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Abstract 

Scientific methods that detect deception have been studied since 1895. Among them, 

computational methods have gained popularity in recent decades thanks to the 

development of artificial intelligence, (AI). Detecting deception by categorizing 

verbal/non-verbal cues using machine learning techniques has been the main stream 

approach in the field. We investigate deception detection methods that work on 

communication content in a written format. In this work, we propose that verbal/non-

verbal cues are simply artifacts created during the implementation of deception, and we 

instead study the cognitive process behind the formation of deception. We detect 

deceptive communication by modeling the cognitive process in deception, comparing the 

semantic structure of deceptive communication with that of honest communication, and 

identifying the patterns for deceptive reasoning. Our method differs from existing works 

by targeting at malicious intent instead of wrong information, by deriving observations 

directly from the intent to deceive, and by taking individual difference into consideration. 

As a result we are able to distinguish unintentional misinformation from intentional 

deception, an approach which no existing research has yet addressed. 

 

In representing the reasoning process of human communication we use Bayesian 

Networks. The contributions of our work lie with (i) its development of an alternative 

method of deception detection and improvement of detection performance by using the 

cognitive process in human argumentation, (ii) its exploration of the deep cognitive 

process in human argumentation through linguistic information, (iii) its ability to explain 

the way that a deceptive communication is formed and detected, (iv) its intuitive 



 iii 

representation of deceptive reasoning, which facilitates the corresponding explanation of 

the verbal cues of deception, and (v) its analysis of the impact of different types of 

deception datasets on the detection performance. We propose to compare our approach 

with verbal cues in terms of accuracy and reliability. Our ultimate goal is to obtain a 

better understanding of how humans reason, the decisions they make when they decide to 

deceive. 
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Chapter 1 Introduction 

1.1 Overview  

Human beings develop the skill of deception in early childhood (Ford, 1996), and 

improve the skill of deception through practice as they age. By recognizing the effect of 

his words or actions on the receiver’s beliefs, an experienced deceiver can manipulate the 

behavior of another person. Deceiving, in most cases, is a malicious act that by altering 

receivers’ knowledge through false information can bring long-term and irreparable harm 

to receivers. However, deception detection is extremely difficult. Human deception 

detection skills have been found to only be slightly better than chance – more precisely, 

45% to 65%, thus implying that human detection skills are typically no better than 

random guessing (Millar and Millar, 1997). When faced with lies on random topics, 

professional detectors such as police and customs inspectors perform no better than non-

professional detectors (Bond and DePaulo, 2008). Past research that reported the 

existence of competent human detectors was found to be flawed by statistical error (Bond 

and Depaulo, 2008). Although detection rate can be slightly boosted by being more aware 

of deception, detection skills cannot be significantly improved through training because 

general heuristics cannot be applied to specific individuals (Ford, 1996; Johnson et. al, 

2001). Johnson et al. (2001) noticed that people learn knowledge about how to apply 

detection heuristics from past experience only if a particular form of deception is frequent. 

However, deception detection is a low base-rate task as deception occurs infrequently, 

especially in domains where face-to-face interactions and feedback are available to 
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facilitate truth-telling (Johnson et al., 2001). Therefore, people’s experience in detecting 

deception is fraught with failure.  

 

In modern times, deception detection becomes an even more critical capability since 

modern communication technologies, such as online social networks, enable people to 

communicate in a wider scope at a faster pace. Information exchange may be performed 

using anonymous identities and without geographical as well as (sometimes) language 

indicators. In a society where different sectors are closely connected, deceptive 

information can spread quite rapidly with attendant negative consequences. Furthermore, 

communication through the internet such as via emails, blogs and twitters also eliminates 

leakage of nonverbal cues while delaying the need for immediate unprepared responses – 

which detectors heavily rely on. Additionally, communication over long distance with 

little social presence may increase the risk of deception by encouraging norm-breaking 

behaviors (George and Carlson, 1999). Evidence shows that people's average detection 

rate in computer-mediated communications is worse than a random guessing (Zhou and 

Zhang, 2012). This makes the development of a technology that can accurately and 

reliably detect deception in our modern context an urgent and important task. 

 

To have a machine accomplish a cognitive function that even humans cannot do well is 

very challenging, but fortunately, machines are able to overcome certain obstacles that 

deter humans from uncovering truth. First of all, humans tend to believe in whatever they 
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want to believe rather than the facts. According to Ford (1996), when new information is 

received by the human brain, it is checked against old information, and registered if it is 

inconsistent with the old information. However, if the new information is incompatible 

with desires, it will not reach our consciousness, nor activate alarms that may alert the 

receiver to be aware of deceptions. On the other hand, machines do not conceal 

information. They store information completely, and detect/calculate inconsistency 

precisely.  

 

Interpersonal Detection Theory (IDT) (Buller and Burgoon, 1994) illustrates that a 

human’s cognition and behavior during a deceptive interchange varies according to the 

role of and/or the listener’s relationship with the speaker – supposing that the person who 

gives information is the “speaker” and the person who receives information is the 

“listener”. People are highly inclined to trust the communication of their relational 

partners, which is defined as truth-bias by McCornack and Levine (1990). Social 

Facilitation Theory (Zajonc, 1969) suggests individuals perform differently if there are 

others involved compared to how they perform if alone. Consequently, listeners perform 

poorly in deception detection because they are involved in communication with deceivers 

(George and Marett, 2004). In contrast to humans, machines are not influenced by the 

social context and can judge each individual interaction impersonally. The drawback of 

machines is their lack of ability to handle the subtleness and ambiguity in linguistic 

content. However, the rapid development in AI has started to equip machines with 

human-like reading and comprehension capabilities so that they can process the 
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semantics of natural language for uses such as morphological analysis that determines 

words, nonword tokens, and parts of speech in a sentence, shallow syntactic parsing that 

identifies some phrasal constituents without indicating their internal structures and 

functions in a sentence, and lexical semantic analysis interprets the meaning of words 

without resolving the entire sentence’s meaning, to name a few (Zhou and Zhang, 2012). 

