practicing medicine over time. Similarly, a car salesman gains

experience on how to sell cars by engaging with a variety of potential buyers every

day. This framework can be used to simulate different problems and thus provide

suggestions and analyses for possible outcomes. If budgets are available for providing

training, this framework can be used to simulate different cases in order to help

planning the training process. The framework can also be used to help in making

hiring decisions.

This section will answer various questions centering on the topic of training

design from the simulation results. The purpose of these results is to demonstrate

the usefulness of this framework, to illustrate that the opinions are computable and

learnable, and to show its compliance with social theories and theories of rationality.

Question 1 : What type of trainee can perform better under proper training?

To compare performances among different types of trainees, we introduce con-

sensus rate and number of turns to measure success at reaching consensus in each

behavioral run. We compute consensus rate as the percentage of opinion formation

155

tasks that result in consensus out of 1000 tasks in total. We compute an averaged

number of turns to measure the speed of consensus within each behavioral run. As

an opinion formation task terminates after 10 rounds of interactions, the upperbound

of an averaged number of turns is 10. Figure 7.2 compares these two performance

metrics for trainees with different goal profiles. Trainees with MA-style (µ1 = 0.775,

σ1 = 0.058 for consensus rate, µ2 = 1.428, σ2 = 1.058 for no. of turns) signifi-

cantly outperform IA-style (µ1 = 0.503, σ1 = 0.098 for consensus rate, µ2 = 3.441,

σ2 = 7.742 for no. of turns) for both performance metrics (p1 = 2.75E − 162 for

consensus rate and p2 = 1.842E − 157 for no. of turns).

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	

 33
	

65
	

97
	

12
9	

16
1	

19
3	

22
5	

25
7	

28
9	

32
1	

35
3	

38
5	

41
7	

44
9	

48
1	

51
3	

54
5	

57
7	

60
9	

64
1	

67
3	

70
5	

73
7	

76
9	

80
1	

83
3	

86
5	

89
7	

92
9	

96
1	

99
3	

10
25
	

10
57
	

10
89
	

11
21
	

11
53
	

11
85
	

12
17
	

12
49
	

12
81
	

13
13
	

13
45
	

13
77
	

14
09
	

14
41
	

14
73
	

15
05
	

15
37
	

15
69
	

16
01
	

16
33
	

16
65
	

16
97
	

co
ns

en
su

s r
at

e
(%

)	

Consensus Rate for Two Types of Agents (under Proper Training)	

MA	

IA	

(a) Comparisons of Consensus Rates between MA-style and IA-style Agents under
Proper Training

0	

2	

4	

6	

8	

10	

12	

1	

 33
	

65
	

97
	

12
9	

16
1	

19
3	

22
5	

25
7	

28
9	

32
1	

35
3	

38
5	

41
7	

44
9	

48
1	

51
3	

54
5	

57
7	

60
9	

64
1	

67
3	

70
5	

73
7	

76
9	

80
1	

83
3	

86
5	

89
7	

92
9	

96
1	

99
3	

10
25
	

10
57
	

10
89
	

11
21
	

11
53
	

11
85
	

12
17
	

12
49
	

12
81
	

13
13
	

13
45
	

13
77
	

14
09
	

14
41
	

14
73
	

15
05
	

15
37
	

15
69
	

16
01
	

16
33
	

16
65
	

16
97
	

no
. o

f i
nt

er
ac

tio
ns
	

No. of Interactions for Two Types of Agents (under Proper Training)	

MA	

IA	

(b) Comprisons of Number of Interactions Taken to Reach Consensus between
MA-style and IA-style agents under Proper Training

Figure 7.2: Performance Comparisons between MA-style and IA-style Agents under
Proper Training

Question 2 : What type of trainee can perform better under improper training?

156

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	

 33
	

65
	

97
	

12
9	

16
1	

19
3	

22
5	

25
7	

28
9	

32
1	

35
3	

38
5	

41
7	

44
9	

48
1	

51
3	

54
5	

57
7	

60
9	

64
1	

67
3	

70
5	

73
7	

76
9	

80
1	

83
3	

86
5	

89
7	

92
9	

96
1	

99
3	

10
25
	

10
57
	

10
89
	

11
21
	

11
53
	

11
85
	

12
17
	

12
49
	

12
81
	

13
13
	

13
45
	

13
77
	

14
09
	

14
41
	

14
73
	

15
05
	

15
37
	

15
69
	

16
01
	

16
33
	

16
65
	

16
97
	

co
ns

en
su

s r
at

e
(%

)	

Avearged Consensus Rate for Two Types of Agents (under Improper
Training)	

MA	

IA	

(a) Comparisons of Consensus Rates between MA-style and IA-style Agents under
Improper Training

0	

0.5	

1	

1.5	

2	

2.5	

3	

1	

 33
	

65
	

97
	

12
9	

16
1	

19
3	

22
5	

25
7	

28
9	

32
1	

35
3	

38
5	

41
7	

44
9	

48
1	

51
3	

54
5	

57
7	

60
9	

64
1	

67
3	

70
5	

73
7	

76
9	

80
1	

83
3	

86
5	

89
7	

92
9	

96
1	

99
3	

10
25
	

10
57
	

10
89
	

11
21
	

11
53
	

11
85
	

12
17
	

12
49
	

12
81
	

13
13
	

13
45
	

13
77
	

14
09
	

14
41
	

14
73
	

15
05
	

15
37
	

15
69
	

16
01
	

16
33
	

16
65
	

16
97
	

no
. o

f i
nt

er
ac

tio
ns
	

Averaged No. of Interactions for Two Types of Agents (under
Improper Training)	

MA	

IA	

(b) Comprisons of Number of Interactions Taken to Reach Consensus between
MA-style and IA-style Agents under Improper Training

Figure 7.3: Performance Comparisons between MA-style and IA-style Agents under
Improper Training

Even though trainees with MA-style perform better than IA-style trainees when

proper training was received, the results shown in Figure 7.3 tell a slightly differ-

ent story. IA-style trainees on average (µ = 0.997, σ = 0.019 for no. of turns)

significantly take fewer turns to reach consensus compared to MA-style trainees

(µ = 1.098, σ = 0.022 for no. of turns with p = 6.40− E92) 3. Despite the fact that

MA-style trainees perform well when the type of training they receive matches well

with the testing situation, IA-style trainees perform better at convincing unexpected

types of testers. The results suggest that the performance we observe in training

are not representative of how they might actually perform. What can we conclude

from the simulation results for question 1 and question 2? First of all, if sufficient

3The performance under improper training is averaged thus on a different scale compared to plots
in Figure 7.2.

157

training can be provided, MA-style trainees are preferred as they achieve better

performances compared to IA-style trainees. On the other hand, IA-style trainees are

preferred if sufficient training cannot be provided. These comparisons also indicate

the importance of proper training.

Question 3 : Does knowledge matter in handling unexpected testers?

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	

 4	

 7	

 10	

13	

16	

19	

22	

25	

28	

31	

34	

 37	

40	

43	

46	

49	

 52	

55	

58	

61	

64	

 67	

70	

73	

76	

79	

82	

85	

88	

91	

94	

 97	

100	

103	

106	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance with Initial Knowledge (CU)	

conRate	

turn	

(a) Over/under-performance with Initial Knowledge about Columbia University

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	

 4	

 7	

 10	

13	

16	

19	

 22	

25	

28	

31	

34	

37	

40	

43	

46	

49	

 52	

55	

58	

61	

64	

67	

70	

73	

76	

79	

82	

85	

88	

91	

94	

97	

100	

103	

106	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance with Initial Knowledge (SIT)	

conRate	

turn	

(b) Over/under-performance with Initial Knowledge about Stevens Institute of
Technology

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1	

 4	

 7	

 10	

13	

16	

19	

 22	

25	

28	

31	

34	

37	

40	

43	

46	

49	

 52	

55	

58	

61	

64	

67	

70	

73	

76	

79	

82	

85	

88	

91	

94	

97	

100	

103	

106	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance with Initial Knowledge (WPI)	

conRate	

turn	

(c) Over/Under-performance with Initial Knowledge about Worcester Polytechnic
Institute

Figure 7.4: Over/under-performance with Different Initial Knowledge (Part A)

158

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	

 4	

 7	

 10	

13	

16	

19	

22	

25	

28	

31	

34	

37	

40	

43	

46	

49	

 52	

55	

58	

61	

64	

67	

70	

73	

76	

79	

82	

85	

88	

91	

94	

97	

100	

103	

106	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance with Initial Knowledge (CU and SIT)	

conRate	

turn	

(a) Over/under-performance with Initial Knowledge about Columbia University
and Stevens Institute of Technology

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

1	

 4	

 7	

 10	

 13	

 16	

 19	

 22	

 25	

 28	

 31	

34	

 37	

 40	

 43	

 46	

 49	

 52	

 55	

 58	

61	

64	

 67	

 70	

 73	

 76	

 79	

 82	

 85	

 88	

 91	

94	

 97	

100	

103	

106	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance with Initial Knowledge (All)	

conRate	

turn	

(b) Over/under-performance with Initial Knowledge about All Universities

Figure 7.5: Over/under-performance with Different Initial Knowledge (Part B)

Next, we wish to explore whether relying on different knowledge would help

a trainee performs better when encountering an unexpected tester. We compute

over/under-performance metric for both the consensus rate and number of turns to

reach a consensus by dividing the averaged measure for all situations of improper

training by the measure for situation of proper training. An over/under performance

metric of value 1.0 indicates that performance under proper and improper training

is the same. Figure 7.4 and Figure 7.5 show results for five different knowledge

setups. If a trainee only considers one learning episode when engaging in a task with

a tester, Figures 7.4a, 7.4b, and 7.4c all show some evidences that trainees reach

consensus faster when encountering a new type of tester. However on the other

hand, trainees take more turns to reach a consensus with a new tester. In fact, the

opinion derived based on knowledge about Stevens Instuitute of Technology and the

opinion derived based on knowledge about Columbia University is the same (both

159

with emitted probabilities 1.0). According to the plots (Figure 7.4b and Figure 7.4c),

the performance metrics are different for these two situations. This shows that our

framework is compliant with theories in rationality that the preferences of cognitive

states should differ regardless of whether they map to the same emitting probabilities

or not. These results also validate that our framework differs from linear models

which simply aggregate positive/negative evidences.

