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Abstract—Uncertainty handling for semantic networks is a 

difficult problem which has slowed the effort to fully develop a 

semantic web.  Uncertainty handling becomes particularly 

challenging when incompleteness is present in a domain, as it 

frequently is when modeling real-world complexity.  To date, 

work on uncertainty frameworks for semantic networks has not 

intuitively captured a useful notion of uncertainty, for reasons 

including weaknesses in underlying uncertainty theories and 

assumption conflicts with semantic networks. 

We propose a framework which is a synthesis of semantic 

networks and Bayesian Knowledge Bases, which are a 

generalization of Bayesian Networks to accommodate 

incompleteness.  This synthesis represents knowledge as “if-then” 

conditional probability rules between description logic assertions.  

We define simple methods for reasoning about semantic 

information under uncertainty and about uncertainty itself.  Our 

results show potential to remove some obstructions in the path to 

a semantic web. 

Keywords – Bayesian Knowledge-driven Ontologies; semantic 

networks; probability theory 

I.  INTRODUCTION 

Semantic networks, also known as ontologies, are the very 
foundation of the semantic web, and are widely used in 
machine knowledge representation.  They facilitate the 
definition and conceptual characterization of classes, 
individuals, and their relationships within a domain.  Semantic 
networks can effectively define a networked encyclopedia of 
conceptual information in a domain, and their deductive 
reasoning mechanism facilitates algorithmic revelation of 
implicit, inferable knowledge in the model according to the 
rules of description logic [1] which is a decidable subset of 
predicate calculus. 

Unfortunately, semantic networks do not conveniently 
represent uncertainty.  Uncertainty often involves the existence 
of multiple conflicting possible instantiations (i.e. states) of a 
domain.  Where uncertainty exists, we would typically like to 
have some understanding of the relative likelihoods of the 
possible instantiations, so that we can reduce or prioritize the 
set of instantiations we must consider.  Such information is 
usually not known ahead of time, but can often be derived 
through some form of reasoning based on knowledge of the 
interactions between the assertions which differentiate the 
instantiations.  But in order to reason about uncertainty, we 
must first represent it.  Conventional semantic networks can 
only represent uncertainty ad-hocly by creating parallel models 
describing each possible instantiation individually.  Of course, 
this approach does not capture interactions between the 

instantiations’ assertions, so no formal reasoning can be 
performed.  Furthermore, the number of parallel ontologies 
needed to completely define a domain is exponential with 
respect to the number of sets of differentiating assertions in the 
domain. So maintaining parallel ontologies is usually so labor-
intensive as to be impracticable.  What is needed is a 
systematic way to represent multiple variations on a domain. 

Several theories of uncertainty exist which can introduce 
strong uncertainty semantics into description logic.  Two 
prominent theories which have enjoyed success are fuzzy logic 
and possibility theory.  These have been applied in frameworks 
such as Fuzzy OWL [17] and possibilistic description logic 
[10].  However, in both theories, some deep interactions 
between variables are lost during inferencing.  The lost 
information is unnecessary for modeling the notions of fuzzy 
set membership and possibility, but as we will detail in Section 
II, we would prefer to capture a more complex notion of 
uncertainty which supports chains of “if-then” interactions 
between variables.  One uncertainty theory which has strong 
semantics and fully captures these variable interactions is 
probability theory.  Unfortunately, to the best of our knowledge 
all of the representation frameworks for semantic networks 
which are rooted in probability exhibit lossy reasoning or have 
unintuitive restrictions on their flexibility.  The probabilistic 
description logics defined by Lukasiewicz [6] and based on 
Nilsson’s probabilistic logic [8] experience decay in relative 
precision during reasoning due to their expression of 
probabilities as intervals.  Approaches using Bayesian 
Networks [9], such as BayesOWL [4], MEBN/PR-OWL [3], 
and P-CLASSIC [5], contain an unintuitive conflict in their 
assumptions: Bayesian Networks require complete 
specification of the domain’s probability distribution with no 
incompleteness, but semantic networks have a finer granularity 
which allows for incompleteness.  Some domains with 
incompletely defined relationships can only be represented in 
BN-based frameworks by overdefining them.  We address 
these issues in more detail in Section II. 

There exists one probabilistic knowledge representation 
framework which may show better results when unified with 
semantic networks.  Bayesian Knowledge Bases [12], or BKBs, 
are a generalization of Bayesian Networks designed 
specifically to handle incompleteness, and they do not 
experience reasoning decay like probabilistic logic.  BKBs 
represent domain knowledge as sets of “if-then” conditional 
probability rules between propositional variable instantiations.  
They use those conditional probabilities to compute marginal 
probabilities of the domain’s instantiations.  BKBs also 
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facilitate asking “what if” questions of the model by allowing 
the user to restrict the set of instantiations computed to ones 
where certain variable instantiations are set as evidence.  BKBs 
represent knowledge with the same granularity as semantic 
networks, but they are not an immediate substitute for them 
because they only reason about propositional knowledge, not 
predicated knowledge like semantic networks do.  A synthesis 
of BKBs and semantic networks which preserves the 
capabilities of both is desirable, but to our knowledge this 
paper is the first attempt. 

