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ABSTRACT  

A Commander’s decision making style represents how he weighs his choices and evaluates possible solutions with regards 

to his goals. Specifically, in the naval warfare domain, it relates the way he processes a large amount of information in 

dynamic, uncertain environments, allocates resources, and chooses appropriate actions to pursue.  In this paper, we 

describe an approach to capture a Commander’s decision style by creating a cognitive model that captures his decision-

making process and evaluate this model using a set of scenarios using an online naval warfare simulation game. In this 

model, we use the Commander’s past behaviors and generalize Commander's actions across multiple problems and 

multiple decision making sequences in order to recommend actions to a Commander in a manner that he may have taken. 

Our approach builds upon the Double Transition Model to represent the Commander's focus and beliefs to estimate his 

cognitive state. Each cognitive state reflects a stage in a Commander’s decision making process, each action reflects the 

tasks that he has taken to move himself closer to a final decision, and the reward reflects how close he is to achieving his 

goal. We then use inverse reinforcement learning to compute a reward for each of the Commander's actions. These rewards 

and cognitive states are used to compare between different styles of decision making. We construct a set of scenarios in 

the game where rational, intuitive and spontaneous decision making styles will be evaluated. 

Keywords: Decision making process, Double Transition Model, inverse reinforcement learning, inverse optimal control, 

cognitive states 

 

1. INTRODUCTION  

The decision-making process is one of the key factors to successfully commanding a battle1, 2. This process requires 

that Commanders assess the relevancy of retrieved information such as intelligence reports, field reports, and inter-agency 

communications. They need to teach their subordinates to focus on the important information through training and actions. 

Their experience, knowledge, creative thinking, biases, and beliefs are used to make tactical, operational, and strategic 

decisions. Each of these factors contributes to the formation of a Commander’s unique decision making style which could 

significantly affects the outcome of battles. Therefore, capturing the differences in Commanders’ styles through modeling 

their decision-making processes is beneficial for the Commanders themselves to help reinforcing good decisions and 

learning from bad decisions. Additionally, this is quite helpful for training junior Commanders or staff to make decisions 

in warfare situations. However, this process is very complicated, especially in a warfare setting when making a timely 

decision under extreme pressure and limited resources is required. This is a challenging research problem that has attracted 

some interest from the cognitive science community and decision modeling (DM) community (e.g [3, 4, 5, 6, 7, 8, 9]). 

Normally, these styles are identified by conducting a questionnaire survey with users either before or after making a 

decision.  Unfortunately, this does not capture and integrate the decision maker’s cognitive process when he made 

decisions. We need a computational framework in which a user’s decision making process is captured and his decision-

making style is inferred.  

In this paper, we set out to capture a Commander’s decision making style by modeling his decision-making process 

using a computational model in which each state reflects a stage in his mind on the way to arriving at a final decision and 

each action reflects a possible move to execute a decision. We model the Commander’s decision-making process over time 

using Double Transition Models10,11 (DTM). A DTM can be used to derive a dynamic Markov Decision Process (dMDP) 

in which each state reflects a cognitive state of a decision maker in a combat setting and each action represents the tasks 

and decisions that he makes during that battle while the rewards represent the effect of a decision’s outcomes. The 

differences between decision making styles could be highlighted through analyses of the graph structure of DTMs and the 

changes in the reward functions over time. The novelty of our approach lies in the development and use of a computational 

model to model, quantify, and recognize different styles in a decision making process.  



 

 
 

 

We demonstrate the evaluation of our approach through two assessments. The first assessment focuses on how well 

we recognize different decision making styles by analyzing the graph structures of their DTMs and the second assessment 

focused on exploring how significant the rewards inferred from their DTMs are. For both assessments, we use hypothetical 

user profiles and real users. For hypothetical users, we create three different profiles which corresponding to different 

styles: spontaneous (novice), intuitive (learner), and rational (planner). With real users, we have two Commanders with 

two styles: spontaneous and intuitive playing a naval warfare game called SteelOcean. We measure the differences in the 

DTM structures using a few different measures including the density of the graph, average outgoing edges and average 

incoming edges. Additionally, we compute the correlations between the reward functions over a set of cognitive states 

with the game rewards over the period of an online naval wargame and use them as a similarity measure between 

Commanders.  