Furthermore, as shown in Figure 7.6b and Figure 7.5b, an agent with more

knowledge in its initial working memory performs consistently no matter whether

proper training is received. The dynamics of over/under-performance for different

degree of knowledge invovlement supports Gigenrenzer’s hypothesis (Gigerenzer and

Brighton, 2009) that biased minds are often observed to make better inferences.

Relying on less knowledge helps human remain flexible in coping with new problems

in various situations. A natural extension from this is to test whether humans would

develop different patterns if located in different environments - simplier cognitive

states are preferred under uncertain environments and more complicated cognitive

states are preferred under certain environment.

Question 4 : What type of testers are in generally harder to reach a consensus

with?

Will some people be naturally harder to deal with? Figure 7.6 shows the per-

formances of a trainee when engaged in tasks with six different testers (detailed

descriptions on the types are shown in the list below). T19-type and T7-type testers

are hardest and T2-type testers is the easiest. Both the composite behavioral runs

are easier for trainees to reach a consensus indicating that it is more beneficial to

train an individual with a more diverse set of trainers. Among the four singleton

160

0	

0.5	

1	

1.5	

2	

2.5	

3	

1	

 4	

 7	

 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

11
2	

11
5	

11
8	

12
1	

12
4	

12
7	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance for Consensus Rate against Testers with
Different Types	

T1	

T2	

T4	

T7	

T10	

T19	

(a) Over/under-performance for Consensus Rates against Testers with Different
Types

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	

 4	

 7	

 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

11
2	

11
5	

11
8	

12
1	

12
4	

12
7	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance for No. of Interactions against Testers with
Different Types	

T1	

T2	

T4	

T7	

T10	

T19	

(b) Over/under-performance for Number of Interactions against Testers with Dif-
ferent Types

Figure 7.6: Over/under-performance against Testers with Different Types

types of behavioral runs, the passive testers (T19 and T7) are harder than the active

testers (T4 and T7). This is intuitive because the active testers are more cognitively

engaged than the passive testers because they also desire to reach consensus with

the trainee. The performances varies a lot for each type of tester. The detailed per-

formance metrics for T2 (easiest) and T19 (most difficult) are shown in Figure 7.7.

• T1: s+10+-IA:eG=0.05=-mMmA:eG=0.05=-MP:PG-MA:eG=0.05=-IP:tSM=1.00=-

MA:eG=0.05=-MP:eG=0.05=-mImP:PG-mMmA:PG-IA:eG=0.05=-1000

161

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	

 4	

 7	

 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

11
2	

11
5	

11
8	

12
1	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance against Testers with Composite Type 2	

conRate	

turn	

(a) Over/under-performance for Consensus Rates against Testers with Different
Types (Hardest Type)

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	

 4	

 7	

 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

11
2	

11
5	

11
8	

12
1	

12
4	

12
7	

ov
er

/u
nd

er
-p

er
fo

rm
an

ce
 r

at
io

s	

Over/under-performance against Testers with Composite Type 19	

conRate	

turn	

(b) Over/under-performance for Number of Interactions against Testers with Dif-
ferent Types (Easiest Type)

Figure 7.7: Easiest and Most Difficult Types of Testers

• T2: s+10+-mImP:tSM=1.00=-mImP:eG=0.05=-mImP:tSM=1.00=-MA:eG=0.05=-

IP:tSM=1.00=-IP:eG=0.05=-MA:PG-IA:PG-mMmA:eG=0.05=-MP:eG=0.05=-

1000

• T4: s+1+-IA:PG-1000

• T7: s+1+-IP:PG-1000

• T10: s+1+-MA:PG-1000

• T19: s+1+-MP:PG-1000

162

7.3.5 Relations with AI

This thesis sits at the heart of Artificial Intelligence and Cognitive Science, the area

that the co-founder of AI, Marvin Minsky, considers to be dead since the 1970s:

“AI has been brain-dead since the 1970s,” said AI guru Marvin Minsky

in a recent speech at Boston University. Minsky co-founded the MIT

Artificial Intelligence Laboratory in 1959 with John McCarthy.4

Advances in areas on human cognitive behavior have been slow for the last few

decades. For instance, the cognitive architecture SOAR has been an ongoing effort

for decades. There has been tremendous progress made in learning, vision, robotics

system, and even speech recognition, but unfortunately the successes in these

problems have not helped much in developing a better AI system that “thinks like

humans”.

Despite how challenging this task is, we still believe it is hopeful and also a

critical step to overcome in order to make machine systems truly intelligent. The

systems that simulate human intelligence can in turn help almost every field that

relates to human intent and human behavior - they can help economists to simulate

behavior and decisions that they can then test various theoretical accounts; they

can help social scientists to encapsulate social behavior to save time and effort in

conducting large-scale empirical studies - ultimately, they can help the entire society

to be predictive of human intent and be normative for human behavior.

This thesis presents a new research methodology that may be useful in advancing

the field: transcribing human behavior (actions) into human thinking (cognition). We

consider a handful of actions such as communicate an opinion, select supporting/non-

4This story ran on page D1 of the Boston Globe on 5/26/2003. Its content can be found at
http://web.media.mit.edu/~lieber/Press/Globe-Common-Sense.html

163

supporting arguments to send, and determine whether to accept or reject receiving

messages. Indeed, the actions we attempt to transcribe have a wide spectrum for

activities involving opinions. As actions presented in activities about opinion is

knowledge-centric and these actions are decisions requiring a variety of cognitive pro-

cesses (i.e., generating an argument is achieved by reasoning, selecting an argument

to send is a decision-making problem itself, and determining whether to accept or

reject an argument has some relation to strategy). To fully model these actions in

order to make them computable and tractable, the only evident way is to develop a

cognitive model that is “intelligent” at perferming these actions.

In order to transcribe actions into cognition, we carefully analyze empirical

conclusions within both topics and then to find the right mappings to transcribe.

In this thesis, the mappings we find between human thinking (opinion reasoning)

and human behavior (opinion exchanges) for this work is the learning nature of

opinion formation and decision nature of opinion change which is achievable by the

existence of powerful computational methods such as reinforcement learning. Then,

to capture the semantics of behavior into a cognitive model, we need to carefully

evaluate theories in rationality - not what types of reasoning occur but essentially

what types of reasoning the existing computational methods have failed at. With

that, we can make sure the design of the cognitive model is not biasd by the need to

match actual human behavior and that the cognitive model has maintained the same

semantics between human behavior and human cognition. The more methodical the

approach is, the less artifacts we may have in the final system.

The effort presented in this thesis has benefited from many areas:

• We rely on theories of bounded rationality in the design of a DTM (diversities

in human reasoning and insufficiencies in human reasoning)

164

• We benefited from empirical findings on smart human heuristic reasoning to

partially evaluate a DTM

• We rely on conclusions from psychology and neuroscience in the design of a

DTM (working-memory, long-term memory, questions etc.)

• We rely on progress in computer science for problem solving and modeling

(Markov decision process, reinforcement learning methods)

• We rely on social theories to understand the problem itself and to discover the

parellel relationships we can possibly establish between human behavior and

human thinking (numerous theories on opinions such as RAS, CII, and ACT)

This is essentially why we believe that overcoming the problem of AI has to be

a large-scale multi-disciplinary effort: axioms and theories in the field sociology,

psychology etc. can shed light on behavior mechanisms and thinking mechanisms,

the field of mathematics can help define the framework so that its construction is

more accessible and the underlying assumptions are easier to evaluate, the field

of computer science can help provide tools and algorithms in problem solving and

analyses, and lastly the multiple fields together can evaluate or at least demonstrate

the usefulness of the framework when applying it to study problems across various

domains.

As the overall objective of this thesis is to develop a general framework of com-

putational opinions that unifies various dominant social theories and theories of ra-

tionality, it is also hard to evaluate this framework. One possible way to evaluate

this framework is via the famous turing test proposed by Alan Turing in his 1950

paper (Turing, 1950). The Turing test evaluates the intelligence level of a system by

testing whether its behavior is indistinguishable from an actual human. For exam-

ple, a human judge engages in a natural language conversation with either a human

165

or a machine and each judge hypothesizes whether he/she thinks the conversations

is conducted with a real human (Weizenbaum, 1966). However, it has been widely

criticized that a computer system that can mimick human behavior well can pass the

test without needing to be capable of thinking (Saygin et al., 2003). The evaluation

for this framework may need to be conducted by researchers from various domains by

testing their hypotheses or through simulations where ground truths are available.

166

Chapter 8

Conclusion

We have developed a framework for computational opinions that models sequences

of opinion formation and opinion change tasks. We formulated our framework by

recognizing the learning nature of opinion change and the decision-making nature

of opinion formation. This perspective enabled us to clearly identify the impacts

of external influents and how they are internalized interleaved with how internal

influents arise and externalized as opinions. Our underlying cognitive model, the

Double Transition Model (DTM), firstly provides the mechanism for influence and

how influence transforms our opinions both in terms of our working knowledge and

specific query form. Secondly, as DTMs were not meant to account for the causes

of such influences, we converted the undirected edges in DTMs into directed edges

representing various forms of influence. Then, we were able to formulate opinion

formation tasks with external influence as Markov decision problems. We constructed

MDPs based on DTMs and goal functions to capture the decision-making nature of

opinion formation. Lastly, our framework is compatible with prevalent social theories

of opinion change and theories of bounded rationality as well as being able to formally

model known human heuristic reasoning. To the best of our knowledge, our results

provide the first mathematical and computational framework that has been successful

167

in accounting for these theories and heuristics. In essence, we have been able to

provide a unifying yet general framework for defining and analyzing the wide variety

of opinion change and formation. In the rest of this chapter, we will describe our

contributions in detail and discuss future (and far term) work.