We therefore propose the knowledge representation and 
reasoning framework called Bayesian Knowledge-driven 
Ontologies (BKOs).  BKOs unite the predicate reasoning 
capabilities of semantic networks with the probabilistic 
reasoning capabilities of BKBs.  They represent knowledge as 
description logic assertions like semantic networks, but also 
represent conditional probability rules between those assertions 
like BKBs.  We will show that BKOs can validly reason about 
both types of knowledge without disrupting the other, based on 
two insights:  First, that generalizing the rule of universal 
instantiation to its probabilistic analog allows description logic 
to validly handle uncertainty in its reasoning process.  Second, 
that a “fully reasoned” semantic network, i.e. one in which all 
implicit propositional knowledge has been made explicit, 
naturally conforms to the semantics of BKBs.  We will show 
that BKOs validly model uncertainty and incompleteness in 
both their representation and reasoning, possess strong 
probabilistic semantics that fully capture variable interactions, 
and do not vitiate the flexibility of the semantic network.  We 
will show how BKOs may be used to answer the probabilistic 
membership query 

                          
                             

the intuitive interpretation of which is: In the context of a given 
ontology, and given the knowledge that a set of individuals  
{     

} are each known to be members of respective classes 

{     
}, what is the joint probability of the set of individuals 

{     
} each being members of respective classes {     

}? 

We begin in Section II with a brief survey of representative 
approaches to augmenting semantic networks with uncertainty 
reasoning.  Next, Sections III and IV provide background on 
description logic theory and BKB theory.  Section V develops 
BKOs’ method of knowledge representation.  In Section VI, we 
define the method of probabilistic predicate reasoning using the 
probabilistic rule of universal instantiation.  We follow with 
Section VII which defines the method of computing marginal 
probabilities of domain instantiations. Finally, in Section VIII, 
we provide our concluding remarks and a look at future 
directions and potential applications for our theory. 

II. RELATED WORK 

The simplest approach to introducing uncertainty to 
semantic networks is to list probabilities as attributes on 
classes.  Some applications will use upper ontologies to define 
special predicates for storing probabilities.  These methods are 
essentially annotation with probabilities.  They provide no real 
probabilistic reasoning functionality, and to the best of our 
knowledge there is little to no published work on the subject.  

Straccia [18] introduces fuzzy logic to semantic networks.  
Fuzzy logic is an uncertainty theory designed to represent the 
notion of ambiguity using partial set membership, such as the 
classic half-empty or half-full glass.  Fuzzy logic’s axioms are 
identical to probability theory, except that fuzzy logic lacks the 
axiom that the union of all outcomes sums to one.  The absence 
of that axiom means that fuzzy logic’s reasoning is a more 
coarse treatment of information interaction, using min and max 
functions in place of the arithmetic functions that probability 
theory would use.  Consider the following example.  (Notation: 
for an individual or class a, a class C, and        , a C p 
states that a has membership in C with degree p.)  Given the 
assertions a C 0.7, a D:0.4, C  E:0.2, and D E:0.6, what is 
the membership of a in E?  In fuzzy set theory, this is simply 
max(min(0.7, 0.2), min(0.4,0.6)) = 0.4.  Note that most of the 
information contained in this reasoning chain had no effect on 
the outcome except inasmuch as it was greater or less than 0.4.  
A change in the degree of membership of D in E would only 
alter the result if it dropped below 0.4, and a change in the 
degree of membership of a in C would not alter the result at all.  
This can be unintuitive when we consider modeling any notion 
of causality, since we typically think that a change in a root 
variable should somehow affect the result.  Fuzzy logic is 
therefore more suited to its intended purpose of comparing 
entity descriptions than it is to capturing variable interactions. 

Qi et al. [10] introduces possibility theory to semantic 
networks.  Possibility theory models the notion of uncertainty 
of events, but like fuzzy logic it does not fully capture causal 
interactions.  Possibility theory models the uncertainty of a 
single event with two numbers from the range [0,1]: the event’s 
possibility, which is the degree to which the event could be 
expected to happen, and the event’s necessity, which is the 
degree to which the event must happen.  These numbers are 
related in that the necessity of an event is equal to one minus 
the possibility of the event’s complement.  Despite possibility 
theory’s sophisticated uncertainty representation capability, its 
reasoning mechanism still does not intuitively capture 
causality.  Consider the following example and note the 
parallels to the example we used for fuzzy logic:  (Notation – 
for events A and C, and          , p>q, C|A:(p,q) states that 
the possibility of C given A is p and the necessity of C given A 
is q.)  Given the assertions C|A:(0.7,0.5), D|A:(0.4,0.3), 
E|C:(0.2,0.1), and E|D:(0.6,0.55), what is the possibility and 
necessity of E given A?  The answer is simply that the 
possibility is max(min(0.7, 0.2), min(0.4,0.6)) = 0.4 and the 
necessity is max(min(0.5, 0.1), min(0.3,0.55)) = 0.3.  As we 
discussed for fuzzy logic, this is a coarse treatment of causality. 