This paper is organized as follows. We begin by reviewing key related work with regards to cognitive styles in decision 

making and provide background on DTMs. Next, we describe how to leverage DTMs with dMDP through inverse 

reinforcement learning (IRL). We then describe the two assessments, with a detailed discussion of the results. Finally, we 

present our conclusions and future work. 

 

2. RELATED WORK 

The novelty of our approach is to capture a decision-making style using a computational model that keeps track of 

traces of Commander’s actions as well as his interest in the information he processes. In this section, we highlight some 

related work in the area of decision making styles and provide background information on our computational model called 

DTM.  

 

2.1 Decision making style 

Decision making style has been defined as “the learned habitual response pattern exhibited by an individual when 

confronted with a decision situation”5. Five decision making styles have been in studied in the cognitive science community 

over the years including rational (reason-based), intuitive (heuristic-based), dependent, avoidant and spontaneous3,4,7. 

Rational decision making is the process of considering all alternatives and logically makes a choice while intuitive decision 

making is based on heuristics, previous experience, motion to make decision. Dependent decision making is to rely on 

others’ recommendations. Avoidant decision making is a lack of decision making. Finally, spontaneous decision making 

is a desire for quick decision making with response to the immediate need3,4. In combat situations, there is a naturalist 

decision making style which refers to the use of previous experience to make critical decision under a lot of pressure and 

time constraints5. This is closely related to the intuitive decision making style mentioned above. Decision making style is 

a very important factor to assess the quality of a decision and identify the errors in judgement5. It is also related to a broader 

concept that has been studied thoroughly which is cognitive style. A study7 has explored a specific relationship between 

cognitive styles and decision making style such as “People who are more extroverted in personality are more likely to 

have intuitive cognitive style, while those who are more introverted in personality are more likely to have analytic cognitive 

style”. Even though that study has not confirmed this relationship, it doesn’t reject it and lays the groundwork for further 

study. In recent years researchers have produced many other works that study decision making style in different domains 

(including pharmaceutical training12, construction work13, and work life balance14) have shown that determining one’s 

decision making style is a crucial step to evaluate and distinguish between good and poor decision makers and helps 

improve the quality of decision making process. In this work, we aim to determine different decision making style by using 

a computational framework to capture his/her entire decision making process.  

 

2.2 Double Transition Model (DTM) 

In this paper, we model a Commander’s decision-making processes using a Double Transition Model (DTM), 

originally proposed in10,11 as a way to describe human opinion formation processes through computational simulation. The 

DTM is based on a graphical representation of human cognitive states during their decision-making processes, in which a 

node is composed of two subgraphs, a Query Transition Graph (QTG) and a Memory Transition Graph (MTG). The QTG 

is used for representing the dynamic changes of the Commander’s interest/focus. Therefore, each node in the QTG 

represents a single query in the Commander’s mind and is represented by a vector [𝑋, ? , b1, c2, ... ] where 𝑋 ∈ 𝑈 denotes 

the target random variable of interest, an element of the set of all random variables representing features, ? denotes the 

unknown instantiation of the variable 𝐴 ∈ 𝑈, and b1 and c2 denote an instantiation of variables 𝐵 ∈ 𝑈 and 𝐶 ∈ 𝑈. The 



 

 
 

 

MTG is a graphical representation of the underlying knowledge the Commander has in his mind, and is based on a Bayesian 

Knowledge Base (BKB)15.  

Figure 1 shows an example of the DTM, where a Commander may have perceived new information about the location 

of enemy battleships. The Commander could undergo a memory transition from enemy battleship ‘concealed’ to ‘visible’ 

based on the change of his perception through MTGs. Asking himself a question of “Is there enemy battleship around?”, 

the Commander takes an action to destroy the enemy battleship when he believes it is the right action to take at that time.  

 

Figure 1. An example of a DTM framework. 