8.1 A Framework of Computational Opinions

The overall objective of this thesis is to model a sequence of opinion formation tasks.

In this section we list the opinion formation tasks each chapter attempts to tackle to

provide an overview of our solutions as well as requirements needed in modeling each

task.

1. A sequence of (non-)dynamic (non-)episodic opinion formation tasks. (Effort in

Chapter 4-5)

It is extremely challenging to solve this most general problem. We

try to tackle it by designing a cognitive model to achieve a sufficient

coverage of possible states from which an opinion can be derived.

2. One non-episodic opinion formation task with no search. (Effort in Chapter

4-5)

This is the most restricted form of a task. It has been addressed by

modeling a cognitive state with a paired working-memory and a query

on an issue. For this task, an opinion is derived from a full working-

memory (equivalent to long-term memory) and a full specification of

a query.

3. One episodic opinion formation task with complete knowledge of another agent.

(Effort in Chapter 6)

168

This task starts with a known state, and the preferences of cogni-

tive states are learned via solving a Markov decision problem with

the other entity. The formation task is episodic since it consists of

multiple iterations of message passing (including both arguments and

opinions). Solving this MDP problem has been theoretically proven to

converge to an optimal value under the assumption of full knowledge

of the other entity’s DTM. (see Figure 8.1a)

4. One non-episodic/episodic opinion formation task with complete knowledge of

another agent. (Effort in Chapter 6)

It is straight-forward to generalize the solution from last bullet by

setting the horizon in a MDP to 1.

5. One episodic opinion formation task with training data. (Effort in Chapter 7)

This task starts with a known state, but the preferences of cognitive

states are learned via solving a Makov decision problem with the

other entity using Q-learning. This frees us from the assumption of

having complete knowledge of the other entity using Q-learning to

approximate optimal policy. However, the Q-learning methods need

sufficient numbers of training to reach a reasonble performance. This

assumption is different from the assumption of full knowledge of the

other entity’s DTM. It is also intuitive since in real-world problems

human transition from being novices to experts through repetitive

learning/training practices. (see Figure 8.2a)

6. One (non-)episodic opinion formation task with training data. (Effort in Chap-

ter 7)

169

It is straight-forward to generalize the solution from the last bullet

by setting the allowed number of turns to 1.

7. One multi-agent opinion formation task. (Effort in Chapter 7)

There are two approaches to model a multi-agent opinion formation

task: one approach is to cast a multi-agent task into a dynamic opin-

ion formation task, an alternative approach is to compute optimal

actions a primary agent should take by solving a multi-agent MDP

problem. We provide formal definitions in Chapter 7 and also proved

that an optimal policy derived for the entire group is also optimal for

each individual in that group.

8. A sequence of (non-)dynamic (non-)episodic opinion formation tasks. (Effort in

Chapter 7)

The framework can now model a sequence of opinion formation tasks

by treating them as a sequence of decision problems. For each deci-

sion problem, depending upon which assumption holds, we can select

the appropriate reinforcement learning methods. In particular, if a

reasonable understanding of the other entity is avaialble, then we can

solve a MDP via exact methods such as value-iteration or policy-

iteration algorithms. On the other hand, if observations of one’s

practice is available, then we can approximate optimal solutions via

Q-learning methods. (see Figure 8.2b)

8.2 Future Work

1. Dynamic DTM

Due to the complexity of the problem, we simplify the problem by assuming

170

e2 	

(DTM, goal function)	

e1 	

(DTM, goal function)	

o2	

q2	

 o3	

 l4	

(a) Episodic Opinion For-
mation Task with Com-
plete Knowledge of e2

e2	

(DTM, goal function)	

e1	

(DTM, goal function)	

o1	

q1	

(b) Non-Episodic Opin-
ion Formation Task with
Complete Knowledge of
e2

e2	

e1	

(DTM, goal function)	

o1	

q1	

 o2	

 l1	

(c) Episodic Opinion For-
mation Task with Incom-
plete Knowledge of e2

Figure 8.1: Three Forms of Opinion Formation Tasks

e2	

e1	

(DTM, goal function)	

o1	

q1	

 o2	

 l1	

en	

e1	

(DTM, goal function)	

oj	

qi	

 oj+1	

 lm	

(a) Dynamic Episodic Opinion Formation Task with (In)complete Knowl-
edge of the other agent

e2	

e1	

(DTM, goal function)	

o1	

q1	

 o2	

 l1	

en	

e1	

(DTM, goal function)	

oj	

qi	

 oj+1	

 lm	

e2 	

(DTM, goal function)	

e1 	

(DTM, goal function)	

oj+2	

qi+1	

 oj+3	

 lm+1	

e3	

(DTM, goal function)	

e1 	

(DTM, goal function)	

oj+4	

qi+2	

(b) A Sequence of Opinion Formation Tasks

Figure 8.2: A Sequence of Opinion Formation Tasks

a static and complete DTM. A DTM is static as it does not conduct online

(real-time) learning when new observations are available. In the future, we aim

to extend the framework to also include pure learning tasks (obtaining new

knowledge by observations). Thus, learning of a DTM becomes online-learning

versus offline-learning. It will also improve our simulation of one individual’s

state space and the pure learning tasks can be interleaved with opinion forma-

tion tasks. This is straight-forward to generalize as each task is independently

171

solved based on the DTM at that time. It has not yet been implemented but

simply needs an algorithm to update a DTM.

2. Different types of perceptions

Current perceptions we consider are knowledge-centric as they have direct im-

pact on the structure and the content in a DTM. In the future, we aim to extend

the framework to also include the perception of actions (e.g. body language from

another entity). By doing so, it can significantly increase the coverage of the

problems as the forms of external influence is extended.

3. Incomplete DTM

In this thesis, we assume that a DTM is complete; that is, a DTM is a complete

graph and thus every pair of cognitive states is connected. As shown in Figure

1.2, temporal relations can be one of the principles we rely on to remove/add

connections in the cognitive space. At the end of opinion formation task, the

utilities (values) on a state can also provide useful insights on how to modify

connections in the cognitive space. This idea is compatible with the idea of the

spreading activation mechanism in a brain (Warren, 1977). Furtheremore, this

is naturally one part of what has been learned through internalizing external

influences. By better constraining the connections in a DTM, the cognitive

model can function more like a human brain. In addition, a DTM with fewer

connections will also dramatically decrease the size of the states in a Markov

decision problem. The DTM itself can be used by researchers in fields of neu-

roscience and psychology to testify their theoretical accounts of how working

memory is formed and how knowledge gets recalled.

4. Multi-Agent Opinion Formation Tasks

We have provided definitions of multi-agent MDPs to model multi-agent opinion

formation tasks. As there is a large body of MDP works on multi-agent MDPs

172

considering both competitive and non-competitive scenarios, a natural extension

of this framework is to define multi-agent MDPs based on the DTMs of multiple

agents for various scenarios. We can leverage some work in the existing literature

to incorporate game-theoretic multi-agent MDPs (Littman, 1994; Shoham et al.,

2003), cooperative MDPs (Xuan et al., 2001) and competitive MDPs (Graepel

et al., 2004) into our framework. This future work will significantly increase the

coverage of the problems we can study.

5. Identification of Opinion Formation Tasks

In this thesis, we define an opinion formation task to be a task on the same

issue in the same context. The meaning of context is still vague as it can imply

properties of a task in terms of time (whether a task happends in a consecutive

sequence over a reasonable time), in terms of the communicators who are in-

volved (two or multiple agents talking to each other) and so forth. Our current

framework identifies a task soely based on the window of time and the identities

of agents involved. However, if an opinion formation task does not happen as a

sequence of continous activities, we may have the issue of persistence of opinion

change which violates the assumption we made in a decision-making problem to

solve episodic opinion formation tasks. We can search from the current empiri-

cal observations and establish a reasonable hypothesis of the conditions under

which the persistence holds. Furtheremore, we wish to explicitly model a con-

trol parameter into the framework to decide the start and the end of an opinion

formation task.

8.3 Future Future Work

1. Estimation of DTM

By completing the future work, a framework can then build dynamic DTMs,

173

handle different types of perceptions, use a more principled way to maintain

connections between working-memories, and handle multiple-agent opinion

formation tasks. The framework will be quite powerful in tracking the entire

sequence of human behavior and perception. Multiple types of computations

on opinion are already available with the existing framwork which include the

functions to: 1) decide the best action to take within episodic opinion formation

tasks, 2) process incoming opinions from others, and 3) derive opinions.

One piece that is missing but will be beneficial to the study is that the

initial DTM as a representation of the entire behavior and perception of an

individual may not be completely available. One approach to estimate the

initial DTM is to leverage our existing conclusions from social networks to: 1)

estimate an individual’s DTM based on another individual, 2) estimate the

changes in one’s DTM based on changes we have tracked for another indi-

vidual if they have engaged in “hidden” communications with a third individual.

For example, we can estimate a supervisor’s DTM as a merged product

of his/her employees’ DTMs. If there is minimal communication between a

supervisor and his/her employees, we can estimate the supervisor’s DTM as a

subset (or a compression) of a merged product of his/her employee’s DTMs.

Of course, we can inversely learn how an enterprise culture may look like given

the relationship between a supervisor’s DTM and those of his/her employees.

The second approach will benefit the problems such as predicting individ-

uals’ opinions and behavior when only the individuals he/she communicates

with are visible.

174

2. Inverse Reinforcement Learning

The entire thesis describes how to model/instantiate such a framework for com-

putational/predictive purposes. However, we can also utilized this framework

to conduct inverse learning (Ng and Russell, 2000). In the current framework,

the parameters of goal fuctions are inputs to the framwork in order to capture

the intent of individuals. In the future, we can learn/tune the parameters to be

in line with the opinion dynamics being observed. The final paremeters that are

learned can now be useful to characterize individuals - their intent and goals,

which can benefit predictive analyses.