Historically, the first machine that assisted deception detection can be traced back to 

1895, when a device was invented to measure the change in blood pressure for police 

cases (Inbau, 1948). To detect physiological responses to deception, machines such as 

polygraphs and functional MRIs are now used by professional polygraphers. Although 

the accuracy can be as high as 100% when multiple machines agree, the cost was shown 

to be extremely high. Besides, invasive methods that measure physiological signals aren’t 

so easy to apply in group conversations (Hung, 2012). 

 

By observing the detection methods of successful human detectors, researchers posited 

that clues in communication channels such as words, cadence, volume and pitch of the 

voice, facial expressions, movements or posturing of the trunk and limbs, and observable 

physiological reactions to emotion are effective indicators of deceivers. Professional 

poker players, who are among the most competent human detectors (Ford, 1996), are able 

to detect deception by observing opponents’ gestures and facial expressions. In order to 

find clues as to the cards their opponents are holding and the actions they may take, the 

poker players rely on catching such clues. Use of these behavioral cues or “non-verbal 

cues” has gained popularity among researchers for the past several decades. However, in 
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long-distance communication non-verbal cues are more and more difficult to capture due 

to the less frequent face-to-face communications.  

 

It was only recently that people have started to look at the verbal cues for detecting 

deception. Verbal cues refer to the subjective and objective features related to the 

wording and phrasing patterns in the content of communication - quantity, nonimmediacy, 

diversity, specificity, language complexity, cognitive complexity, informality, 

expressivity, affect, and uncertainty, to name a few. Psychologists and linguistics have 

found that deceivers tend to use words and phrases with certain cognitive features more 

often than truth tellers. These observations can be tied to their psychological states. 

DePaulo etc. (2003) provided a comprehensive review of both verbal and non-verbal cues 

that have been used by researchers. Despite all the successes with verbal-cues, the 

reliability of verbal-cues for deception detection is still questionable. For example, it is 

not difficult for a deceiver to change the wording once the deceiver knows the triggering 

words or if the deceiver has time to prepare for a response especially if the deceiver is 

communicating by asynchronous communications. Asynchronous communication refers 

to written communication that can be planned such as reports and emails. Synchronous 

communication refers to more instant communication such as instant messaging and 

audio conferencing. Also, wording styles are different from person to person and are 

mediated by culture. Lastly the framing of the question can also influence the framing of 

the response (e.g., the answer to the question “Did you go to class today?” always starts 

with “Yes, I” or “No, I”). Thus, detection using verbal cues is in general limited to 
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informal and unplanned communications, and generally results in detecting typically 

daily lies. In this thesis, we focus on formal and asynchronous communications since 

they are where conventional detection technologies such as verbal cues are not applicable 

and where deceivers could cause catastrophic damage without being questioned 

immediately such as financial losses caused through cognitive hacking (Cybenko et. al, 

2002), behavior manipulation targeted by propaganda (Miller, 2004), and security risk 

posed by malicious insiders (Santos et al., 2012).  

 

1.2 Problem Definition 

Over the centuries, in order to detect deception people have been completely dependent 

on the clues that deceivers “leak” during deceptive interchanges. It seems that detecting 

deception from the lie itself is a “mission impossible.” Researchers have a deep 

understanding of why and how humans deceive, but the ability to deceive does not seem 

to transfer to the ability to detect deception, and no person or method has shown to be 

dominantly more successful than others. In this dissertation, we propose a method that 

detects deception by ascertaining and then detecting the reasoning of deceivers. Consider 

the strategy that the thieves used to rob the vault in the movie Ocean’s Eleven (2001). In 

the movie, the thieves silently broke into the vault, but at the same time revealed to the 

owner that he was being robbed in order to negotiate with him. They threatened to blow 

up half of the money in the vault if the owner did not let them leave with the other half. 

Note that the negotiation is very risky as a rational owner is unlikely to accept the 

negotiation in order to prevent future crimes. As such, it appears to be unreasonable for 
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the thieves to take only half of the money with such a risky negotiation. There must be a 

better explanation for such negotiations assuming the thieves are rational. In the movie, 

the owner called the police and a confrontation in the vault resulted in an explosion that 

“destroyed” all the money. The result seems unfavorable to both the owner and the 

thieves. However, given that the thieves had expected the owner to call the police, and 

that the only people who could freely move in and out of the vault are police officers, it is 

reasonable to assume that the thieves disguised themselves as the police in order to walk 

out with the money. Reasoning in this way, the negotiation, the confrontation in the vault 

and the explosion of the money can all be explained. As we can see from this example, 

investigating the reasoning of deceivers by connecting all the observations and finding 

the best explanation from deceivers’ perspective can help identify deception and recover 

truth. Although the deceivers try to hide their true intent they cannot avoid showing some 

unexpected/inconsistent behaviors such as the aforementioned negotiations because of 

the deceivers’ goal of leaving the vault safely. Furthermore, the whole of their behaviors 

can be better explained by a malicious hypothesis (which is to steal all the money as well 

as leave safely) than with the deceptive hypothesis (which is to steal only half the money 

and take a risky strategy).  

 

1.3 Scope of Deception 

Many definitions of deception arise from numerous disciplines and situations studied 

(Whaley, 1982; Burgoon and Buller, 1994; Baron 1988; Barnes 2007; Mahon 2008). 