Probability theory is ideally formulated to represent 
complex causal interactions.  We assume that the reader is 
familiar with the formulation and reasoning mechanics of 
probability theory, such as the notions of sample spaces, 
probability distributions, and conditional probabilities.  Let us 
now narrow our focus to frameworks founded in probability 
theory.  Two groups of frameworks have been widely studied:  
those founded in Nilsson’s probabilistic logic [8], and those 
founded in Bayesian Networks [9]. 

Regarding Nilsson’s probabilistic logic-based frameworks, 
such as [6], we see the difficulty they encounter in the 
following example.  Recall that assertions in probabilistic DL 
are made probabilistic not by assigning them a probability, but 
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by declaring an interval in which that probability is said to be 
found.  This interval-based definition causes erosion of relative 
precision (measured as the width of the probability’s interval 
divided by its average) with every calculation.  Suppose we 
have two probabilistic axioms, “Tweety is-a Bird” with 
probability between 0.70 and 0.80 (relative precision 0.13), and 
“Birds can Fly” with probability between 0.90 and 0.99 
(relative precision 0.10).  We wish to find the marginal 
probability that “Tweety can Fly”.  Since the probabilities are 
only known as intervals, we must multiply their bounds to get 
the extreme cases of the marginal probability.  The lowest 
possible probability is 0.9 * 0.7 = 0.63 and the highest possible 
probability is 0.8 * 0.99 = 0.79, so the marginal probability on 
“Tweety can Fly” is within the interval [0.63, 0.79].  Notice 
that this interval has a relative precision of 0.23, wider than 
either of the relative precisions on the original axioms.  The 
representation of probabilities as intervals is an artifact of 
probabilistic DL’s foundation in Nilsson’s probabilistic logic 
[8], which is subject to the same decay in precision. 

Regarding Bayesian Network-based approaches, such as 
PR-OWL [3], BayesOWL [4], and P-CLASSIC [5], consider 
the notion of incompleteness in a domain.  Incompleteness is 
the under-definition of a domain’s uncertainty, i.e., the 
domain’s probability distribution could match one of a number 
of possible probability mass functions.  Recall that BNs assume 
completeness by assuming that all variables whose joint 
distributions are not completely known are independent.  
Semantic networks do not share this completeness assumption, 
so there are incomplete domains which can be represented with 
conventional semantic networks (sans uncertainty handling) 
but which can only be expressed with BN-based frameworks 
by making up unsupported and potentially inaccurate 
constraints.  Furthermore, we find notions which can be 
represented in semantic networks that are unintuitive when we 
try to express them in BNs even with complete information.  
For example, if we wanted to describe the probability 
distribution between the variable “airplane model” and a 
discretized “gas mileage” variable, the distribution would 
become unintuitive when we tried to define probabilities for the 
gas mileage of an engineless glider model.  Even the notion of 
context-specific independence [2] does not avoid this problem 
because it would still require the “gas mileage” variable to have 
some distribution given a “glider model” value, but any 
distribution, even independence, is unintuitive.  Disregarding 
uncertainty, a semantic network would have no trouble 
expressing this domain’s concepts , because it could simply 
omit the glider’s gas mileage property from any consideration. 

III. BACKGROUND – DESCRIPTION LOGIC 

We will briefly introduce a simple description logic with 
definitions and notation based on set theory.  The definitions 
are conceptually equivalent to formal description logic as 
presented by Baader et al. (2007) [1], but simplified for 
accessibility and more closely founded in set theory to simplify 
our derivations in Sections V-VII.  Our simplification is to 
ignore the possibility of mapping ontologies to multiple 
interpretations, and instead to just consider classes and 
individuals as simple sets under a single interpretation.  We 
believe that generalizing to multiple interpretations is possible 
and we will explore further in future work.   

The fundamental concept of description logic is the class 
(also concept), which is a set.  An individual is an element of a 
class.  A role is a binary operator acting from one individual 
(the owner) to another individual (the filler).  Classes, 
individuals, and roles generally have real world interpretations 
as categories, objects, and relationships between objects. 

While the words “class” and “concept” are for the most part 
interchangeable in description logic, “class” generally refers to 
a more set-theoretic notion of classes/concepts as groups of 
individuals, while “concept” is used in the context of the 
descriptive nature of classes/concepts, i.e. that they characterize 
the nature of the individuals in them.  We will mostly use 
“class” to emphasize the set-theoretic foundation of our theory. 

Atomic classes are irreducible.  They may be used in 
expressions called constructors to inductively define new 
classes, called constructed classes.  The permitted 
expressiveness of constructors is specific to the particular 
description logic being used.  Simple construction operators are 
complement, union, intersection, role existential quantification, 
and role value restriction; additional operators are defined in 
more expressive description logics.    In general, the more 
expressive a description logic is, the longer its reasoning takes 
and the greater the risk of it being able to express undecidable 
problems.  Ensuring decidability while achieving maximum 
expressivity is a pervasive issue in description logic research. 