Here, we complete our presentation on the framework of computational opinions.

175

Bibliography

Mohammad Afshar and Masoud Asadpour. Opinion formation by informed agents.
Journal of Artificial Societies and Social Simulation, 13(4):5, 2010.

Dana Angluin and Carl H Smith. Inductive Inference: Theory and Methods. ACM
Computing Surveys (CSUR), 1983.

Nikolay Archak, Anindya Ghose, and Panagiotis G Ipeirotis. Show me the money!:
deriving the pricing power of product features by mining consumer reviews. In
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 56–65. ACM, 2007.

Elliot Aronson, Judith A Turner, and J Merrill Carlsmith. Communicator credibility
and communication discrepancy as determinants of opinion change. The Journal
of Abnormal and Social Psychology, 67(1):31–36, 1963.

W Brian Arthur. Inductive reasoning and bounded rationality. The American eco-
nomic review, 84(2):406–411, 1994.

Alan D Baddeley and Graham Hitch. Working memory. The Psychology of Learning
and Motivation, 8:47–89, 1974.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern Information Retrieval.
ACM press New York, 1999.

Lotte Bailyn and Herbert C Kelman. The effects of a year’s experience in america
on the self-image of scandinavians: A preliminary analysis of reactions to a new
environment. Journal of Social Issues, 18(1):30–40, 1962.

Ray Bareiss, Bruce W Porter, and Kenneth S Murray. Supporting start-to-finish
development of knowledge bases. In Knowledge Acquisition: Selected Research and
Commentary, pages 13–37. Springer, 1990.

Robert Baron, S. So right it’s wrong: Groupthink and the ubiquitous nature of
polarized group decision making. Advances in Experimental Social Psychology, 37:
219–253, 2005.

Richard Bellman. A problem in the sequential design of experiments. Sankhyā: The
Indian Journal of Statistics (1933-1960), 16(3/4):221–229, 1956.

176

Bernard R Berelson, Paul F Lazarsfeld, and William N McPhee. Voting: A study of
opinion formation in a presidential campaign. University of Chicago Press, 1986.

Joseph Berger and Morris Zelditch. New directions in contemporary sociological the-
ory. Rowman & Littlefield, 2002.

Steven Bethard, Hong Yu, Ashley Thornton, Vasileios Hatzivassiloglou, and Dan
Jurafsky. Automatic extraction of opinion propositions and their holders. In 2004
AAAI Spring Symposium on Exploring Attitude and Affect in Text, page 2224,
2004.

David Bindel, Jon Kleinberg, and Sigal Oren. How Bad is Forming Your Own Opin-
ion? 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,
pages 57–66, October 2011.

Darius Braziunas. Pomdp solution methods. University of Toronto, 2003.

Eric Breck, Yejin Choi, and Claire Cardie. Identifying expressions of opinion in
context. In Proceedings of the 20th International Joint Conference on Artifical
Intelligence, pages 2683–2688. Morgan Kaufmann Publishers Inc., 2007.

Henry Brighton. Robust inference with simple cognitive models. AAAI Spring Sym-
posium: Cognitive Science Principles Meet AI-hard Problems, (C. Lebiere & R.
Wray (Eds.)):17–22, 2006.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
Intelligence, 134(1):57–83, 2002.

Charles S Carver. Self-awareness, perception of threat, and the expression of reactance
through attitude change. Journal of Personality, 45(4):501–512, 1977.

Eugene Charniak. Toward a model of children’s story comprehension. 1972.

Christy M.K. Cheung, Pui-Yee Chiu, and Matthew K.O. Lee. Online social networks:
Why do students use facebook? Computers in Human Behavior, 27(4):1337–1343,
July 2011.

Paul Chwelos, Izak Benbasat, and Albert Dexter, S. Research report: empirical test
of an EDI adoption model. Information Systems Research, 12(3):304–321, 2001.

Mark J Clayton. Delphi: a technique to harness expert opinion for critical decision-
making tasks in education. Educational Psychology, 17(4):373–386, 1997.

Michael D Cohen, James G March, and Johan P Olsen. A garbage can model of
organizational choice. Administrative science quarterly, 17(1):1–25, 1972.

Bernard D Coleman and Victor J Mizel. On the general theory of fading memory.
Archive for Rational Mechanics and Analysis, 29(1):18–31, 1968.

177

William D Crano. Primacy versus recency in retention of information and opinion
change. The Journal of Social Psychology, (February 2013):37–41, 1977.

James P Curry, Douglas S Wakefield, James L Price, Charles W Mueller, and
Joanne C McCloskey. Determinants of turnover among nursing department em-
ployees. Research in Nursing & Health, 8(4):397–411, 1985.

Jean Czerlinski, Gerd Gigerenzer, and Daniel Goldstein, G. How good are simple
heuristics? In Simple Heuristics that Make us Smart. Oxford University Press,
1999.

Cristian Danescu-Niculescu-Mizil, Gueorgi Kossinets, Jon Kleinberg, and Lillian Lee.
How opinions are received by online communities: a case study on amazon. com
helpfulness votes. Proceedings of the 18th International Conference on World Wide
Web, 2009.

Kahneman Daniel. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Fred D Davis, Richard P Bagozzi, and Paul R Warshaw. User acceptance of computer
technology: a comparison of two theoretical models. Management Science, 35(8):
982–1003, 1989.

Arthur P Dempster. Upper and lower probabilities induced by a multivalued mapping.
The Annuals of Mathmatical Statistics, pages 325–339, 1967.

Franz Dietrich and Christian List. Opinion pooling on general agendas. (May):1–37,
2008.

Irene M Duhaime and Charles R Schwenk. Conjectures on cognitive simplification in
acquisition and divestment decision making. Academy of Management Review, 10
(2):287–295, 1985.

James K Esser. Alive and well after 25 years: A review of groupthink research.
Organizational Behavior and Human Decision Processes, 73(2/3):116–41, February
1998.

Gerd Gigerenzer and Henry Brighton. Homo Heuristicus: Why Biased Minds Make
Better Inferences. Topics in Cognitive Science, 1(1):107–143, January 2009.

Gerd Gigerenzer and Wolfgang Gaissmaier. Heuristic decision making. Annual re-
view of psychology, 62:451–82, January 2011. ISSN 1545-2085. doi: 10.1146/
annurev-psych-120709-145346.

Gerd Gigerenzer and Daniel G Goldstein. Betting on one good reason: take the best
and its relatives. In Simple Heuristics that Make Us Smart. Oxford University
Press, 1999.

Thore Graepel, Ralf Herbrich, and Julian Gold. Learning to fight. In Proceedings of
the International Conference on Computer Games: Artificial Intelligence, Design
and Education, pages 193–200, 2004.

178

Simon Haykin and Neural Network. A comprehensive foundation. Neural Networks,
2, 2004.

Rainer Hegselmann and Ulrich Krause. Opinion dynamics and bounded confidence
models, analysis, and simulation. Journal of Artificial Societies and Social Simu-
lation, 5(3), 2002.

David R Heise. Understanding events: Affect and the construction of social action.
Cambridge University Press, 1979.

Simon A Herbet. A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(1):99–118, 1955.

Jaakko Hintikka. Surface information and depth information. In Information and
Inference, pages 263–297. Springer, 1970.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

Valerie J Hoekstra. The Supreme Court and Opinion Change: An Experimental
Study of the Court’s Ability to Change Opinion. American Politics Research, 23
(1):109–129, January 1995.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence, 101(1):
99–134, 1998.

Daniel Kahneman. Maps of Bounded Rationality:A Perspective on Intuitive Judge-
ment and Choice. Nobel Prize Lecture, 8:251–401, 2002.

Daniel Kahneman and Amos Tversky. Subjective probability: A Judgment of Rep-
resentativeness. Cognitive psychology, 3(3):430–454, 1972.

Daniel Kahneman and Amos Tversky. Choices, values, and frames. The American
Psychologist, 39(4):341–350, 1984.

Daniel Kahneman, Paul Solvic, and Amos Tversky. Judgment under uncertainty:
Heuristics and biases. Cambridge University Press, 1982.

Lauri Karttunen. Syntax and semantics of questions. Linguistics and Philosophy, 1
(1):3–44, 1977.

Herbert C Kelman. Attitude change as a function of response restriction. Tavistock,
1955.

Herbert C Kelman. Processes of Opinion Change. Public Opinion Quarterly, 25(1):
115–124, 1961.

Herbert C Kelman. Further thoughts on the processes of compliance, identification,
and internalization. Social Power and Political Influence, pages 125–171, 1974.

179

George J. Klir and Bo Yuan. Fuzzy sets and fuzzy logic. Prentice Hall New Jersey,
1995.

Joachim Krueger. Personal beliefs and cultural stereotypes about racial characteris-
tics. Journal of Personality and Social Psychology, 71(3):536, 1996.

Quoc V Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S
Corrado, Jeff Dean, and Andrew Y Ng. Building high-level features using large
scale unsupervised learning. In Proceedings of International Conference in Machine
Learning, 2012.

Lawrence Leduc. Opinion change and voting behaviour in referendums. European
Journal of Political Research, 41(6):711–732, October 2002.

Jill Fain Lehman, John Laird, Paul Rosenbloom, et al. A gentle introduction to soar,
an architecture for human cognition. Invitation to Cognitive Science, 4:212–249,
1996.

Jill Fain Lehman, John Laird, and Paul Rosenbloom. A gentle introduction to soar,
an architecture for human cognition: 2006 update. University of Michigan, 2006.

Michael L Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the Eleventh International Conference on Machine
Learning, volume 157, page 163, 1994.

Lorenzo Magnani. Abduction, reason, and science: Processes of discovery and expla-
nation. Kluwer Academic/Plenum Publishers New York, 2001.