       The random variables (such as ‘Action’ and ‘enemy battleship’) and their relationships in the DTM and its underlying 

QTG and MTG are unknown at first. They must be identified and extracted from the Commander’s information stream in 

order to incorporate them into the MTG representing the Commander’s memory. Each node within the DTM represents 

the Commander’s cognitive state (via the MTG) and what he focuses on (via the QTG). Transitions between states 

represent decisions made and actions taken. The goal in the DTM is to reconstruct the sequence of decisions that the 

Commander made in order to predict future decisions by leveraging repeating patterns. The DTM has been applied to 

represent a Commander’s decision making process in our previous work15. 

3. OUR APPROACH 

We capture a Commander’s decision making style by building a computational model to represent his decision-making 

process. The core of our approach is the DTM11 constructed from traces of the Commander’s episodic information-

processing processes and his actions with respect to his subordinates over time. Each Commander has his own DTM which 

describes his internal cognitive states and is determined by using external relevant information sources related to his 

decision-making process. Our model allows us to follow a Commander’s actions and to explain his decisions based on 

information relevant to those decisions. We extracted information about a Commander’s decision making styles using 

factors describing the DTM graph and the distribution of rewards over time. The original DTM framework10,11 had used 

reinforcement learning to learn an optimal policy from an environment that has an observable reward value reflecting how 

good or bad an activity is in reaching an optimal decision. In complex battlefield scenarios, the true reward value may not 

be available and it is necessary to approximate it. An approximation function can be learned via inverse reinforcement 

learning17. 
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3.1 Architecture 

     A Commander’s DTM is built from scratch using the actions that he has taken, the contents of the reports that he has 

read and found relevant as well as the communication that he has with his subordinates over time (as shown in Figure 2). 

Each of these artifacts are grouped by timeline and pre-processed to extract what we refer to as a “feature”. A feature is a 

distinctive attribute of the action space and the target domain where a Commander is currently making decision. A feature 

is assigned a specific value which represents the observed status of that feature at a particulate point in his decision-making 

process. Features could be pre-determined manually or could be automatically extracted using algorithms. Our previous 

work15 showed the process of extracting a set of features from documents automatically using document graphs and Latent 

Dirichlet Allocation18 (LDA). These features are utilized in our DTM. We derive a dynamic Markov Decision Process 

(dMDP) from the DTM. A MDP18 is a commonly used model of the decision-making process in uncertain environments. 

The difference between our model and the existing MDP approaches is that we use dMDP to model actions and states 

which may have never been seen before and cannot be predicted in advance. In this dMDP, it is possible to estimate a 

reward function that describes the Commander’s unique style and method for making decisions. We have determined a 

solution to this problem by estimating the optimal solution using Inverse Reinforcement Learning. Developed at Stanford 

University17, Inverse Reinforcement Learning (IRL) replaces a well-defined but often overly simplistic reward function 

with a policy that is based on optimal observed behavior, such as that of a Commander with years of experience to draw 

upon along with knowledge of the common behavior of enemy forces in a variety of situations. In this section, we describe 

the DTM Builder and the process of mapping to dMDP and using IRL to solve for rewards. 

 

 
Figure 2: Overall architecture of our approach 

 

3.2 DTM Builder 

The DTM Builder constructs a DTM from a set of traces of a Commander’s behavior. These traces are sequences of 

observations about the world and which action he took, transitioning the Commander to another set of observations. For 

example, the observations might be that there is a fog area that may be concealing a ship, so we perform an action to check 

the fog are, resulting in another observation that there is no ship. 

To build the DTM, we take the traces of actions and observations to construct a cognitive state for each observation 

and take the observed actions to construct an action edge which transitions from one cognitive state to another cognitive 

state. We iteratively update the DTM as we see new traces. 

The cognitive states, themselves, are a cross product of the memory and query transition graphs and therefore represent 

what the Commander believes and what is important at a snapshot of time. Since the interest of the Commander is not 

directly observable, we make an initial assumption that the Commander is interested in all known features at any given 

point in time. The observables are mapped onto attributes for features 𝐹𝑖 forming a feature vector 𝑋 such that the size of 𝑋 



 

 
 

 

is less than or equal to the number of features. In the general DTM formulation, we have another vector 𝑄 such that |𝑄| =
|𝑋| represents the focus of the Commander. 𝑋×𝑄 forms the basis of the cognitive state 𝑆. 