Description logic makes the open world assumption: that 
the absence of a particular statement within a description of a 
domain does not imply that statement’s falsehood (or truth).  
The implication is that any description is incomplete, because 
we can always add new individuals, classes and rules to it.  
Here lies an important and subtle distinction: the open world 
assumption does not imply that every domain is necessarily 
infinite, but does imply that every domain is possibly infinite, 
i.e. cannot be proven finite.  For practical purposes we will 
assume than any description of a domain is finite, but admit the 
possibility that the domain which it describes is infinite. 

A. Notation 

⊤ (down tack character, not the letter) is the universal class, 
i.e., the class that includes all individuals.  Because ⊤ contains 
all individuals, it necessarily contains all nonempty classes.    
is the empty class, i.e., the class that contains no individuals. 

The complement of a class C,  C, is ⊤   . 

B. Asserting Knowledge 

In description logic, knowledge is expressed through 
assertional axioms and terminological axioms.  Assertional 
axioms are propositional: they characterize a single 
individual’s membership in classes.  Terminological axioms 
are predicated:  they define general rules applying to any and 
all qualified individuals.  The set of assertional and 
terminological axioms in an ontology are often referred to as 
the Abox and the Tbox, respectively. 

Definition 3.1:  An assertional axiom is a class assertion or a 
role assertion. 

 A class assertion declares that     for a class 
expression C and an individual a.  Description logic 
commonly uses the notation C(a). 
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 A role assertion declares that b R c for a role expression 
R and individuals b and c.  b R c states that c is a filler of 
the role R for an owner b.  Description logic commonly 
uses the notation R(b,c). 

Definition 3.2:                 
  .   

Intuitively, the role assertion b R c and the concept 
assertions      (i.e. b is a member of the class defined by 

having the role R with filler c) and     
   (i.e. c is a member 

of the class defined by being the filler of role R with owner c) 
all imply each other. 

Definition 3.3:  A terminological axiom is a statement 
asserting a relation between two classes.  Standard forms in 
description logic are subsumption, equivalence, and 
disjointness axioms. 

 A subsumption axiom is of the form    , for any 
classes or constructors C and D.      states that all 
elements of C are also elements of D. 

 An equivalence axiom is of the form    , for any 
classes or constructors C and D.      states that all 
elements of C are elements of D, and all elements of D 
are elements of C, i.e.         and    . 

 A disjointness axiom is of the form       , for any 
arbitrary concept expressions C and D.         states 
that there are no elements which belong to both C and D. 

In some ontology languages, such as the variants of OWL, 
knowledge can be presented and used in the form of property 
characteristics [7], which define specific inference rules for 
instantiations of properties such as functionality, transitivity, 
and symmetricality.  This expressive capability is fairly ad-hoc.  
In this paper we will only consider formal description logics, 
and therefore only property characteristics which can be 
directly expressed in them.  In the future, property 
characteristics’ analogs in BKO theory would probably be 
implemented as informal construction tools in an editor rather 
than formally in BKO theory, but we intend to investigate their 
formal inclusion in the theory as custom inference rules. 

C. Reasoning 

Terminological axioms are expressed as predicated 
statements, but used in arguments, they can be used to derive 
new assertional axioms.  These new assertional axioms can 
then be used in new arguments, revealing yet more axioms.  
Long chains of reasoning can form in this way.  These 
arguments hinge on the rule of universal instantiation, which 
simply states if something is true in general for all individuals 
in a class, it is true for each specific individual in that class.  
For our purposes we express the rule of universal instantiation 
as the basic property of set theory:  if     and    , infer 
   .  If        and    , infer    . 

IV. BACKGROUND – BAYESIAN KNOWLEDGE BASES 

Bayesian Knowledge Bases [12] (abbrev. BKBs) are a 
generalization of Bayesian Networks to admit incompleteness 
in the probability distribution.  BKBs model probabilistic 
knowledge in an intuitive “if-then” rule structure which 
quantifies dependencies between states of random variables.  
Reasoning with BKBs is performed as belief updating, which 

computes the posterior probability of a target variable state, 
belief revision, which computes the posterior probabilities of 
domain instantiations, and partial belief revision, which 
computes the posterior probabilities of sets of target variable 
states.  BKBs excel at modeling causal and correlative 
information because they inherently provide backtrackable 
explanations of simulation outcomes [15].  They see typical use 
on problems of human intent modeling, such as war gaming 
[11], predicting outcomes of strategic actions [14], and 
explanatory analysis of complex events [15]. 

There are two equivalent formulations of BKB theory.  
One, presented in Santos et al. (2003) [13], is founded on the 
notion of a BKB as a set of conditional probability rules 
(abbrev. CPRs) and the other, presented in Santos et al. (1999) 
[12], on the notion of a BKB as a directed acyclic graph.  We 
present a condensed version of the CPR-based formulation 
from Santos et al. (2003) [13].  The notation is slightly 
modified but expresses equivalent concepts. 