David Marr. A computational investigation into the human representation and pro-
cessing of visual information. WH San Francisco: Freeman and Company, 1982.

Laura Martignon and Ulrich Hoffrage. Fast, frugal, and fit: Simple heuristics for
paired comparison. Theory and Decision, pages 29–71, 2002.

Tara G Martin, Petra M Kuhnert, Kerrie Mengersen, and Hugh P Possingham. The
power of expert opinion in ecological models using bayesian methods: impact of
grazing on birds. Ecological Applications, 15(1):266–280, 2005.

Winter a Mason, Frederica R Conrey, and Eliot R Smith. Situating social influ-
ence processes: dynamic, multidirectional flows of influence within social networks.
Personality and social Psychology Review : an Official Journal of the Society for
Personality and Social Psychology, 11(3):279–300, August 2007.

William J McGuire. Personality and attitude change: An information-processing
theory. Psychological Foundations of Attitudes, pages 171–196, 1968.

Ryszard S Michalski. A theory and methodology of inductive learning. Artificial
Intelligence, 20(2):111–161, 1983.

180

Richard T Mowday, Richard M Steers, and Lyman W Porter. The measurement of
organizational commitment. Journal of Vocational Behavior, 14(2):224–247, April
1979.

ST Mugford, Eamonn B Mallon, and Nigel R Franks. The accuracy of Buffon’s needle:
a rule of thumb used by ants to estimate area. Behavioral Ecology, 12(6):655–658,
2001.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning.
In Proceedings of the Seventeenth International Conference on Machine Learning,
pages 663–670, 2000.

H̊a kan Nilsson, Peter Juslin, and Henrik Olsson. Exemplars in the mist: the cognitive
substrate of the representativeness heuristic. Scandinavian Journal of Psychology,
49(3):201–12, June 2008.

Charles Egerton Osgood, William H May, and Murray S Miron. Cross-cultural uni-
versals of affective meaning. Urbana: University of Illinois Press, 1975.

Bo Pang and Lillian Lee. Opinion Mining and Sentiment Analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1–135, 2008. ISSN 1554-0669.

Marion Petrie and Tim Halliday. Experimental and natural changes in the peacock’s
(Pavo cristatus) train can affect mating success. Behavioral Ecology and Sociobiol-
ogy, 35(3):213–217, 1994.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming, volume 414. Wiley-Interscience, 2009.

Lance J Rips. The psychology of proof: Deductive reasoning in human thinking. The
MIT Press, 1994.

Dawn T Robinson, Lynn Smith-Lovin, and Allison K Wisecup. Affect control theory.
In Handbook of the Sociology of Emotions, pages 179–202. Springer, 2006.

Christabel L Rogalin, Shane D Soboroff, and Michael J Lovaglia. Power, status, and
affect control. Sociological Focus, 40(2):202–220, 2007.

Tzachi Rosen, Solomon Eyal Shimony, and Eugene Santos Jr. Reasoning with bkbs
– algorithms and complexity. Annals of Mathematics and Artificial Intelligence, 40
(3):403–425, 2004.

Stuart Jonathan Russell, Peter Norvig, Ernest Davis, Stuart Jonathan Russell, and
Stuart Jonathan Russell. Artificial Intelligence: a Modern Approach, volume 2.
Prentice hall Englewood Cliffs, 2010.

181

Eugene Santos, Hien Nguyen, Fei Yu, Keumjoo Kim, Deqing Li, John T Wilkinson,
Adam Olson, and Russell Jacob. Intent-driven insider threat detection in intelli-
gence analyses. In Web Intelligence and Intelligent Agent Technology, 2008. WI-
IAT’08. IEEE/WIC/ACM International Conference on, volume 2, pages 345–349.
IEEE, 2008.

Eugene Santos, Hien Nguyen, Fei Yu, Deqing Li, and John T Wilkinson. Impacts of
analysts’ cognitive styles on the analytic process. In Web Intelligence and Intelligent
Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on,
volume 1, pages 601–610. IEEE, 2010.

Eugene Santos, Hien Nguyen, Fei Yu, Keum Joo Kim, Deqing Li, John T Wilkinson,
Adam Olson, Jacob Russell, and Brittany Clark. Intelligence analyses and the
insider threat. Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 42(2):331–347, 2012.

Eugene Santos Jr and Eugene S Santos. A framework for building knowledge-bases
under uncertainty. Journal of Experimental & Theoretical Artificial Intelligence,
11(2):265–286, 1999.

Eugene Santos Jr, John T Wilkinson, and Eunice E Santos. Bayesian knowledge
fusion. Proceedings of the 22nd Florida Artificial Intelligence Research Society
Conference, (Laskey), 2009.

Ayse Pinar Saygin, Ilyas Cicekli, and Varol Akman. Turing test: 50 years later. In
The Turing Test, pages 23–78. Springer, 2003.

Joseph L Schafer and John W Graham. Missing data: Our view of the state of the
art. Psychological Methods, 7(2):147–177, 2002.

Greg Schmidt and Bernard Weiner. An attribution-affect-action theory of behavior
replications of judgments of help-giving. Personality and Social Psychology Bulletin,
14(3):610–621, 1988.

Howard Schuman and Stanley Presser. The open and closed question. American
Sociological Review, pages 692–712, 1979.

Charles R. Schwenk. Cognitive simplification processes in strategic decision-making.
Strategic Management Journal, 5(December 1982):111–128, 2006.

Jagdish N Sheth. A model of industrial buyer behavior. The Journal of Marketing,
pages 50–56, 1973.

Yoav Shoham, Rob Powers, and Trond Grenager. Multi-agent reinforcement learning:
a critical survey. Technical Report, 2003.

Dean Keith Simonton. The Science of Genius. Scientific American Mind, pages 34–41,
2012.

182

Lynn Smith-Lovin. Impressions from events. Journal of Mathematical Sociology, 13
(1-2):35–70, 1987.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. Cambridge Univ Press, 1998.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie,
Robert Tibshirani, David Botstein, and Russ B Altman. Missing value estima-
tion methods for dna microarrays. Bioinformatics, 17(6):520–525, 2001.

Alan M Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

Amos Tversky. Elimination by aspects: A theory of choice. Psychological Review, 79
(4):281, 1972.

Ralph B Vacchiano, Paul S Strauss, and Leonard Hochman. The open and closed
mind: A review of dogmatism. Psychological Bulletin, 71(4):261, 1969.

Robert E Warren. Time and the spread of activation in memory. Journal of Experi-
mental Psychology: Human Learning and Memory, 3(4):458, 1977.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD
thesis, University of Cambridge, 1989.

Duncan J Watts and Peter Sheridan Dodds. Influentials, networks, and public opinion
formation. Journal of Consumer Research, 34(4):441–458, 2007.

William A Watts and Lewis E Holt. Persistence of opinion change induced under
conditions of forewarning and distraction. Journal of Personality and Social Psy-
chology, 37(5):778–789, 1979.

Gérard Weisbuch, Guillaume Deffuant, Frederic Amblard, and J-P Nadal. Interacting
agents and continuous opinions dynamics. Heterogenous Agents, Interactions and
Economic Performance, pages 225–242, 2003.

Joseph Weizenbaum. Elizaa computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1):
36–45, 1966.

Ping Xuan, Victor Lesser, and Shlomo Zilberstein. Communication decisions in multi-
agent cooperation: Model and experiments. In Proceedings of the Fifth Interna-
tional Conference on Autonomous Agents, pages 616–623. ACM, 2001.

Ercan Yildiz, Daron Acemoglu, Asuman E. Ozdaglar, Amin Saberi, and Anna
Scaglione. Discrete Opinion Dynamics with Stubborn Agents. SSRN Electronic
Journal, pages 1–48, 2011.

183

Fei Yu and Eugene Santos Jr. Revisiting concepts of topicality and novelty-a new
simple graph model that rewards and penalizes based on semantic links. In Sys-
tems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on, pages
2656–2663. IEEE, 2012.

John R Zaller. The nature and origins of mass opinion. Cambridge university press,
1992.

184

Chapter 9

Appendices

9.1 Appendix A

Theorem 1. Let KX(L) (abbrev. KX) be a base knowledge from source fragments
{KX

i : 1 ≤ i ≤ m,m ∈ N}. We can derive the posterior probability for a feature as
follows:

PKX (A = a) =
v(A = a)

m
+

k

|C|m
(9.1)

where v(A) is the number of episodes in which feature A has a value assignment.

Proof. To compute the posterior probability of a feature A, we will need to discuss
how the process of fusion changes its probability. In a source fragment, all features in
the learning environment L except for the rooted feature are prior r.v.s. Its prior prob-
ability depends on the value assignment of A: If we have an explicit value, say A = 1,
then the I-node (A = 1) will have a prior probability 1.0. Otherwise if there is no value
assignment for A, then we construct |C| I-nodes (A = 1), (A = 2), . . . , (A = |C|). All
these I-nodes will have the same prior probability |C|.

Intuitively, we have
∑|C|

j=1 P (A = aj) = 1 for a source fragment. Now, let us dis-
cuss how their posterior probabilities change during fusion. During the process of
fusion, each S-node will have a new I-node denoting the source. Thus, we just need
to consider the sources that contain this r.v..

Case 1: There are v(A = a) episodes with I-node (A = a). The sum of joint

probabilities is thus v(A=a)
m

.
Case 2: There are k r.v.s with missing values. The sum of joint probabilities is

thus k
|C| .