Whaley (1982) defines deception as information designed to “manipulate the behavior of 
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others by inducing them to accept a false or distorted presentation of their environment- 

physical, social, or political”, and Burgoon and Buller (1994) defines deception as a 

“deliberate act perpetrated by a sender to engender in a receiver’s beliefs contrary to what 

the sender believes is true to put the receiver at a disadvantage”. The definition has been 

argued by philosophers over the centuries. The main argument focuses on the 

intentionality of deception and the making of a false statement. Although a number of 

philosophers hold that deceiving may be unintentional (Demos 1960; Chisholm and 

Feehan 1977; Adler 1997; Gert 1998; Fuller 2008), many others have argued that it is not 

possible to deceive unintentionally (Linsky 1963; Van Horne 1981; Barnes 2007). The 

objections on the making of a false statement claim that any statement made with an 

intention to deceive is a lie (Bok 2001; Barnes 1994; Davidson 1987). Other arguments 

are centered on the success of deception (Ryle 1949), the speaker’s belief on the false 

information (Linsky 1963; Fuller 2008; Schmitt 1988; Barnes 2007) and whether the 

making of a statement is necessary for deception (Vrij 2008; O'Neill 2003; Ekman 2009; 

Scott 1994). Due to the large disagreement on the definition of deception, the purpose, in 

this section, is to define the scope of deception that our research is focused on. Our 

concept of deception is defined in particular as follows (Burgoon and Buller, 1994): 

In a deceptive communication, 

 The information is false from the speaker’s point of view.  

 The act is intentional. 

 The purpose is to take advantage of the listener.  
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As researchers suggest (Pinto, 2001; Levi, 1996), attitudes are beliefs with varying 

degrees of confidence. Therefore, it is more reasonable to represent a speaker’s point of 

view as belief with uncertainty. In this sense, the “information” in the first bullet refers 

not only to the speaker’s polarity of belief, but also to his degree of belief. It follows that 

any significant deviation from one’s degree of belief can be deception. For example, 

hiding can be a deviation from certain belief (knowing something for sure) to uncertain 

belief (being indifferent to options) and fabrication can be a deviation from uncertain 

belief to certain belief. The second bullet constrains deception to intentional behavior. 

Intentional behavior refers to "action that the agent does for a reason" (Goldman, 1970), 

and it is impossible to perform an intentional action without some appropriate reason 

(Davidson, 1980). Thus, assuming an agent carries out an action for the reason A, the 

components of his intentional behavior are: the desire of A (motivational aspect), the 

belief that he will do A (settling aspect), and a plan B to realize the desire 

(representational aspect) (Mele, 1992). In the context of reasoning, reasoning based on 

arguments is not an intentional behavior because the belief in the arguments is not a 

desire, but a perception of the world. On the other hand, reasoning according to 

conclusion is an intentional behavior because it is driven by a desire to convince the 

listener of the validity of a specific conclusion, a belief that the speaker will carry out the 

conversation, and a plan to do it by deriving convincing arguments. Intention was also 

discussed with the concept of “direction of fit” (Humberstone, 1992). Direction of fit 

distinguishes two attitudes relating propositions to the world (Velleman, 1992): beliefs, 

that aim at the truth and so aim to fit the world in a mind-to-world direction, and desires, 

that normally express a yet to be realized state of affairs and so have a world-to-mind 

http://en.wikipedia.org/wiki/Proposition
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direction of fit. An intentional act, from Velleman’s view (1992), simultaneously contains 

both the mind-to-world and the world-to-mind directions of fit. This concept again 

confirms that inferring conclusion from arguments is not an intentional behavior because 

arguments are a speaker’s beliefs about the world. Reasoning from arguments conceives 

the world in a mind-to-world direction. World-to-mind fit occurs when a speaker claims 

that his conclusion is true regardless of the observations. If his arguments reasonably 

support the claimed conclusion, a mind-to-world fit is also presented. Derived from a 

desired conclusion, deception belongs to an intentional behavior. The third bullet 

specifies that deception is a malicious behavior. By defining deception in this way, we 

exclude daily lies such as white lies, mental disease, self-deception and children’s blatant 

deceptions. Deceptions that fall in this definition are more interesting for research 

purposes because they are more damaging and more common in professional arenas.  

 

Deception can be categorized based on the cognitive load that is put on the deceiver. In 

first-order deception, the deceiver is aware of the listener’s beliefs. In second-order 

deception, the deceiver considers the listener’s evaluation of the speaker’s own belief. 

Third-order deception considers the listener’s evaluation of how the speaker would 

evaluate his belief, and so on. In our thesis, we restrict ourselves to first order deception 

since first order deception is most common. Higher order deception is the focus of 

interpersonal deception, the detection of which requires knowledge of the listener’s intent 

in addition to the speaker’s communication content. Moreover, we assume that the 

speaker’s communication content does not change according to feedback. Although IDT 
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argues that speakers react to the listeners’ suspicion display, the theory provoked a 

number of disagreements. Research that tried to validate this theory through empirical 

studies (Vasilyeva and Frank, 2011) reached the contradictory conclusion that deceivers 

do not always monitor their interlocutors’ behavior. Instead, they found that most 

deceivers ignore the feedback from the other party and stick with their preplanned 

strategies as the communication moves on. Lastly, we require that a sufficient level of 

reasoning is involved and presented in the communication content, as opposed to 

communication with only “yes/no” answers or communication that simply expresses 

emotions. 

 

Deception has also been categorized based on the technique used for the deception, the 

purpose of the deception and the tactics of the deceiver. The most commonly accepted 

taxonomy of deception belongs to Bell and Whaley (1991). In this research, we do not 

intend to develop a new taxonomy of deception, but we plan to propose a model that has 

the potential to be general enough to categorize deception based on the existing 

taxonomy. 

 

Some unintentional deviations from one’s original beliefs (referred to as misinformation) 

can be easily confused with deception, such as opinion change, innovation, and 

misinformation. They should not be regarded as deception because they do not possess all 

three elements in the definition of deception. In this dissertation we plan to distinguish 
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the non-deceptive misinformation from deception by hypothesizing that deceivers’ 

reasoning patterns are unique to deception but not to other unintentional misinformation. 

 

1.4 A Review of Computational Methods of Deception Detection 

Computational methods of deception detection are mainly focused on three types of 

approaches. In one method, people search for verbal and non-verbal cues in the content of 

deceptive interchange. In the second, people consider deception types and taxonomies, 

and use different counter strategies to detect and reverse deception. In the third, social 

networks are used to evaluate the trust and reputations of agents. We will discuss each 

type of the approach in this section. 