Definition 4.1 [Santos et al. (2003) Def. 2.1]:  Let A1 … An be 
a collection of finite discrete random variables (abbrev. rvs) 
where r(Ai) denotes the set of possible values for Ai.  A 
conditional probability rule (CPR) is a statement of the form 

     
         

        
            

      
    

for some positive integer n where          
  such that ij ≠ ik 

for all j ≠ k and p is a weight between [0,1]. 

A CPR R’s antecedent, denoted ant(R), is the conjunction 
of rv assignments to the right of the vertical bar.  R’s 
consequent, denoted con(R), is the rv assignment to the left of 
the vertical bar.  R states that given the consequent, the 
antecedent holds with probability p.  Each rv assignment in the 
antecedent is called an immediate ancestor of the consequent, 
and the consequent is called an immediate descendant of the rv 
assignments in the antecedent.  We can define this recursively 
over a set of CPRs for ancestor and descendant. 

Definition 4.2 [Santos et al. (2003) Defs. 2.2 and 2.6]:  Given 
two CPRs 

         
         

            
      

    , 

         
          

             
       

    , 

we say that R1 and R2 are mutually exclusive if there exists 

some 1 ≤ k < n and 1 ≤ l < m such that ik = jl and         .  
Otherwise, we say they are compatible. 

Intuitively, Definition 4.2 states that mutually exclusive 
CPRs’ antecedents are not simultaneously satisfiable because 
they are conditioned on different values of the same rv. 

Definition 4.3 [Santos et al. (2003) Def. 2.3]:  R1 and R2 are 
consequent-bound if (1) for all k < n and l < m,          

whenever ik = jl, and (2) in = jm but         . 

Intuitively, Definition 4.3 states that consequent-bound 
CPRs only conflict in their consequent.  Their antecedents are 
simultaneously satisfiable and their consequents assign 
different values to the same rv. 

Definition 4.4 [Santos et al. (2003) Def. 2.4]:  A Bayesian 
Knowledge Base B is a finite set of CPRs such that 

859



 for any distinct R1 and R2 in B, either (1) R1 is mutually 
exclusive with R2 or (2) con(R1) ≠ con(R2), and 

 for any subset S of mutually consequent-bound CPRs of 
B,             

Definitions 4.5-7 establish the concept of inferences, which 
are the basis of BKBs’ expression of probability distributions. 

Definition 4.5 [Santos et al. (2003) Def. 2.5]:  A subset S of B 
is said to be a deductive set if for each CPR R in S where 

        
         

            
      

    

the following two conditions hold: 

 For each k = 1,…, n-1 there exists a CPR Rk in S such 

that con(Rk) =     
     . 

 There does not exist some R’   S where R’ ≠ R and 
con(R’) = con(R). 

Intuitively, the first condition establishes that each CPR’s 
antecedents are supported by the consequents of other CPRs.  
The second condition requires that each rv assignment be 
supported by a unique chain. 

Definition 4.6 [Santos et al. (2003) Def. 2.7]:  A deductive set 
I is said to be an inference over B if I consists of mutually 
compatible CPRs and no rv assignment is an ancestor of itself 
in I.  The set of rv assignments induced by I is denoted V(I).  
The probability of I is defined to be                

Definition 4.7 [Santos et al. (2003) Def. 2.8]:  Two inferences 
are compatible if all their CPRs are mutually compatible. 

The following theorems establish that inferences can define 
a partial joint probability distribution. 

Theorem 4.1 [Santos et al. (2003) Theorem 2.2]:  For each 
set of rv assignments V, there exists at most one inference I 
over B such that V = V(I). 

Theorem 4.2 [Santos et al. (2003) Theorem 2.3]:  For any set 
of mutually incompatible inferences Y in B,             

Theorem 4.3 [Santos et al. (2003) Theorem 2.4]:  Let I0 be 
some inference.  For any set of mutually incompatible 
inferences Y(I0) such that for all        ,     , 
                  

 

 

Figure 1.  A hypothetical BKB fragment represented as a directed graph. 

Fig. 1 above presents a graphical representation of an 
example BKB.  Each black node (S-node) represents the 
weight of a CPR. Its parent white nodes (I-nodes) represent that 
CPR’s antecedent, and its child node represents that CPR’s 
consequent. 

V. BAYESIAN KNOWLEDGE-DRIVEN ONTOLOGIES 

For a domain description consisting of all of that domain’s 
known individuals and classes, an instantiation of that domain 
is an assignment of the known individuals to the known 
classes.  An individual may be assigned to one or more than 
one class, and a class may be assigned any number of 
individuals.  A BKO models a probability distribution over all 
of a domain’s possible instantiations.  BKO theory uses if-then 
rules over the distribution’s event space to restrict the 
distribution’s probability mass function (abbrev. pmf).  We 
describe these rules as “restrictions” on the distribution’s pmf.  
BKO theory supports incompleteness, i.e. it does not require 
complete definition of the pmf, so a valid BKO may be 
compatible with more than one pmf. 

To formulate this theory, we first define the nature of the 
distribution and its variables.  We then define expressions used 
to restrict probability mass functions over that sample space.  
Finally, we define the nature of a BKO as a knowledge base. 