Case 3: There are m− k − v(A = a) episodes with no I-nodes (A = a). The sum
of joint probabilities is thus 0.
To sum up the posterior probabilities for the above three cases, we have:

PKX (A = a) =
v(A = a)

m
+

k

|C|m
(9.2)

185

Lemma. We have the following property for a r.v.:

|C|∑
i=1

PKX (A = ai) = 1 (9.3)

Proof. Partition all the episodes in L into π(L). Each cell in πL(a) contains episodes
with differerent values (including value ?) for feature A. We use πL(a) denotes the
cell containing value a for feature A. |πL(a)| denotes the number of elements in the
cell. We derive posterior probability for P (A = a) according to Equation 9.1:

PKX (A = a) =
|πL(A = a)|

m
+

k

|C|m

To sum the posterior probability for all various values in C, it becomes:

|C|∑
i=1

PKX (A = ai) =

|C|∑
i=1

|πL(A = ai)|
m

+

|C|∑
i=1

k

|C|m

=

|C|∑
i=1

|πL(A = ai)|
m

+
k|C|
|C|m

As we have
∑|C|

i=1 |πL(A = ai)| = m− k, the equation can be simplified to:

=
m− k
m

+
k

m

= 1

Theorem 2. Let KX(L) (abbrev. KX) be a base knowledge from source fragments
{KX

i : 1 ≤ i ≤ m,m ∈ N}. We can derive joint probability of a feature along with a
specification of source as the follows:

PKX (A = i, SA = j) =
1

m|C|µ
(9.4)

where 1 ≤ j ≤ m, 1 ≤ i ≤ C.
µ is a parameter valued 0 if A in source fragment j has value assignment, valued 1 if
A has no value assignments in source fragment j.

We can further derive the following probablistic answers:

Case 1: r.v. A has a value assignment i in source fragment j.

PKX (A = i, SA = j) =
1

m

PKX (A = k, SA = j) = 0 where k 6= i

186

Case 2: r.v. A has no value assignments in source fragment j.

∀i, PKX (A = i, SA = j) =
1

m|C|
If we sum up all the joint probabilities over various instantiations of A, we derive the
same answer for both cases:

PKX (SA = j) =
1

m

Theorem 3. Let g be a subgraph of KX that is compatible with l source fragments
{KX

i : 1 ≤ i ≤ l, l ∈ N}. Among all r.v.s RV , we have k r.v.s with missing values
and thus n − k with value assignments. We have 0 ≤ k ≤ n and k ∈ N. The result
of belief updating inference is in the following form:

Pg(X) =
l

m

∏
ai∈Ig ,assn(ai)6={?}

P (ai) (9.5)

The belief updating results over KX consistent with X is invarient to the value of k.

Proof. Base case: Show that the statement holds for case k = 0.
k implies that all features have value assignments. In the process of constructing

a single-rooted BKB from a learning episode r, we only have one S-node connecting
the value assignments of features (except root feature X) with X. In addition, the
weight of this S-node is 1.0 as the root feature X has value assignment too (refer to
Definition 5). When l fragments are fused together, additional I-nodes are inserted
to distinguish the sources of original I-nodes and to avoid mutual exclusive problems.
We compute belief updating as the following:

Pg(X) =
∑

wri∈g,X⊂span(ri)(ri)

=
l∑

i=1

w(SX = i)
∏

ai∈Ig ,assn(ai)6={?}

P (ai)

According to Definition 6, all the weights for source I-nodes are computed as:

w(SX = i) =
1

m
for 1 ≤ i ≤ l

Thus:

Pg(X) =
l

m

∏
ai∈Ig ,assn(ai)6={?}

P (ai)

Inductive Step: Assume the statement holds for case k = t.
For k = t+ 1, g now has one additional r.v. with missing values, say A, compared

to case where k = t. Let π(A) denote the set of all instantiations of A, we should
have |π(A)| = C. We compute belief updating as the following:

Pg(X)′ =
∑

w′ri∈g,X⊂span(ri)(ri)

187

=
∑

wri∈g,X⊂span(ri)(ri)
C∑
j=1

P (A = aj)

We have:
C∑
j=1

P (A = aj) = 1

Thus:
Pg(X)′ =

∑
wri∈g,X⊂span(ri)(ri)

=
l

m

∏
ai∈Ig ,assn(ai) 6={?}

P (ai)

Lemma. Belief updating inference sums up to 1 for the following special case: all
r.v.s in each learning episode have missing values.

PKX (X) = 1

Proof. According to Definition , KX has one subgraph g compatible with all the
learning episodes. Thus, belief updating result becomes the following:

Pg(X) =
m

m
= 1

Lemma. If g has modeled multiple states of root r.v. X, the posterior probability
for each state is the same.

Pg(X = xi) =
l

m|C|
∏

ai∈Ig ,assn(ai)6={?}

P (ai) (9.6)

where 1 ≤ i ≤ C.

Proof. According to Definition 5, all instantiations of the root r.v. has the same
probablity. Thus, the belief updating result for each instantiation the same.

Theorem 4 (Joint Probability). Let g be a subgraph of KX that is compatible with
l source fragments {KX

i : 1 ≤ i ≤ l, l ∈ N}. Among all r.v.s RV , we have k r.v.s
with missing values and thus n− k with value assignments. We have 0 ≤ k ≤ n and
k ∈ N.

The posterior probabilities for multiple target r.v.s can be derived from the
closed-form solution of Pg(X). First, we partition U over all features into π′. Each
cell σ′ ∈ π′ contain evidence provided on a feature and evidence provided on the
source of a feature. An example of a cell can be {A = i, SA = j} where i is the
value assignment on r.v. A and j is the name of the source fragment containing

188

A = i. We go over each cell σ′, and computing joint probability with the evidences
provided in that cell. To make it clear, our objective is to derive the joint probability
in the form Pg(X = xi, U). We derive the joint probability recursively by deriving an
incremental solution P ′g(X = xi, U) by considering every σ′ ∈ π′. The full Algorithm
9.3 can be found in Appendix B.

189

9.2 Appendix B

Input: Learning episodes mtx of size m× n
Input: Features feats of size n× 1
Input: Tasks tasks consists z states each of size y × 2
Input: Number of classes c
Input: Index of root feature r
Output: Joint probabilities results of size z × 1

1 var rvs← initRV s(feats);
2 var pa← initPA(mtx, c);

3 for i = 0 to z do
4 var sum ← 0;
5 for j ← 0 to m do
6 var part ← 1

m
;

7 for k ← 0 to n do
8 var t ← computeJointProbability(tasks(i), j, k, mtx, pa, r, rvs);
9 if t = 0 then

10 part ← 0;
11 break;

12 else
13 part ← part × t;

14 sum = sum + p;

15 results[i]=sum;

Figure 9.1: Algorithm to Compute Joint Probabilities in Base Knowledge KX

190

Input: Learning episodes mtx of size m× n
Input: States sts of size y × 2
Input: RVs rvs of size n× 2
Input: Marginal probabilities for features pa of size n× c
Input: Index of the feature k
Input: Index of the episode j
Input: Index of the root feature r
Output: Joint probability p

1 var sptr ← −1;
2 var fptr ← −1;
3 var term← 1.0;
4 t← findAssignments(sts, k);
5 if length(t) = 0 then
6 if mtx[j, k] = −1 then
7 return 1 ;
8 else
9 return pa[k,mtx[j, k]];

10 for i← 0 to length(t) do
11 if isRootFeature(t[i][0])=true or supportsRootFeature(t[i][0)=true then
12 continue;

13 if isSourceFeature(t[i][0])=true then
14 sptr ← i;

15 fptr ← i;

16 if doMatch(t)=false then
17 return 0;

18 if length(t)=1 and isFeature(t[0, 0]) then
19 if isRootFeature(t[0, 0]) then
20 if mtx[m, t[0, 0]] = −1 then
21 return 1

c
;

22 else
23 return 1 ;

24 return pa[t[0, 0], t[0][1]];

Figure 9.2: Algorithm to Compute Joint Probability (Part I)

191

1 if mtx[t[sptr, 1], getSupportedFeature(t[sptr, 0])] = −1 then
2 if mtx[j, getSupportedFeature(t[sptr, 0])] = −1 then
3 term← term× 1

m
;

4 else
5 term← term× 1

m×c ;

6 if fptr = −1 then
7 return term;

8 if mtx[j, t[fptr, 0]] = −1 then
9 return term× 1

c
;

10 else if mtx[j, t[fptr, 0]] = mtx[t[sptr, 1], getSupportedFeature(t[sptr, 0])
then

11 return term;
12 else
13 return 0;

14 if mtx[t[sptr, 1], getSupportedFeature(t[sptr, 0])] =
mtx[j, getSupportedFeature(t[sptr, 0])] then

15 term← term× 1
m

;
16 else
17 return 0;

18 if fptr = −1 then
19 return term;

20 if mtx[j, t[fptr, 0]] = mtx[t[sptr, 1], getSupportedFeature(t[sptr, 0])] then
21 return term;
22 else
23 return 0;

Figure 9.3: Algorithm to Compute Joint Probability (Part II)

192

9.3 Appendix C

9.3.1 Idealistic-Active vs. Malleable-Active Agent

Court is a classic environment in which many IA-MA style decision making processes
take place to influence judical opinions. Lawyers are IA-style agents seeking the best
methods to convince the judges and judges are MP-style agents who are required
by laws to minimize their influence on opinion change. According to Hoekstra
(Hoekstra, 1995), the court does not need to run for re-election so it does not have
self-interested motives regarding the direction of its rulings. An idealistic-active
agent seeks to persuade the other agent and has no interest in changing its own
opinion. At each time step, the primary IA-style agent makes a decision on the
knowledge to be recommeneded to the other agent. For example, an IA agent can
suggest that the other agent discard evidence that the IA agent considers irrelvant.
Simiarly, an IA-style agent can suggest that the other agent include information that
was previously neglected, or do nothing if there is nothing an IA agent can do to
decrease the gap between them.

When the communication is single directional (e.g. teaching), the decision-
making problem can be formulated as between two IA-MA agents. One may analyze
the source of information that results in differences in their opinions, and then
communicate it to the MA agent so that the MA agent can obtain the same under-
standing of the world as the IA agent.