 

To find mechanisms that help detect deception, researchers looked for behavioral cues 

from animal behavior (Wile, 1942), child behavior (Sodian, 1991), military behavior 

(Cruickshank, 1979), athletes behavior (Brault, et al., 2012) and internet behavior 

(Grazioli and Jarvenpaa, 2000). Some researchers attempted to study both behavioral and 

verbal content, which offered them more evidence for identifying potential conflicts or 

inconsistencies. Heuristics are applied to measure the cues in the verbal and behavioral 

channels both qualitatively and computationally. Qualitative evaluations include cues 

from verbal content such as the action of depersonalizing one’s answer by offering his 

belief on the subject instead of answering directly, cues from the manner of 

communication such as reactions that are out of proportion to the question, and cues from 
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deceivers’ psychological state, such as the tendency to suspect others. Computational 

measurements, on the other hand, carefully encode the cues into numerical values and use 

statistical tools to measure significance. DePaulo et al. (2003) summarized most of the 

existing works on deceivers’ computational cues and placed them into five categories: (i) 

liars are less forthcoming than truth tellers, (ii) liars tell less compelling tales than truth 

tellers, (iii) liars are less positive and pleasant than truth tellers, (iv) liars are more tense 

than truth tellers, and (v) liars include fewer ordinary imperfections and unusual contents 

than truths tellers. Specific and quantifiable cues under each category are evaluated 

according to their significance to detection. The combination of significant cues can 

achieve an average detection rate of 70%. However, a large number of non-verbal cues 

are micro-expressions that last less than one-fifth of a second. They can be easily 

overlooked by human detectors. To elicit more emotional responses from deceivers, rules 

were proposed as to how to question deceivers (Lieberman, 1999), but the effect is yet to 

be tested. With people relying more frequently on communications through media, 

detection based on verbal content becomes more critical. Verbal cues are intuitive 

indicators of deception because the heavy cognitive load and the psychological reactance 

of deceivers make them use different words and compose different sentences during a 

deceptive interchange. Verbal cues are also easy to retrieve. Most of the modern 

communications including audio, video and written ones are recorded in one form or 

another. Verbal cues are simply retrieved from the appearance of words and attributes of 

words such as sentiment of words. Then classification tools from machine learning and 

statistics are used to classify deceptive stories based on the attributes. Many studies have 

proved the accuracy of verbal cues and found explanations of the cues in psychology and 
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cognitive science. Mihalcea et al. (2009), as one of the pioneers in the study of verbal 

cues, proposed ten classes of words that have the most discriminative power to classify 

texts to deception/truth. They observe that among all discriminative classes, the classes of 

human-related word show detachment from the self in deceptive stories and close 

connection to the self in honest stories; words related to certainty are more dominant in 

deceptive stories; and the belief-oriented vocabulary is more indicative of truth. The 

detection performance of verbal cueing varies between 65% and 75% according to the 

topic of a dataset. However, verbal cues in stories of one topic do not apply to stories of 

another topic. 

 

Despite the recognized success of verbal and non-verbal cues, we find these approaches 

to be limiting and potentially problematic. First of all, they hold the wrong assumption 

that heuristics derived from the general population can be applied to individuals. In 

cueing methods, individuals are always compared with the general population. Since 

words rarely used by the majority of truth tellers are identified as “discriminative words” 

for deception, whoever happens to frequently use these “discriminative words” are 

always classified as deceivers. This is incorrect because according to the definitions of 

deception, deception is a wrong belief from the deceiver’s point of view. It is not related 

to what the general population believes or what is “rational” according to the public 

standard but only depends on the speaker himself. Pinto (2001) says: “when people 

cannot be expected to realize that their premises are inconsistent, their guilt is not so 

clear.” It means that if a person truly believes in what he argues no matter whether it’s 
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true or not in reality, he is not guilty of deception. For example, a person who does not 

believe in the existence of god but claimed himself to be a Christian was not deceiving if 

he truly believes that Christians do not assume the existence of god. Thus, using general 

rules to identify deceiver should be avoided, and it should only be the last choice when 

personal information about the speaker is unavailable. On the contrary, an effective 

detection method should measure the deviation from the self in addition to the deviation 

from the general population. Secondly, the intent of the speaker cannot be revealed from 

verbal or non-verbal cues. Although deceivers are found to be more cognitively 

challenged, guilty, anxious or insecure than a person who is telling the truth (DePaulo et 

al., 1985), not everyone physiologically reacts the same to anxiety-provoking situations 

(Ford, 1996; Hung, 2012). The intent of frequent blinking can be nervousness, the intent 

of pauses in sentences can be heavy mental activities, and the intent of increased pitch of 

voice can be emotional change. These physiological actions may be observed more often 

in deceptive communication, but they are neither sufficient nor necessary indicators of a 

malicious intent of deception. If we refer back to the three elements of the definition of 

deception (Burgoon and Buller, 1994) (the information is false from the speaker’s point 

of view, the act is intentional, and the purpose is to take advantage of the listener), it is 

not difficult to conclude that deception is not the act of showing abnormal behavior itself, 

but a malicious intent that may result in unexpected behavior. What follows this 

definition is that unintentional deviations from the self such as misunderstanding, wrong 

assumptions and changed opinions are excluded from the definition of deceptive 

communication. However, none of the existing methods or deception datasets attempt to 

discriminate unintentional errors from intentional deception. Another concern occurs to 
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us following the concept that deception is driven by intent. Verbal cues are not the direct 

products of deceptive intent but the artifacts, and some non-verbal cues are merely the 

by-products of deception. As an artifact, the generation of verbal cues has been mediated 

by the mental state of the speaker and the communication environment, such as the 

wording style of the speaker and the framing of the question. It is hard to eliminate the 

“seasoning” from these processes. As a result, cueing methods only apply to a limited 

number of situations, and the detection heuristics are obtained from trial and error as 

opposed to derived by fundamental theories. To reveal the true intent of a deceiver from 

the communication content, we need to move closer to his mental process than verbal 

cues seem to allow.  