Next, we represent a vector of all of these actions as 𝑎𝑖 = [𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛] ∈ 𝐴. These actions will be interleaved with 

observables about the world. The Commander may be performing multiple actions simultaneously, such as moving 

multiple ships at the same time. 

These actions and cognitive states form the basis of traces 𝑇 (sometimes called trajectories or demonstrations in the 

MDP and IRL literature19). Traces are composed of a sequence of individual transitions between states. The transitions 

inside of each trace form a 3-tuple (𝑠𝑖 , 𝑎𝑗 , 𝑠𝑖
′) where  𝑠𝑖 , 𝑠𝑖

′ ∈ 𝑆  are states and  𝑎𝑗 ∈ 𝐴 are actions and the full 3-tuple is a 

transition from state 𝑠𝑖 to state 𝑠𝑖 ′ through taking action 𝑎𝑗. The DTM builder aggregates counts of each 3-tuple to compute 

probabilities for a 𝑆×𝐴×𝑆 transition matrix where each cell is the probability of transitioning from 𝑠1 to 𝑠2 when taking 

action 𝑎𝑖. 

This process is updated as we see new traces. New traces may have additional features which were not previously 

seen; as such, the underlying distribution of the 3-tuple probabilities is only guaranteed to be stationary at an exact point. 

In other words, we can learn a reward function to solve for the reward assigned to each cognitive state at a given point in 

time within the DTM but there may be nonlinear changes with the addition of traces or even just new features. Therefore, 

we want to map to a simpler model to solve at each snapshot. We can map the DTM to a MDP at any given point in time, 

but a single MDP is not sufficient to model how the Commander’s behavior changes as they learn from old traces. Since 

the process of decision making may have information come in and out of relevancy, information and states come in and 

out of memory in the DTM in an episodic manner. Since we are interested in modeling not just the current belief about the 

Commander’s actions, and instead focus on his decision-making process, we extend MDPs to account for dynamic 

information, hence dynamic Markov Decision Processes (dMDPs). 

 

3.3 Mapping from DTM to dMDP 

The DTM connects the Commander’s actions to his cognitive states and even models how this changes over time, but 

it does not know whether the individual states are preferred or not. MDPs, on the other hand, have well known algorithms 

to learn this through inverse reinforcement learning16. To leverage these algorithms, we would like to map our DTM onto 

a MDP at any point in time so that we could update the approximation of preference for cognitive states. Unfortunately, 

MDPs have fixed state and action spaces at the time of learning which is not feasible to know ahead of time when modeling 

unseen behavior. In our cognitive architecture, we must be able to incorporate new information that a Commander may 

not have even thought about previously and we want to model the process of the changes to the dMDP as well. Therefore, 

a MDP that represents the DTM must be rebuilt every time we have new actions, states, or even changes in probabilities. 

We refer to the MDP that we map the DTM onto as a dynamic Markov Decision Process (dMDP) because we will 

eventually be analyzing what changed, why it changed, and what the impact of the change was over the evolution of the 

MDP. 

Like the DTM, the dMDP is composed of states and actions that are mapped as a bi-jection onto each other. Therefore, 

the dMDP has the same states 𝑆, actions 𝐴, and connectivity defined by the 3-tuples (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖
′) with the corresponding 

DTM. The probabilities of each 3-tuple are defined by the transition matrix from the DTM, and hence the only factor that 

the dMDP needs to provide is a function to compute the reward of a state in the dMDP and consequently, because of bi-

jectivity of states and cognitive states, the reward of a cognitive state. The dMDP has no access to the features, instead 

each state already has a unique mapping onto feature instantiations from within the DTM. 

We also need a mapping from traces onto states in the dMDP when there may not be an exact match between the 

observations and an individual cognitive state. This comes up when we compare reward values for traces across multiple 

DTMs.  In this case, we do not want to modify the DTM because then we change the underlying reward function in a 

(possibly) nonlinear manner. Instead, we map observables from the trace onto their closest states and actions in the DTM. 