A. Domain State Distributions 

Definition 5.1:  For a domain description consisting of a finite 
set of individuals {a1    m} and a finite set of distinct atomic 
classes {C1    n} and their complements { C1    Cn}, define 
the domain’s state distribution as a discrete multivariate 
probability distribution over the variables (referred to as atomic 

variables) Vij whose states are                      . 

The sample space of the state distribution is defined as the 
following cross-product: 

          

 

   

 

   

                 

 

   

 

   

 

Intuitively, the sample space consists of all possible 
combinations of complete descriptions of each individual’s 
memberships in classes.  In the context of domain instantiations 
as discussed in the introduction, each outcome of the sample 
space is one possible domain instantiation. 

Atomic classes and variables are insufficient for most 
reasoning tasks.  We can define new constructed variables over 
the sample space which can make use of constructed classes or 
recombine atomic classes. 

Notation:  A set of classes {C1    n} is said to span a class D if 
          D.  {C1    n} is said to be world-spanning if 
          ⊤. 

Definition 5.2:  Let Q be a domain containing an individual, a, 
and a world-spanning set of constructed or atomic classes  
{C1    n}, and let the domain have a state distribution with 
sample space Ω.  Then the set {C1    n}’s constructed variable 
is a variable V over Ω such that                   . 

Example 5.1:  Consider a domain describing a monochromatic 
ball.  The ball can have one of three colors: red, blue, or green.  
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These three colors and their complements are atomic classes, so 
the state distribution is multivariate over three variables with 
instantiations {“the ball is red”, “the ball is not red”}, {“the ball 
is blue”, “the ball is not blue”}, {“the ball is green”, “the ball is 
not green”}.  We know the ball is monochromatic, so the set of 
classes {red, blue green} is world-spanning and we can define 
a new variable with states {“the ball is red”, “the ball is blue”, 
“the ball is green”}. 

B. Restricting the Probability Mass Function 

In BKO theory, the pmf is restricted using probabilistic 
assertional axioms and probabilistic terminological axioms.  
Probabilistic assertional axioms are probabilistically 
propositional, i.e. they characterize a single individual’s 
conditional probability of membership in a class.  Probabilistic 
terminological axioms are probabilistically predicated, i.e. they 
define general rules which characterize the class membership 
distributions of any and all qualified individuals.  We will refer 
to both probabilistic and classical (i.e. non-probabilistic) 
axioms throughout the paper. 

Definition 5.3:  Let Ω be the sample space of a domain’s state 
distribution.  A probabilistic assertional axiom (PAA) is a 
conditional probability rule of the form  

              
               

         

       
      

     

where each Vk is a variable over Ω and         
        . 

Notation:  The PAA in Definition 5.3 above can be expressed 
equivalently using the following shorthand: 

         
         

        
      

     

This notation works because which variable each value 
belongs to is implicit in the value’s name.  Variables’ names 
carry no real meaning in a BKO.  In effect they exist merely to 
partition axioms, and that partitioning is derived directly from 
the axioms.  The exception is when a constructed variable 
shares a value with another variable, such as in Example 5.1, 
but this notation still holds because the values held in common 
between the variables are mutually implicative, i.e. they must 
either be assigned to both variables or neither.   

Definition 5.4:  A probabilistic terminological axiom (PTA), 
T, is a statement of the form                    for any 
classes C and D where         is the probability that any 
given individual x known to be a member of class C is also a 
member of class D. 

T’s antecedent, denoted ant(T), is the condition on x to the 
right of the vertical bar.  T’s consequent, denoted con(T), is the 
class membership assignment to the left of the vertical bar.  In 
this case ant(T) =         and con(T) =    . 

Definition 5.5: The instantiation of a PTA 
                     for an individual a is defined as 
                  . 

PTAs are not conditional probability rules as defined in 
BKB theory.  PTAs do describe a restriction on the pmf, but 
that restriction is not immediately applicable.  Rather, PTAs are 
predicated rules which may be used to infer additional 

propositions (see Section 6) and those inferred propositions are 
then applied to directly restrict the pmf.  Note also that all 
classical axioms can be represented as PAAs or PTAs: 

Definition 5.6:  A classical assertional axiom Z is equivalent to 
the PAA P(Z) = 1.  A classical subsumption axiom     is 
equivalent to the PTA                   .  A classical 
equivalence axiom C = D is equivalent to the set of PTAs 
                                       .  A 
classical disjointness axiom        is equivalent to the 
PTAs                    or                   . 

Proposition 5.1:  
                                      

C. Definition of a Bayesian Knowledge-driven Ontology 

To define a BKO as a knowledge base, we first extend the 
definitions of mutual exclusivity (Definition 4.2) and 
consequent-boundedness (Definition 4.3) to PTAs.  We make 
PTAs relatable to PAAs by considering PTAs as the set of all 
their possible instantiations and requiring mutual exclusivity or 
consequent-boundedness of all of those instantiations. 

Let                          

and                          

be two PTAs. 