 

Methods beyond word-level detection include part of speech (POS) tags, Linguistic 

Inquiry and Word Count (LIWC) (Pennebaker et al., 2007), and rhetorical structures 

(Rubin and Vashchilko, 2012). In Ott et al. (2011), the authors found that in addition to 

wording, POS also reveals the writing style of an individual, and performed genre 

identification through the frequency distribution of POS tags in a text. LIWC is a 

computerized text analysis program that outputs the percentage of words in a given text 

that fall into one or multiple linguistic (e.g., the rate of misspelling), psychological (e.g., 

anger, achievement), personal (e.g., leisure, money) and spoken (e.g., filler and 

agreement words) categories. LIWC is widely used in social science to analyze the 

cognitive features of texts, and is used in (Newman et al., 2003; Ott et al., 2011; Hancock 

et al., 2007) for detection deception. Deceptive texts, from Rubin and Vashchilko’s view 
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(Rubin and Vashchilko, 2012), can be identified by their rhetorical structures, that is, 

relationship between sentences, thus, they proposed a model that incorporates sentence 

structures and text coherence analysis in the interpretation of communication. The 

attributes of text-level and cognition-level may be more reliable than word-level features 

under variable environrmments, but word-level detections still remain to be the most 

accurate method. Since communication starts with the formation of arguments, it is 

reasonable to assume that deception is rooted in the formation of deceptive arguments. 

Unfortunately, in reviewing the literature, we have not seen a cueing method that is 

closely connected with the intent or the formation of deception no matter whether they 

classify based on words, sentence structures or cognitive features. To develop an accurate 

and reliable model of deception detection, we claim that researchers need to refer to the 

knowledge of deceivers and the process of deceiving in order to identify the essential 

uniqueness of deceivers. 

 

To the best of our knowledge, although the problem of neglecting personal difference has 

been pointed out in recent research there is not yet a good solution to it. The problems 

with respect to the intent of deception are slightly touched upon by another school of 

research that identifies deception by the tactics of deceivers, although not yet deeply 

studied and discussed. The most compelling work in this school is the taxonomy of 

deception by Whaley and Bowyer (Bell and Whaley, 1991; Bowyer, 1982), who 

proposed to categorize deception based on the goals of deceivers. According to (Bell and 

Whaley, 1991), deception can be categorized into simulative deception and dissimulative 
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deception. The aim of simulative deception is to create false beliefs. It is thus further split 

into Mimicking, Inventing, and Decoying. Dissimulative deception focuses on hiding the 

truth, and is divided into Masking, Repackaging, and Dazzling. This taxonomy of 

deception is very important. It provides a theoretical basis to the research that studies the 

classification/identification of deception tactics. For example, Johnson et. al (2001) 

examined the way that auditors detect malicious manipulations of financial information 

by management who purposefully make the company appear more profitable than it 

actually is. Inspired by the detection strategy of auditors, Johnson et. al suggest the use of 

four processes to detect deceptions. Firstly detectors compare expectations with observed 

values. The magnitude of the discrepancy between them determines whether to activate 

further checks. If further checks are needed, detectors attempt to generate deception 

hypotheses about suspected manipulations in the environment. The hypotheses are 

generated according to the domain knowledge of financial fraud and the taxonomy of 

deception. Then, in order to evaluate the hypotheses, the representation of the observed 

environment is edited so that it is consistent with the hypothesized manipulations. Finally, 

all accepted hypotheses are combined to produce a final outcome. The detection model is 

found to perform better than human auditors. Deception tactics also frequently appear in 

warfare. In the work of Yuan (2007), the author proposed a detection method 

incorporated with an Adversary Intent Inference (AII) model in order to detect deception 

tactics in warfare. The AII model is used to infer the goals and actions of an agent given 

observed behaviors. After discrepancies are obtained by comparing the goals and the 

actions, deception branches that encode deception tactics according to the observed type 

of deception are attached to the original model in order to update the inference and 
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reduce the discrepancies. Different strategies are employed to detect simulative and 

dissimulative deceptions because of their different natures. This process is iterated until 

the goals and the actions converge. Another approach which prototypes a model 

combining many deception detection techniques was proposed by Vyas and Zhou (2005). 

The model covers a holistic detection process including searching for vulnerabilities and 

indications, analyzing logged information, and undoing the damages from deception. The 

intent of the deceiver and the environment are taken into consideration in order to collect 

more precise indicators. For example, potential deceptions can be indicated from specific 

vulnerabilities of the environment that may motivate the malicious intent of an agent and 

from any manipulation of the environmental information.  

 

A third school of detection methods utilizes credibility or reputation of agents by 

querying their relationships with others during social interactions, pioneered by Schillo, 

et al. (2000). Their model of trustworthiness is built upon the agent’s knowledge of the 

other agents’ past behavior, honest or deceptive. The model may converge accurately 

after several rounds of decision making. However, the failure to catch the deceiver in the 

early rounds may result in irreversible loss. Moreover, this school of work is targeted at 

identifying deceptive sources by leveraging the experience of socially related entities but 

not by understanding the behavior or the communication of deceivers. In contrast to these 

approaches, our goal is to systematically study the intent of deceivers, and thoroughly 

analyze the observables of their intent. 
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The research that models the tactics of deceivers tackles the problem of deception 

detection in a top-down fashion, whereas studies measuring cues approach the problem in 

a bottom-up way. The former research provides a theoretical basis to the detection 

methods, but is usually domain specific and can only apply to datasets with restricted 

assumptions. Johnson et al.’s model is only applied to accountant reports; in Yuan’s work, 

deception tactics are retrieved from a library of strategy fragments; Vyas and Zhou 

assume that entities in the environment have a conflict of interest and that the entities 

have up-to-date knowledge about the environment and each other. The later research 

evaluates verbal cues from real world datasets through trial and error without linking the 

findings to an overarching framework. In this dissertation, we attempt to approach the 

problem in both ways. Linking theoretical models of detection with real world data is an 

essential process of the study because on the one hand the theories can guide and support 

the exploration of empirical analysis, and on the other hand the empirical observations 

can evaluate the assumptions and hypotheses proposed in the theoretic model. In addition, 

we claim that by studying the reasoning of deceivers we can solve the problems that 

conventional methods are faced with in a radical way because the reasoning process of a 

speaker is directly driven by his intent. We want to develop a generic framework that can 

model the reasoning process of deceivers and then apply it to datasets of different topic 

domains. 