Since there is a direct mapping within the DTM to the underlying dMDP, we can resolve states within the dMDP as well. 



 

 
 

 

We use Hamming distance between the feature values at each state and the features in the underlying trace to find the 

closest state. 

Once we have mapped the DTM onto the dMDP, we can perform inverse reinforcement learning on the dMDP to 

learn the reward values for the states in the dMDP, and thus also for the cognitive states in the DTM. 

 

3.4 Using IRL to compute rewards 

The underlying dMDP generated from the DTM does not initially have any rewards for any states. The DTM is 

supposed to learn the rewards that the Commander may have assigned to each cognitive state. In this manner, the model 

is supposed to generalize and identify the preferences of each Commander and how he likes to solve the problems that he 

is solving. The mapping of the DTM onto a MDP at any given point in time lets us leverage the existing work in inverse 

reinforcement learning to estimate the rewards. 

We tried the linear programming approach proposed in the seminal inverse reinforcement learning work proposed by 

Ng and Russell17. The sparsity of many real-world problems appears to lead to a distribution of rewards that is heavily 

skewed towards 0 with this formulation. Rewards in our evaluation below only had peaks at the maximum reward value 

(set at 500), ~1/5th of the maximum reward value (100), and 0 ± 1𝑒 − 12.  

We then tried the maximum entropy inverse reinforcement learning formulation proposed by Ziebart et al.21, using an 

implementation freely available on GitHub22. The distribution of rewards on cognitive states had similar peaks, but was 

distributed more evenly away from zero. 
 

4. EVALUATION 

The objectives of our evaluation are twofold: first, we would like to assess whether we could distinguish different 

decision making styles by comparing the graphical structures of different DTMs; second, we want to study how significant 

the reward values are by exploring the reward distribution and by comparing the correlation of reward functions to the 

game rewards. For both assessments, we use hypothetical user profiles and real users playing an online naval warfare 

game. 

  

4.1 Capturing decision making styles with hypothetical users 

Our hypothetical users employ a set of simplified scenarios based loosely on the game called Steel Ocean1 which is a 

World War 2 Naval combat simulator where players take command of one of over 100 warships and battle in vast ocean 

arenas. In these scenarios, the Commander has an aircraft carrier that can deploy scout planes and two battleships. The 

enemy forces can have a submarine and a battleship, though the number of ships is not required to be fixed. There are four 

smoke/fog areas in which the enemy forces can be concealed. We simulated three decision making styles: rational, 

intuitive, and spontaneous by creating three typical profiles: planner, learner, and novice, respectively. The planner makes 

his decision rationally. That means he carefully considered his choices based on his knowledge and training and chose the 

optimal choice at any given time. For example, he could move multiple ships at a time to check out each fog area to 

minimize the risk of losing the fleet own ships while simultaneously maximizes the chance to destroy the enemy ships. 

The learner makes decisions intuitively. He uses his past experience to guide his current direction. For instance, he learned 

from his previous mistakes as well as success to decide what actions to take. The novice makes his decisions based on 

reacting to the current situation, in a spontaneous fashion. For example, he sends a single ship to check out each smoke at 

a time or decides to engage with the enemy once the enemy engages him. With planner and novice decision makers, we 

made up 84 different learning episodes, each of which contains 10 moves. Each move describes what happens at a specific 

time, such as at time 2, we send a ship to scout enemy while the enemy ship appears to be idle. For learner we made up 74 

such episodes with 10 moves each.  

     We used the following measures to assess the graph structure of each DTM: the number of states, the number of actions, 

density of the graph, average of state to action (out-degree), average of action to state (in-degree). The density of the graph 

is computed as follows:
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d with E being the number of actions and V being the number of states. Average 

of state to action is defined as the average of outgoing edges for each state while average of action to state is defined as 

                                                 
1 SteelOcean is available at http://store.steampowered.com/app/390670/ 



 

 
 

 

the average of incoming edges for each state. As shown in Table 1, the number of states and actions for novice are the 

largest and those for planner are the smallest while those of learner fall in between. This could be explained as the novice 

seems to respond to a task as it appeared without using much of his previous experience because he has a limited amount 

of experience to recall. Therefore, he would have more cognitive states than the other two decision styles. The planner 

appears to be effective in his use of previous knowledge and therefore, his graph contains less states but is more dense 

compared to novice decision makers. That means his cognitive states seem to be repeated. In other words, he re-used his 

experience to apply to the new but related situations.  