A state of the environment s ∈ S is a 3-tuple (Kt
1, K

t
2, k

t
12) where Kt

1 is the
knowledge base relied upon by agent e1 at time t, and Kt

2 is the knowledge base
relied upon by agent e2 at time t. kt12 represents the knowledge communicated from
e1 to e2 at time t and can be either empty or contain one learning episode. Set S
captures all possible combinations of knowledge agent e1 and e2 may use to derive
their opinions, and information e1 can communicate at a given time formally defined
as

S = V K
1 × V K

2 × ∪{vi}

where |vi| = 1, vi ∈ V K
1 .

In the case of an IA-MA interaction, the malleable-passive agent needs to
consider actions from the other IA agent: pasadd, pasremove in addition to the
actions it initiates on its own (intadd, intremove, donothing). On the other hand,
an IA agent considers actions: intadd, intremove, donothing, actadd, and actremove.
For both of the agents, actions such as intadd, intremove are originated from the
agent itself (thus referred to as internal influence). Actions such as actadd and
actremove are actions performed on the other agent (thus become external influence
to the other agent). Lastly, actions such as pasadd and pasremove are actions
received from the other agent (thus also external influences). The exact learning

193

episode for an action depends on the learning episodes included in the knowledge
base currently in use. As the action of one agent depends on the other agent’s style,
each action function depends on both agents’ knowledge base in use.

A1(s
t) = A1(K

t
1, K

t
2)

and
A2(s

t) = A2(K
t
2, K

t
2)

We define the action function for e1 as

a ∈ A1(s
t) if:



type(a) is intadd, and value(a) /∈ Kt
1

type(a) is intremove, and value(a) ∈ Kt
1

type(a) is donothing, and value(a) = φ

type(a) is actadd, and value(a) ∈ Kt
1

type(a) is actremove, and value(a) =∈ Kt
1

We define the action function for e2 as

a ∈ A2(s
t) if:



type(a) is intadd, and value(a) /∈ Kt
2

type(a) is intremove, and value(a) ∈ Kt
2

type(a) is donothing, and value(a) = φ

type(a) is pasadd, and value(a) /∈ Kt
2

type(a) is pasremove, and value(a) =∈ Kt
2

The computation of the transition probability is broken down into three parts:
the first part checks the validity of transition for agent e1, the second part checks
the validity of transition for agent e2, the third part checks whether two actions are
compatible and valid.

P (st, a1, st+1) =

{
1.0 if P (Kt

1, a1, K
t+1
1) = 1, P (Kt

2, a
∗
2, K

t+1
2) = 1, two actions are compatible

0.0 otherwise

where P (Kt
1, a1, K

t+1
1) is the probability of resulting in a knowledge base Kt+1

1 by
applying change a1 to current knowledge base Kt

1. P
(Kt

2, a
∗
2, K

t+1
2) is the probability

of resulting in a knowledge base Kt+1
2 by applying change a∗2 to current knowledge base

Kt
2. For instance, if agent e1 does nothing (type(a1) = donothing), then we should

have Kt
1 = Kt+1

1 . We assume the environment to be non-stochastic (e.g. information-
processing produce is always correct); that is, a valid knowledge transformation action
has a probability of 1.0. We formally specify the transition probability as follows:

P (Kt
1, a1, K

t+1
1) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• type(a1) = donothing,Kt+1
1 = Kt

1

194

• type(a1) = intadd,Kt+1
1 = Kt

1 ∪ value(a1)

• type(a1) = intremove,Kt
1 = Kt+1

1 ∪ value(a1)

• type(a1) = actadd,Kt
1 = Kt+1

1

• type(a1) = actremove,Kt
1 = Kt+1

and

P (Kt
2, a
∗
2, K

t+1
2) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = donothing,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intadd,Kt+1

2 = Kt
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intremove,Kt

2 = Kt+1
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = pasadd,Kt+1

2 = Kt
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = pasremove,Kt

2 = Kt+1
2 ∪ value(a∗2)

where a∗2 is the greedy action e2 decide on according to its reward function. Lastly,
two actions a1 and a∗2 need to be compatible with each other.

(a1, a
∗
2) are compatible if

• type(a1)=donothing or

• type(a1)=intadd or

• type(a1)=intremove or

• type(a1)=actadd, type(a∗2)=pasadd
value(k12) = value(a∗2), and value(a1) = value(a∗2) or

• type(a1)=actremove, type(a∗2)=pasremove
value(k12) = value(a∗2), and value(a1) = value(a∗2)

The reward function for e1 is derived from the goal function as

Ra(s, s
′) =

{
−|ot+1

1 − ot+1
2 | if ot+1

1 = ot1
−1 otherwise

The reward function for e2 is derived from the goal function as

Ra(s, s
′) = −|ot+1

1 − ot+1
2 |

Now, we have provided a complete definition of the decision process (states, action
function, reward function, and probability transition function) for an IA-MA case.

195

9.3.2 Malleable-Active vs. Idealistic-Active Agent

When the communication is single directional (e.g. teaching), the decision-making
problem can be formulated as between two MA-IA agents. In this case, a MA agent
compares among information it possesses along with the information recommended
by the other agent to address the gap in their opinions. The MA-IA and IA-MA
cases are different in terms of whose decision-making process we model. In the
MA-IA case, we model the MA agent’s decision-making process. In the IA-MA case,
we model the IA agent’s decision-making process.

A state of the environment s ∈ S is a 3-tuple (Kt
1, K

t
2, k

t
21) where Kt

1 is the
knowledge base relied upon by agent e1 at time t, and Kt

2 is the knowledge base
relied upon by agent e2 at time t. kt21 represents the knowledge communicated from
e2 to e1 at time t and can be either empty or contain one learning episode. Set S
captures all possible combinations of knowledge agent e1 and e2 may use to derive
their opinions, and information e2 can communicate at a given time formally defined
as

S = V K
1 × V K

2 × ∪{vi}

where |vi| = 1 , vi ∈ V K
2 and vi = value(a∗2). The information sent from agent e2 to

agent e1 needs to contain the same information as in e2’s greedy action otherwise the
state of environment is invalid as such state would never occur.

In the case of a MA-IA interaction, the malleable-active agent needs to con-
sider actions from the IA agent: pasadd, pasremove in addition to the actions it
initiates on its own (intadd, intremove, and donothing). On the other hand, an IA
agent considers actions: intadd, intremove, donothing, actadd, and actremove. The
exact learning episode for an action depends on the learning episodes included in the
knowledge base currently in use. Again as the action of one agent depends on the
other agent’s style, each action function depends on both agents’ knowledge base in
use.

A1(s
t) = A1(K

t
1, K

t
2)

and
A2(s

t) = A2(K
t
2, K

t
2)

We define the action function for e1 as

a ∈ A1(s
t) if:



type(a) is intadd, and value(a) /∈ Kt
1

type(a) is intremove, and value(a) ∈ Kt
1

type(a) is donothing, and value(a) = φ

type(a) is pasadd, and value(a) /∈ Kt
1

type(a) is pasremove, and value(a) =∈ Kt
1

196

We define the action function for e2 as

a ∈ A2(s
t) if:



type(a) is intadd, and value(a) /∈ Kt
2

type(a) is intremove, and value(a) ∈ Kt
2

type(a) is donothing, and value(a) = φ

type(a) is actadd, and value(a) ∈ Kt
2

type(a) is actremove, and value(a) =∈ Kt
2

The computation of the transition probability is broken down into three parts:
the first part checks the validity of transition for agent e1, the second part checks
the validity of transition for agent e2, the third part checks whether two actions are
compatible and valid.

P (st, a1, st+1) =

{
1.0 if P (Kt

1, a1, K
t+1
1) = 1, P (Kt

2, a
∗
2, K

t+1
2) = 1, two actions are compatible

0.0 otherwise

where P (Kt
1, a1, K

t+1
1) is the probability of resulting in a knowledge base Kt+1

1 by
applying change a1 to current knowledge base Kt

1. P
(Kt

2, a
∗
2, K

t+1
2) is the probability

of resulting in a knowledge base Kt+1
2 by applying change a∗2 to current knowledge base

Kt
2. For instance, if agent e1 does nothing (type(a1) = donothing), then we should

have Kt
1 = Kt+1

1 . We assume the environment to be non-stochastic (e.g. information-
processing produce is always correct); that is, a valid knowledge transformation action
has a probability of 1.0. We formally specify the transition probability as:

P (Kt
1, a1, K

t+1
1) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• type(a1) = donothing,Kt+1
1 = Kt

1

• type(a1) = intadd,Kt+1
1 = Kt

1 ∪ value(a1)

• type(a1) = intremove,Kt
1 = Kt+1

1 ∪ value(a1)

• type(a1) = pasadd,Kt
1 ∪ value(a1) = Kt+1

1

• type(a1) = pasremove,Kt
1 = Kt+1 ∪ value(a1)

and

P (Kt
2, a
∗
2, K

t+1
2) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = donothing,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intadd,Kt+1

2 = Kt
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intremove,Kt

2 = Kt+1
2 ∪ value(a∗2)

197

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = actadd,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = actremove,Kt

2 = Kt+1
2

where a∗2 is the greedy action e2 decide on according to its reward function. Lastly,
two actions a1 and a∗2 need to be compatible with each other.

(a1, a
∗
2) are compatible if

• type(a1)=donothing or

• type(a1)=intadd or

• type(a1)=intremove or

• type(a1)=pasadd, type(a∗2)=actadd
value(k21) = value(a∗2), and value(a1) = value(a∗2) or

• type(a1)=pasremove, type(a∗2)=actremove
value(k21) = value(a∗2), and value(a1) = value(a∗2)

The reward function for e1 is derived from the goal function as

Ra(s, s
′) = −|ot+1

1 − ot+1
2 |

The reward function for e2 is derived from the goal function as

Ra(s, s
′) =

{
−|ot+1

1 − ot+1
2 | if ot+1

2 = ot2
−1 otherwise

9.3.3 Idealistic-Active vs. Idealistic-Active Agent

When the communication is bi-directional (e.g. shared decision-making between a
physician-patient pair), the decision-making problem can be formulated as between
two IA-IA agents. However as an IA agent has no interests in changing its own
opinion, a conversation between two IA agents is the worst case for reaching opinion
consensus.