 

1.5 Goal, Novelty and Contribution of this Dissertation 
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The purpose of this dissertation is to understand and quantify the reasoning of deceivers 

and provide a computational method of detecting deceptive reasoning with improved 

performance and reliability without losing the generality of modeling human intent. Our 

intuition is that a deceiver’s goal of communication is to provide strong arguments for a 

falsified conclusion, whereas a truth teller’s goal is to derive a conclusion based on 

arguments. In order to reach their communicative goals, deceivers need to presuppose 

their falsified conclusions before they form arguments. Due to this presupposition, 

deceptive arguments can be identified by looking for a speaker’s deviation from himself 

and his discrepancy with truth tellers. Deviation from the self determines whether the 

speaker is acting like himself or not, whereas discrepancy with truth tellers determines 

whether the speaker is convincing or not. Violation of the two is an essential behavior of 

a deceiver. Since the presupposition of a falsified conclusion is an inevitable process in 

deception the reasoning patterns become the fundamental difference between deception 

and truth, and the identification of unique patterns becomes an accurate and reliable 

method of deception detection.  

 

The novelty of this work is that it proposes an over-arching framework of deception 

detection independent of domain knowledge, performs empirical analysis based on 

observed patterns of deception, and connects the theoretic framework with the 

observational experience in such a way that the observations can be explained by the 

framework and the framework derives hypotheses of observation. We will show in the 

experiments that linking the theoretic framework with empirical studies is not a 
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straightforward task since many of the assumptions in the theory do not apply to the real 

world, and the noise and imprecision of real world data needs to be handled carefully. 

However, thanks to this connection, our work also bridges the gap between the 

qualitative evaluations and the quantitative measurement of attributes in communication 

content such as the convincingness of a text by retrieving and modeling the semantics of 

communication content.  

 

To accomplish these goals, we propose to: 

 Develop a domain-independent model that can capture the reasoning process of 

deceivers by realizing and enriching theories in cognitive science through 

computational methods. More specifically, we take advantage of the ideas in the 

theories of argumentation and the advanced techniques of knowledge retrieval and 

knowledge representation in AI.  

 Detect deception through identifying and measuring unique reasoning patterns of 

deceivers. This method is threefold: it effectively improves the performance and 

reliability of deception detection, it explains deceptive communication in terms of 

the reasoning process of deceivers, and it guides the future development of cueing 

methods by finding the correspondence between the analytical results generated 

by the detection and the cues in the observational research. 

 

The contributions of this work include the following: 
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1. Provide a domain-independent model of intent-driven reasoning. 

a. Propose a cognitive model of deceptive and honest reasoning. 

b. Propose, implement and analyze methods to retrieve semantics from natural-

language stories. 

c. Represent and infer human knowledge using computational methods 

2. Provide a computational method of deception detection using human reasoning 

a. Propose and implement a framework of deception detection 

b. Explain deception in terms of deceiver strategy and detection process 

c. Quantify and verify reasoning patterns of deceiver 

d. Analyze sensitivity of detection to parameters of datasets and speakers 

 

This dissertation is organized as follows: In Chapter 2, we explain our intuition for using 

reasoning to detect verbal deception, which is followed by the description of our 

framework in Chapter 3. We also illustrate the application of our model using an easy to 

understand example. In Chapter 4, we discuss the performance of our model when 

applied to real world datasets, followed by a description of the techniques we use to 

process real data. We then discuss some observations from our analytical study. We 

finish up with a discussion of conclusions and future works in Chapter 5. 
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Chapter 2 From intent to reasoning 

2.1 Overview 

To detect deception effectively we want to look for the intent of deception and its direct 

product, but, why is intent so important in deception detection? First of all, we argue that 

deception is driven by malicious intent. Malicious actions are persistent. They do not 

only bring about damage by transmitting wrong information, but also purposefully aim at 

vulnerable targets over a long period of time until the targets’ actions are manipulated. 

Since the malicious intent is as critical as, if not more critical than, the error in the 

information, there is a need to disclose the intent of the communicator so as to 

discriminate deceptive communication from all other unintentional errors. Intent is the 

key to deception detection. The main focus of the existing computational methods is on 

the word-level features of deceivers. However, thinking beyond the word level, we can 

trace the beginnings of a deceptive act to its malicious intent, which is to persuade the 

listeners of the truth of forged information. This intent does not exist in any kind of non-

deceptive acts no matter whether they transmit true information or false information, thus 

it has the discriminative power to identify deception from both the unintentional errors 

that transmit wrong information and the intentional persuasions that argue according to a 

presupposed true conclusion. The identification of intent seems to be difficult since at 

first glance intent is too subtle to be captured computationally, but this is not true. The 

intent or purpose of a communication determines how people derive arguments before the 

communication. For example, thinkers derive conclusions based on evidence and 

persuaders produce valid arguments in order to support their conclusions (Walton, 2005). 
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Different types of speakers’ unique reasoning processes generate unique patterns in their 

arguments. As long as we are able to find the patterns and measure them to some extent, 

we will be able to tell one reasoning process driven by a certain type of intent from 

another.  

 

2.2 What is the advantage of using reasoning to detect deception? 

The reasoning process of a communication is a cognitive process. To analyze the 

cognitive process of a deceiver in asynchronous formal communication, we studied how 

humans derive their arguments since formal communication is closely related to 

argumentation. Major studies that explore the cognitive process in argumentation 

includes Milkowski, 2008; Carenini and Moore, 2006; Zukerman et. al, 1998. These 

studies proposed architectures of argument generation given users’ goals and preferences. 