 

 
Table 1: Capturing hypothetical users’ decision making styles 

 

4.2 Reward distribution for hypothetical users 
In addition to the analysis of graph structure, we wanted to understand what the reward distribution looks like for each 

decision-making style and how to compare the decision making styles of the different Commanders based on reward 

information. In order words, we would like to study how significant the rewards are. The distribution of the rewards for 

cognitive states seems to be clustered mostly between zero and two for all of the different Commanders that we have (as 

shown in Figure 3). We note that the reward values themselves are not necessarily directly comparable between different 

DTMs because the rewards are learned via maximum entropy inverse reinforcement learning21 and therefore the scale of 

the rewards may not be the same. 

 

 
Figure 3: Histogram of rewards learned on cognitive states in the DTMs for different decision styles 

 
While the reward values, themselves, appear to be uninteresting, they are important to view because they are not 

distributed normally which has an impact on how we can do our analysis. So instead of comparing the rewards directly to 

get an understanding of how the decision making styles differ and how they are the same, we compare the aggregate reward 

value for each of the individual traces. This is intuitive because inverse reinforcement learning does not optimize the 

rewards themselves, rather, it attempts to optimize the preferences evidenced by the traces. 

In order to have a ground truth for comparison, we used the same synthetic scenarios with Commanders who have 

different decision-making styles (i.e learner, novice, and planner as previously defined in 4.1). We look to quantify how 

well each decision-making style actually performs in the synthetic task under the assumption that the actors who plan 

more, will have better performance. We use a game score as a measure of performance. In other words, we would like to 

know which DTM best predicts the game rewards. At learning time, the DTMs did not have access to the game rewards 

and the scale of the game rewards is likely to differ from the scale of the learned rewards. The hypothesis is that the planner 

(rational) decision maker who decided ahead of time what moves to make would have the best correlation with the game 

rewards, followed by the learner who plays intuitively, and finally followed by the novice who is spontaneously making 

moves. For our analysis, we compute Spearman’s 𝜌 coefficient because it does not require the relationship between the 

points to be linear and does not need to compare the magnitude. Spearman’s correlation is computed as 𝜌 =
𝑐𝑜𝑣(𝑟𝑔𝑋,𝑟𝑔𝑌)

𝜎𝑟𝑔𝑋
𝜎𝑟𝑔𝑌

, 

where 𝑟𝑔𝑋 is the rank orderings of the values in 𝑋, and the same for 𝑌. 

Style States Actions Density Avg.Outgoing Avg.Incoming

Learner (Intuitive) 61 34 0.0094258 1.106614545 1.191934

Novice (Spontaneous) 69 40 0.0085307 1.1598958 1.238642

Planner (Rational) 41 12 0.0075724 1.04095066 1.1828077



 

 
 

 

 

 

 

 

 

Decision Style # Samples Spearman ρ coefficient Spearman p-value 

Planner (rational) 19 0.977375648 6.60E-13 

Learner (intuitive) 55 0.956522574 4.95E-30 

Novice (spontaneous) 36 0.81681177 1.24E-09 
Table 2: Correlations between rewards and game rewards for each decision-making style 

       As seen in Table 2, the ordering of the rewards for the planner is the most correlated with the actual reward from the 

game. It is surprising, that the rewards from the learner also match so closely. The rewards for the novice being so high, 

demonstrate that the synthetic game was easy to win in general. 