A state of the environment s ∈ S is a 4-tuple (Kt
1, K

t
2, k

t
21, k

t
12) where Kt

1 is
the knowledge base relied upon by agent e1 at time t, and Kt

2 is the knowledge base
relied upon by agent e2 at time t. kt12 represents the knowledge communicated from
e1 to e2 at time t and can be either empty or contain one learning episode. kt21
represents the knowledge communicated from e2 to e1 at time t and can be either
empty or contain one learning episode. Set S captures all possible combinations of
knowledge agent e1 and e2 may use to derive their opinions, and information e2 and
e1 can communicate at a given time. It is formally defined as

S = V K
1 × V K

2 × ∪vi × ∪vj
198

where |vi| = 1, |vj| = 1, vj ∈ V K
1 , and vi ∈ V K

2 .

In the case of an IA-IA interaction, an IA agent considers actions: intadd,
intremove, donothing, actadd, and actremove. However, since an IA agent has
complete knowledge about the other agent, it is aware that the other agent would
not accept any information from it. The exact learning episode for an action depends
on the learning episodes included in the knowledge base currently in use. Similar
with the MP-MP case, the action function for both agents only depends on its own
domain knowledge at the time

A1(s
t) = A1(K

t
1)

and
A2(s

t) = A2(K
t
2)

We define the action function for e1 and e2 as

a ∈ Ai(st) that i ∈ [1, 2] if:



type(a) is intadd, and value(a) /∈ Kt
i

type(a) is intremove, and value(a) ∈ Kt
i

type(a) is donothing, and value(a) = φ

type(a) is actadd, and value(a) ∈ Kt
i

type(a) is actremove, and value(a) =∈ Kt
i

The computation of the transition probability is broken down into three
parts: the first part checks the validity of transition for agent e1, the second part
checks the validity of transition for agent e2, the third part checks whether two
actions are compatible and valid.

P (st, a1, st+1) =

{
1.0 if P (Kt

1, a1, K
t+1
1) = 1, P (Kt

2, a
∗
2, K

t+1
2) = 1, two actions are compatible

0.0 otherwise

where P (Kt
1, a1, K

t+1
1) is the probability of resulting in a knowledge base Kt+1

1 by
applying change a1 to current knowledge base Kt

1. P
(Kt

2, a
∗
2, K

t+1
2) is the probability

of resulting in a knowledge base Kt+1
2 by applying change a∗2 to current knowledge base

Kt
2. For instance, if agent e1 does nothing (type(a1) = donothing), then we should

have Kt
1 = Kt+1

1 . We assume the environment to be non-stochastic (e.g. information-
processing produce is always correct); that is, a valid knowledge transformation action
has a probability of 1.0. We formally specify the transition probability as follows:

P (Kt
1, a1, K

t+1
1) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• type(a1) = donothing,Kt+1
1 = Kt

1

• type(a1) = intadd,Kt+1
1 = Kt

1 ∪ value(a1)
199

• type(a1) = intremove,Kt
1 = Kt+1

1 ∪ value(a1)

and

P (Kt
2, a
∗
2, K

t+1
2) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = donothing,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intadd,Kt+1

2 = Kt
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intremove,Kt

2 = Kt+1
2 ∪ value(a∗2)

where a∗2 is the greedy action e2 decide on according to its reward function. Lastly,
two actions a1 and a∗2 need to be compatible with each other.

(a1, a
∗
2) are compatible if

• type(a1)=donothing or

• type(a1)=intadd or

• type(a1)=intremove or

The reward function for e1 is derived from the goal function as

Ra(s, s
′) =

{
−|ot+1

1 − ot+1
2 | if ot+1

1 = ot1
−1 otherwise

The reward function for e2 is derived from the goal function as

Ra(s, s
′) =

{
−|ot+1

1 − ot+1
2 | if ot+1

2 = ot2
−1 otherwise

9.3.4 Mixed-Goal vs. Mixed-Goal Agent

Now we consider a situation where each agent is both adaptive and persuasive. Thus,
we have malleability-idealism scale γ ∈ (0, 1) and passivity-activism scale ζ ∈ (0, 1).

A state of the environment s ∈ S is a 4-tuple (Kt
1, K

t
2, k

t
21, k

t
12) where Kt

1 is
the knowledge base relied upon by agent e1 at time t, and Kt

2 is the knowledge base
relied upon by agent e2 at time t. kt12 represents the knowledge communicated from
e1 to e2 at time t and can be either empty or contain one learning episode. kt21
represents the knowledge communicated from e2 to e1 at time t and can be either
empty or contain one learning episode. Set S captures all possible combinations of
knowledge agent e1 and e2 may use to derive their opinions, and information e2 and

200

e1 can communicate at a given time. It is formally defined as

S = V K
1 × V K

2 × ∪vi × ∪vj
where |vi| = 1, |vj| = 1, vj ∈ V K

1 , and vi ∈ V K
2 .

In the case of an interaction between two agents with mixed-goals, each agent
considers seven actions: intadd, intremove, donothing, actadd, actremove, pasadd,
and pasremove. The exact learning episode for an action depends on the learning
episodes included in the knowledge base currently in use. The action function for
both agents only depends on both its domain knowledge but also the other agent’s
domain knowledge

A1(s
t) = A1(K

t
1, K

t
2)

and
A2(s

t) = A2(K
t
2, K

t
2)

We define the action function for e1 as

a ∈ A1(s
t) if:



type(a) is intadd, and value(a) /∈ Kt
1

type(a) is intremove, and value(a) ∈ Kt
1

type(a) is donothing, and value(a) = φ

type(a) is actadd, and value(a) ∈ Kt
1

type(a) is actremove, and value(a) =∈ Kt
1

type(a) is pasadd, and value(a) ∈ Kt
2

type(a) is pasremove, and value(a) =∈ Kt
2

We define the action function for e2 as

a ∈ A2(s
t) if:



type(a) is intadd, and value(a) /∈ Kt
2

type(a) is intremove, and value(a) ∈ Kt
2

type(a) is donothing, and value(a) = φ

type(a) is actadd, and value(a) ∈ Kt
2

type(a) is actremove, and value(a) =∈ Kt
2

type(a) is pasadd, and value(a) ∈ Kt
1

type(a) is pasremove, and value(a) =∈ Kt
1

The computation of the transition probability is broken down into three parts:
the first part checks the validity of transition for agent e1, the second part checks
the validity of transition for agent e2, the third part checks whether two actions are
compatible and valid

P (st, a1, st+1) =

{
1.0 if P (Kt

1, a1, K
t+1
1) = 1, P (Kt

2, a
∗
2, K

t+1
2) = 1, two actions are compatible

0.0 otherwise

201

where P (Kt
1, a1, K

t+1
1) is the probability of resulting in a knowledge base Kt+1

1 by ap-
plying change a1 to current knowledge base Kt

1. P
(Kt

2, a
∗
2, K

t+1
2) is the probability of

resulting in a knowledge base Kt+1
2 by applying change a∗2 to current knowledge base

Kt
2. For instance, if agent e1 does nothing (type(a1) = donothing), then we should

have Kt
1 = Kt+1

1 . We assume the environment to be non-stochastic (e.g. information-
processing produce is always correct); that is, a valid knowledge transformation action
has a probability of 1.0. We formally specify the transition probability as the follow-
ing:

P (Kt
1, a1, K

t+1
1) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• type(a1) = donothing,Kt+1
1 = Kt

1

• type(a1) = intadd,Kt+1
1 = Kt

1 ∪ value(a1)

• type(a1) = intremove,Kt
1 = Kt+1

1 ∪ value(a1)

• type(a1) = actadd,Kt+1
1 = Kt

1

• type(a1) = actremove,Kt+1
1 = Kt

1

• type(a1) = pasadd,Kt+1
1 = Kt

1 ∪ value(a1)

• type(a1) = pasremove,Kt
1 = Kt+1

1 ∪ value(a1)

and

P (Kt
2, a
∗
2, K

t+1
2) =

{
1.0 if one of the conditions below holds

0.0 otherwise

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = donothing,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intadd,Kt+1

2 = Kt
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = intremove,Kt

2 = Kt+1
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = actadd,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = actremove,Kt+1

2 = Kt
2

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = pasadd,Kt+1

2 = Kt
2 ∪ value(a∗2)

• a∗2 = max
a∈A2(st)

(Ra(s, s
′)), type(a∗2) = pasremove,Kt

2 = Kt+1
2 ∪ value(a∗2)

where a∗2 is the greedy action e2 decide on according to its reward function. Lastly,
two actions a1 and a∗2 need to be compatible with each other.

(a1, a
∗
2) are compatible if

202

• type(a1)=donothing or

• type(a1)=intadd or

• type(a1)=intremove or

• type(a1)=actadd, type(a∗2)=pasadd
value(k12) = value(a∗2), value(k21) = φ, and value(a1) = value(a∗2) or

• type(a1)=actremove, type(a∗2)=pasremove
value(k12) = value(a∗2), value(k12) = φ, and value(a1) = value(a∗2) or

• type(a1)=pasadd, type(a∗2)=actadd
value(k21) = value(a∗2), value(k12) = φ, and value(a1) = value(a∗2) or

• type(a1)=pasremove, type(a∗2)=actremove
value(k21) = value(a∗2), value(k12 = φ, and value(a1) = value(a∗2)

The reward function for both e1 and e2 is derived from the goal function as

Ra(s, s
′) = −ζ|ot+1

1 − ot+1
2 | − γ|ot1 − ot+1

1 |

where γ ∈ (0, 1) is the malleability-idealism scale and ζ ∈ (0, 1) is the passivity-
activism scale.

203