The generation of arguments involves a system to generate the semantic structure of 

arguments and a system to convert the semantic structure into a human understandable 

language.  By summing up these researchers’ ideas, we conclude that the process of 

argumentation involves two stages: argument formation, and argument implementation. 

What a speaker does in the stage of argument formation is to infer the arguments based 

on his context knowledge and select appropriate arguments based on his preference and 

the communication requirement (such as the length of the story). What he does in the 

stage of argument implementation is to transform the selected arguments into a language 

output. The stage of argument implementation has been the focus of the research on 

verbal cues. Deception detection in the implementation stage is not ideal because as 
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artifacts of argumentation, a language output is mediated by different human and 

environmental factors and is easily to be manipulated. On the contrary, distorting 

arguments in the formation stage is extremely difficult because argument formation 

directly follows the intent and changes to argument formation may result in the failure of 

the intended goal. Also, most speakers are not aware of the process of argument 

formation as they communicate. Lastly, hiding deceptive arguments requires higher-order 

deception that takes the interlocutor’s intent and even the interlocutor’s belief about the 

speaker’s intent into consideration. Higher-order deception demands much more 

cognitive load than first-order deception in order to retrieve the memory about the 

interlocutor’s intent and leverage the original reasoning process behind it. Due to its high 

complexity and rarity, higher-order deception is usually not the focus of research in the 

deception detection community, nor within the scope of deception that we are interested 

in as discussed in Chapter 1.3. Thus, the argument formation stage provides more 

accurate and reliable observations than the argument implementation stage.  

 

By switching our focus from the presentation of arguments to the formation of arguments, 

we realize that deception is not only a falsification of truth, but also a deviation from the 

original beliefs. This finding has been generally accepted in philosophy. For example, 

Shibles (1988) states: “A statement itself cannot be a lie. A lie is a relationship between 

two statements. An assertion must be compared to one's belief statement in order to 

determine if it is a lie… A lie is merely a contradiction between belief (self-talk) and 

expression.” Therefore, the purpose of deception detection is not to find the most 
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irrational person but to identify the people who are contradicting themselves. Our prior 

work (Santos et. al, 2008; Santos and Li, 2010) already demonstrated that inconsistency 

within the speaker himself is a critical indication of deception, which can be precisely 

captured through the techniques adopted in recommendation systems. It is also not 

difficult to see that although cues of deception are innumerable and seemingly 

independent of each other, most of them can be related and explained by the way that 

deceivers generate their arguments. Without linking to argument formation, conventional 

research has failed to generalize their findings and explain exceptions. On the other hand, 

by considering the cognitive process of deceivers it is easier to not only detect deception 

in a robust way but also explain patterns for deceptive reasoning such as the effectiveness 

of arguments to reach the conclusion, as we have suggested in prior work (Li and Santos, 

2012). Some of our findings have been observed from word-level cues, but none of the 

word-level cues were driven by the understanding of human reasoning. Therefore, to 

address the problems faced by existing technologies, researchers need to fill in the gap 

between the intent to deceive and the implementation of deception. Unfortunately, very 

little research can be found on the cognitive process of deceivers. Existing work generally 

neglects the fact that deception is rooted in the formation of arguments mainly because 

such process is not directly observable. This motivates us to derive a generic cognitive 

model to quantify the reasoning process of deceivers. 

 

2.3 Cognitive Process in Argumentation 
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Deception detection cannot be accomplished without an understanding of truth tellers, 

hence we study the cognitive process in valid argumentation first. The task of argument 

formation is accomplished by a knowledge base which stores knowledge and a reasoning 

engine which processes knowledge.  

 

2.3.1 Knowledge Base 

The knowledge base contains all knowledge that is relevant to a topic. It can also be 

regarded as the context knowledge of the speaker with respect to the topic. The 

importance of context knowledge in argumentation has been pointed out by Carenini, 

(2006) and Zukerman et. al (1998).  In (Carenini, 2006), context knowledge is 

represented as user models which provide the compellingness of different arguments in a 

user’s perspective. In (Zukerman et. al, 1998), context knowledge is supplied by 

reasoning agents to provide knowledge that is relevant to the current focus. The context 

knowledge in a knowledge base is the subjective beliefs of the speaker. They may or may 

not be explicitly expressed by the speaker, but the speaker considers them relevant and 

makes inference through them during argument formation. Researchers (Falappa et. al, 

2009; Pasquier  et. al, 2006) propose that a knowledge base is structured as “a set of 

interrelated pieces of knowledge supporting the objective from evidence” and 

“interaction between arguments”. Hence, a knowledge base can be structured as 

arguments with connections. Meanwhile, researchers like Zukerman et. al (1998), suggest 

the use of graphical representations in encoding arguments in which nodes represent 

propositional arguments and links represent inferences that connect the arguments. A 
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prototype knowledge base can be seen in Fig. 1. The nodes in the center circle denote the 

arguments explicitly mentioned, those in the middle circle are relevant to the arguments 

in the center circle, which may or may not be mentioned, and the relevance of nodes 

decreases as we move out of the center. In research on context knowledge this is called 

the “onion metaphor”. Specifically, the knowledge is propositional arguments that can be 

assigned true or false with different levels of confidence. The knowledge can also be 

categorized into conclusion and support. Arguments are connected with other arguments 

on which they have direct impact such as causality, correlation and conditional 

relationship. Bearing these requirements in mind, we use Bayesian Networks (BNs) 

(Pearl, 1988) to represent the knowledge base of a speaker, in which the nodes refer to 

the arguments, the links refer to the relationship between arguments, and the conditional 

probabilities refer to the strength of the impact of the arguments on others. A short 

description of Bayesian Networks can be found in Appendix F. As suggested by 

Zukerman et. al (1998), the argument structure can be represented by BNs because of 

their ability to represent relationship between arguments and to normatively correct 

reason under uncertainty. BNs have already been used to make sense of both rational and 

emotional human reasoning during argumentation (Carofiglio and de Rosis, 2003) as well 

as for other purposes (Tenenbau et. al, 2006). BNs’ reasoning schemes have been verified 

to show behavior similar to human beings (Tenenbau et. al, 2006). 
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Figure 1 A prototype of knowledge base/ context knowledge 