Definition 5.7: T1 and T2 are mutually exclusive if          

Intuitively, Definition 5.8 is analogous to Definition 4.2.  
Mutually exclusive PTAs will never apply to the same 
individual in the same domain instantiation because that 

individual cannot be in both    and   . 

Definition 5.8:  T1 and T2 are consequent-bound if          

and         . 

Intuitively, Definition 5.9 is analogous to Definition 4.3.  
Consequent-bound PTAs only conflict in their consequent.  
Their antecedents are simultaneously satisfiable and their 
consequents assign different values to the same rvs. 

Let            
         

        
      

   be 

some PAA and                      be some PTA. 

Definition 5.9: R and       are mutually exclusive if there 

exists some 1 ≤ k < n such that     =     and    
     . 

Intuitively, Definition 5.9 is also analogous to Definition 
4.2.  R and T cannot be mutually exclusive unless con(R) is 
conditional on every individual in the domain not being in C, 
which is only possible if C =  .  For R and       to be mutually 

exclusive, ant(R) must contain a condition that     not be in C. 

Definition 5.10:  R and T are consequent-bound if    
      

for all 1 ≤ k < n and    
     . 

Intuitively, Definition 5.11 is also analogous to Definition 
4.3.  For R and T to be consequent-bound, ant(R) must be 
simultaneously satisfiable with all of T’s possible 
instantiations’ antecedents, and con(R) must assign a different 

value to the same rv as           . 
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Definition 5.11:  A Bayesian Knowledge-driven Ontology is a 
finite set of PAAs and PTAs such that 

 for any distinct PTAs T1 and T2 in B, either (1) T1 is 
mutually exclusive with T2 or (2) con(T1) ≠ con(T2), and 

 for any distinct PAAs R1 and R2 in B, either (1) R1 is 
mutually exclusive with R2 or (2) con(R1) ≠ con(R2), and 

 for any PAA R and PTA T in B such that          
 , either (1) R is mutually exclusive with T|a or (2) 
con(R) ≠ con(T|a), and 

 for any subset S of mutually consequent-bound PAAs 
and/or PTAs of B,             

Compare Definition 5.11 to Definition 4.4, the definition of 
a BKB.  Intuitively, the definition of a BKO ensures that all 
PAAs and all PTA instantiations, taken as a set of CPRs, could 
form a BKB.  The mapping is implemented in Section VII. 

Proposition 5.2:  Any subset of a BKO is also a BKO. 

Example 5.2: (This is a running example that continues in 
Sections VI – VII.) Here we introduce a simple BKO about two 
fish, “Tuna” and “Herring”.  Normal text indicates the entity is 
an individual or class, italics indicates the entity is a relational 
operator, and bold indicates the entity is a DL function. 

(1) Tuna, Herring   Fish 
(2) P(Tuna ate Herring) = 0.99 
(3) P(x   Predator | any x   ate(some Fish)) = 0.9 
(4) P(x   Has_Parasites | any x   Fish   Predator) = 0.3 

VI. THE PREDICATE REASONING METHOD FOR BKOS 

PTAs can be used to infer new PAAs analogously to 
classical terminological inferencing through the probabilistic 
rule of universal instantiation.  We prove below that once all 
such inferences have been made and incorporated into the 
BKO, the BKO is equivalent to a BKB and is ready to be 
reasoned over using BKB theory’s methods. 

Definition 6.1:  The probabilistic rule of universal 
instantiation states the following:  For a domain containing an 
individual a and a probabilistic terminological axiom 
                    , infer    . 

BKO predicate reasoning is simply the inferring of all 
possible PTA instantiations for a domain using the probabilistic 
rule of universal instantiation.  Any PTA can be instantiated for 
any individual, but in practice, instantiating all PTAs for every 
individual will create many PAAs with incomplete support 
chains.  Some of these can be pruned from the knowledge base.   

Definition 6.2 [equivalent to Santos et al. (1999) Def. 3.1]:  
A PAA R is said to be well-supported if there is some set of 
PAAs {S1 … Sn}, n ≥ 0, and some set of PTAs          , m 
≥ 0, and some set of individuals a, such that 

                                                         

If R is not well-supported, then it is said to be unsupported.  

S1…n and           
 are said to support R. 

Intuitively, a well-supported PAA is either unconditional, 
or the pmf is defined over its antecedents.  An unsupported 
PAA is one for which we know the pmf will be unconstrained 
and therefore unknown given its antecedents.   

We will now show that PAAs whose support chains are not 
fully well-supported may be pruned from the knowledge base 
without affecting its results. 

Definition 6.3: A PAA R is said to be grounded if it is 
unconditional or if its supporting rules are all grounded.  If R is 
not grounded, then it is said to be ungrounded. 

For any BKO B, let I(B) be the set of all inferences over B. 

Theorem 6.1: Let B be a BKO containing a set, Q, of 
ungrounded PAAs.  Then B – Q is a BKO and I(B) = I(B – Q). 

Proof:  By Proposition 5.2, B – Q is a BKO.  By Definition 6.3, 
an ungrounded PAA does not satisfy Definition 4.5 and 
therefore will never be part of a deductive set.  Therefore, no 
element of Q will ever be in an inference, so I(B) = I(B – Q). 