Now we have demonstrated that the synthetic Commanders match our expectation for how similar they are to the 

game score, but we still want a method for comparing different DTMs, or finding a probability that a certain trace came 

from a particular DTM. To measure the similarity between DTMs, considering the reward values not being distributed 

normally and not necessarily having the same scale, we computed the sum of the rewards of each cognitive state matched 

within a trace and multiply by their probability. Given a set of actions 𝐴, a set of states 𝑆, and a trace 𝑇 =
{(𝑠1, 𝑎1, 𝑠2), (𝑠2, 𝑎2, 𝑠3), … } consisting of triples with overlapping states, we compute a product ∏ Pr (𝑎) ̇𝑎∈𝐴 ∑ R(s)𝑠∈𝑇  

where Pr (𝑎) is the probability of the action in the DTM counted from all of the traces and 𝑅(𝑠) is the reward of the state 

learned from IRL. This gives us a single number for each trace measuring how much the Commander prefers that trace. 

Then we can run the same trace through another Commander’s DTM, computing the reward the other Commander would 

assign to the same trace. Finally, we can compare the ranks of the preferences for traces that each Commander gives to the 

other Commander’s traces. In this way, we can determine whether each Commander believes that each trace is preferable 

over the other traces.  

 

Predicting Style Predicted Style # samples Spearman ρ coefficient Spearman p-value 

Planner Learner 55 -0.4068 0.0021 

Planner Novice 36 0.1534 0.3716 

Learner Planner 19 0.7386 0.0003 

Learner Novice 36 0.7979 5.61E-09 

Novice Planner 19 0.3351 0.1607 

Novice Learner 55 0.8481 3.07E-16 
Table 3: Correlations using decision-making styles to predict rewards for traces of other decision making styles 

The results (as shown in Table 3) are not symmetric because the predicting style and predicted style have different 

DTMs and therefore assign different rewards to the traces from the other DTM. Generally, if there is a high correlation 

between the orderings both ways, there is high agreement on the ordering. As expected, the novice and planner have 

Spearman coefficients closest to zero and insignificant p-values, implying that they are the least similar. The learner has 

high correlation with the novice, and medium correlation with the planner. It was expected that the learner would be 

somewhere between the novice and the planner. The number of traces from the novice that appeared in the learner is larger 

than the number of traces in the planner, therefore the learner expected to have higher correlation with the novice than with 

the planner, as we have seen. 

 

4.3 Capturing decision making styles with real users 

In addition to evaluate different decision making styles with hypothetical users, we managed to use a team of three humans 

to play Steel Ocean game. We use this game because it exists in a domain with many readily available examples of Naval 

Commanders with more concrete traces. These traces allow us to model multiple Commanders’ traces and have a platform 



 

 
 

 

to understand how they differ, why they differ, and what uniquely composes a Commander’s style over a set of tasks while 

still having control of how the tasks overlap. The process of this evaluation is shown in Figure 4.  

 

 

 
Figure 4: Process of evaluating with real users 

We created and recorded videos of four scenarios, each of which was played by three student volunteers who have 

some experience playing wargames online. Each scenario describes a fleet battle between two teams: our team and the 

enemy. We have three fundamental pieces in each scenario: A Commander’s ship, a Support ship and an Attacker ship. A 

Commander ship makes decisions involving the actions that the Attacker or the Support ship take. The Attacker ship is 

responsible for carrying out an action and the Support ship assists the Attacker ship in carrying out these actions. These 

pieces in each battle follow different formations in scouting the enemy and carrying out offensive and defensive actions. 

The formations are straight line, scattered line, triangle and D-formation as guided by United State Joint Force Command2. 

We selected two students to act as Commanders so each Commander has a chance to command two battles. The goal of 

the mission is to destroy as much as possible the resources of the enemy while trying to protect our own resources. The 

first two battles were recorded one week before the last two battles. The two Commanders have different decision making 

styles as it turns out: intuitive vs. spontaneous. Commander 1 (intuitive) tends to connect his experience with his decisions 

while Commander 2 (spontaneous) tends to react quickly to the tasks at hand without considering the alternatives. After 

recording these scenarios, we sample the movements and situations of each battle every 15 seconds and convert this data 

to a comma delimited file (*.csv). Each comma delimited file is a trace which, in turn, is used to create a portion of the 

DTM. Figures 5 and 6 each show a trace for Commander 1 represented graphically as the DTM it would produce on its 

own. Figures 7 and 8 each show a trace for Commander 2, again represented as the DTM that it would generate on its own. 

(Note that our primary focus for these figures is on the graph structure of the DTMs.) The details of the graph analysis of 

the DTM for each Commander is shown in Table 4. The DTMs for Table 4 include the union of both Figures 5 and 6 for 

Commander 1 and the union of Figures 7 and 8 for Commander 2. 

 

 



 

 
 

 

 
Figure 5:  Commander 1's DTM for his first battle 

 
Figure 6: Commander 1's DTM for his second battle 

 

  

Table 4: Capturing real users’ decision making styles 

As we could see from the figures, decision making styles were fairly consistent among Commanders. Despite commanding 

two different battles, both Commanders maintained their styles. The number of average states and actions of Commander 

1 were significantly less than those of Commander 2 and the structures of their DTMs showed that the Commander 2’s 

DTMs were more linear than the DTMs of Commander 1. For Commander 1, his two battles had lengths of 10 minutes 39 

seconds and 6 minutes 29 seconds while for Commander 2, his two battles had lengths of 11 minutes 15 seconds and 5 

minutes 32 second respectively. We further checked with the video recordings to confirm that the Commander 2 had used 

his previous experience extensively in games which resulted in a fewer cognitive states because he was able to recognize 

similar situations in games. Whereas the Commander 2 was more reactive in games which resulted in more states because 

he was unable to relate with his previous experience. 

 

 

 

Style States Actions Density Avg.OutgoingAvg.Incoming

Commander 1(Intuitive) 25 23 0.08087 1.63908 1.63908

Commander 2(Spontaneous) 36 32 0.030612 1.06 1.06



 

 
 

 

 

 
Figure 7: Commander 2's DTM for his first battle  Figure 8: Commander 2's DTM for his second battle. 

4.4 Reward distribution with real users. 

 
Figure 9: Reward distribution for real users 

Similarly to what we have done with hypothetical users, we computed the reward distribution for both Commander 1 

and Commander 2 using the same procedure addressed in Section 4.2. As we could see in Figure 8, their rewards for each 

cognitive state seems to be clustered around zero for Commander 2 while they are clustered around the midpoint between 

zero and 5 for Commander 1. We have only two traces for each Commander over their two battles and unfortunately, it’s 



 

 
 

 

not enough data points to judge whether the rewards are significant or not. We are unable to compute the game reward and 

DTMs correlations due to the lack of data points. This will be addressed in our future work. 

 

 

5. CONCLUSION 

We have applied our DTM approach to capture a Commander’s decision making process and evaluated the DTMs to 

distinguish different decision making styles from different Commanders. Our approach allowed us to look at not only the 

context of the Commander’s decision that could potentially infer why he makes that specific decision but also the 

distribution of rewards that go along with each cognitive state where the decision is made and the relative ordering of 

preferences for each of the traces. This provides a concrete background to evaluate the quality of any decision or trace by 

using the contextual information associated with cognitive states and offers an effective tool to see how influence a 

Commander’s decision making styles would affect the quality of his decisions. By capturing a Commander’s decision 

making process, we can distinguish different decision styles and study the distribution of rewards over time. Additionally, 

we could compute the correlation between game rewards and rewards inferred by inverse reinforcement learning and 

compute correlation between different Commanders’ DTMs. These results could be used for training purposes when a 

senior DTM is used to guide training process for a junior staff member.  

      Although we have laid concrete ground work for the development and assessment of this framework, there remains 

many areas of interesting research to explore. First, we would like to study further how the graph structure of our DTMs 

changes as users change their decision styles over time. This means that, in a battle, a Commander may have a sequence 

of actions where he is acting spontaneously but also has a sequence of actions where he is acting intuitively. A DTM could 

capture these changes and that could be used to distinguish dynamic decision styles over time. Second, we also want to 

strengthen our evaluation with real users by comparing our decision style classification with the traditional approach that 

uses a questionnaire survey to determine a user’s decision style from among the general decision styles. Lastly, we would 

like to find out whether the reward distribution plays a significant role in reinforcing good decisions, enabling us to learn 

from bad decisions.  
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