Definition 6.4:  A BKO B is fully-reasoned when for any 
individual a and PTA T, either       or     is ungrounded. 

Definition 6.5:  A BKO B is fully-grounded when all PAAs in 
B are grounded. 

A fully-reasoned BKO can be transformed into an 
equivalent BKB (see Section VII), but may still have rules in it 
that the BKB will not use.  By ensuring the BKO is also fully-
grounded we will avoid working with unnecessary rules. 

Example 6.1:  To render the BKO from Example 5.2 fully-
reasoned, we would infer the following PTA instantiations: 

(5) P(Tuna   Predator | Tuna ate(some Fish)) = 0.9 
(6) P(Tuna   Has_Parasites | Tuna   Fish   Predator) = 0.3 
(7) P(Herring   Predator | Herring ate(some Fish)) = 0.9 
(8) P(Herring   Has_Parasites | Herring   Fish   Predator) = 0.3 

Note that the antecedents are unsupported, but the information 
needed to make (5), (6), and (8) supported is clearly present in 
the BKO.  Generate PAAs (9), (10), and (12) to express 
description logic axioms that “bridge” these terms.  The lack of 
a solution for (11) shows where the reasoning chain for Herring 
breaks and becomes unsupported. 

(9) P(Tuna   ate(some Fish) | Tuna ate Herring   Herring   Fish) = 1 
(10) P(Tuna   Fish   Predator | Tuna   Fish   Tuna   Predator) = 1 
(11) P(Herring   ate(some Fish) | Herring ate ?   ?   Fish) = 1 
(12) P(Herring   Fish   Predator | Herring   Fish   Herring   

Predator) = 1 

To make this BKO fully-grounded, we follow the support chain 
from (11).  This leads us to prune (7), (12), and (8).  The BKO 
made by (1-6) and (9-10) is fully-reasoned and fully-grounded. 

VII. UNCERTAINTY REASONING FOR BKOS 

We now define the means of transforming a BKO into an 
equivalent BKB. 

Lemma 7.1:  Given a BKO B, the subset S containing all 
PAAs in B comprises a BKB. 

Proof:  By Proposition 5.2, S is a BKO and therefore obeys the 
constraints of Definition 5.12.  Since S consists entirely of 
PAAs, which by Definition 5.3 are CPRs, these constraints 
reduce to those of Definition 4.4, the definition of a BKB. 
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Theorem 7.1:  Given a fully-reasoned BKO B, the subset S 
containing all PAAs in B comprises a BKB with the same set 
of possible pmfs as B. 

Proof:  By Lemma 6.1, S is a BKB.  By Definition 6.5, all pmf 
restrictions due to the PTAs in B are present in S, so B and S 
both describe the same set of possible pmfs. 

Once a BKO is fully-reasoned, Theorem 7.1 means that its 
PAAs are a BKB, and can be reasoned over using BKB 
theory’s methods.  These are belief updating, which computes 
posterior probabilities of target variable states, belief revision, 
which computes posterior probabilities of domain 
instantiations, and partial belief revision, which computes 
posterior probabilities of sets of target variable states.  These 
can be conducted on a BKO-derived BKB just as for any other 
BKB as in [12].  The probabilistic membership query from the 
introduction is simply a partial belief revision problem. 

Example 7.1: BKB form of the fully-reasoned, fully-grounded 
BKO generated at the end of Example 6.1. 

 

VIII. CONCLUSION 

A new framework was presented for formal uncertainty and 
incompleteness handling in semantic networks.  The 
framework, called Bayesian Knowledge-driven Ontologies, is 
founded on a synthesis of description logic and Bayesian 
Knowledge Bases.  These knowledge representations’ theories 
are founded on compatible assumptions, so the synthesis is 
intuitive and powerful.  We presented a formal method of 
reasoning both logically and probabilistically on BKOs.

Our future work will define BKO theory fully based on 
Baader et al.’s (2007) description logic [1], including its more 
abstracted notion of classes and roles as formal concepts in 
models subject to interpretations.  We intend to codify 
reasoning algorithms and research their efficiency.  We will 
test implementations of BKOs in knowledge engineering 
problems.  We also intend to apply BKOs to our ongoing 
research in human intent modeling, and we are conducting 
investigations into using BKOs to enable more complex robot 
behaviors and machine reasoning.  We believe that BKOs are 
capable of subsuming semantic networks, so we intend to 
create a BKO extension of OWL which subsumes its current 
implementation.  On the subject of the semantic web, we 
believe that BKOs are capable of providing a formal method of 
solving several roadblocks in semantic web research.  Most 
immediately, BKOs enable the formal representation of 
uncertain knowledge, a roadblock which, as we show in 
Section II, had not been unreservedly solved.  Additionally, the 

formalization of ontology alignment and merging appears to be 
low-hanging fruit, thanks to existing work from BKB theory on 
the subject of merging knowledge from different sources [16].  
This would be a major step toward enabling fully autonomous 
ontology merging, which would make disparate knowledge in 
the semantic web much more machine-accessible. 
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