 

2.3.2 Reasoning Engine 

The reasoning engine generates possible arguments that are constrained by the 

knowledge base and the evidence. The generation of arguments is governed “by some 

kind of rules, using standard or non-standard derivation to implement reasoning”, 

according to Falappa et. al (2009). Levi (1996) argues that, during the process of 

reasoning, “the agent should be in suspense concerning which of the available options he 

or she will choose. If the agent is convinced that he or she would not choose a given 

policy, choosing and implementing are not serious possibilities according to that agent’s 

state of full belief and the policy is not optional for that agent. The deliberating agent 

needs to be able to assess the implications of choosing the policy even though he or she is 

in doubt as to whether it will be chosen and implemented.” This statement clearly 

illustrates the entire process of reasoning, which includes identifying existing beliefs, 

assessing possibilities of options given existing beliefs, and choosing the ones that are 

significantly more probable than the mutually exclusive others.  
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Belief updating, which infers the posterior probabilities of nodes based on Bayes’ 

theorem, is not feasible for representing the reasoning in argumentation since it does not 

consider consistency within all arguments. Consider the following example: Suppose 10 

people joined a lottery and exactly 1 of them will win. By belief updating, the result is 

that no one will win because all of them have a probability of 0.1. To retain the validity 

of the probability of each variable as well as maintain the consistency over all variables, 

we propose the following inference: We first perform belief revision and obtain the most 

probable explanation (MPE), which is the complete collection of nodes assigned with the 

states that can maximize the joint probability as in: 

              

where X is the complete set of nodes, E is the set of evidence, and p(X,E) is the joint 

probability of X and E. Then, for each variable we compute its posterior probability given 

that all other variables are set as evidence with the same assignment of states as in the 

MPE: 

             

where xi is the i
th

 variable, and X- xi is the complete set of nodes except xi. By 

representing the lottery example in this way, in each of its inferred explanations, a 

different person wins with equal probability. Specifically, the probability of a person 

winning given all others not winning is 1, and the probability of a person winning given 

all but one winning is 0. 

 

2.3.3 Argument Selection 
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According to Carenini and Moore (2006), usually for the sake of brevity a story cannot 

mention all of the available arguments. Only strong arguments are presented in detail, 

whereas weak arguments should be either briefly mentioned or omitted entirely (The 

weak arguments may be context knowledge because they are still relevant.) Thus, after 

the arguments are generated in the knowledge system, they are usually selected based on 

their strength. Earlier research has proved that the strength of an argument is judged on 

its plausibility in the decision maker’s mind rather than on truth (Mann, 2010). 

Arguments and their strengths, from the view of Carenini and Moore (2006), should be 

determined according to the reader’s values and preferences as suggested by 

argumentation theory. More specifically, they proposed that the strength of an argument 

is determined by its compellingness which is the product of its value and its importance 

to the objective of the speaker. Compellingness measures the argument’s strength in 

determining the overall value difference between the alternatives of the objective, all 

other things being equal. An argument is notably-compelling (worth mentioning), if it is 

an outlier in a population of arguments with respect to compellingness. Carenini and 

Moore’s (2006) measure of compellingness is a computational version of the 

argumentation theory. We borrow their idea and further generalize it to any type of 

argumentation.  

 

In a BN, the value of an argument is represented by its probability, alternative objectives 

of the speaker refer to the mutually exclusive states of a target argument, and an 

argument’s importance to the target argument can be represented by their conditional 

dependence. An argument is compelling if its exact impact on the target argument is 
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significant. We can use the following formula to calculate the compellingness of an 

argument: 

                                    ̅     

where                     denotes the compellingness of argument A in determining 

the target argument B,      denotes the probability of A, and        denotes the 

probability of B conditioning on A,  ̅  denotes the mutually exclusive state of  . An 

argument is notably-compelling (worth mentioning) if it is more compelling than other 

arguments in determining a target argument. Notably-compellingness is a decision 

criterion for including an argument in the story. Assuming that the compellingness of 

arguments in determining a target argument has normal distribution, we can decide that 

an argument outperforms the other arguments if its compellingness positively deviates 

from the other arguments’ compellingenss by k standard (std.) deviations. Notice that the 

value k in determining notably-compellingness is a lower bound of compellingess for an 

argument to be included in the story. By setting k to different numbers, we can control the 

size of a story by including different numbers of arguments. Since the strength of 

arguments should be determined according to individuals’ subjective preferences (Mann, 

2010), the value k can be used to represent a speaker’s personal tendency to believe in an 

argument. A speaker tends to believe in arguments if arguments with low compellingness 

are judged as worth-mentioning. The difference in the threshold also indicates that an 

ideal deception detection scheme should consider individual difference in understanding 

truth. If two people have exactly the same degree of belief but different compellingness 

thresholds, by applying universal heuristics, one may be regarded as hiding the truth or 

the other as exaggerating the truth while both of them may be honest.  
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The cognitive process behind argument formation can be depicted as in Fig. 2(a). 

     

(a)                                                                 (b) 

Figure 2 (a) Truth teller’s cognitive process behind argument formation; (b) Deceiver’s cognitive 

process behind argument formation 

 

2.4 Cognitive process in deception 

With a better understanding of the cognitive process in the argumentation of truth tellers, 

we can start discussing the cognition of deceivers. Deception is a special type of 

argumentation with intentionally conveyed false information, but what type of 

argumentation is deception? Deception has been identified as a “goal-driven, intentional 

act” (Buller and Burgoon, 1996), which means that deceivers communicate in order to 

persuade listeners of the target conclusion (the objective) instead of reaching some other 
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conclusion. Hence we derive that deceivers possess a pre-targeted conclusion and argue 

according to it. It leads to a proposal that the act of deceiving is to derive statements by 

supposing the validity of the deceiver’s claim which is actually not believed by the 

deceiver. For example, if a person is asked to lie about his attitude towards abortion, he 

might raise arguments such as “fetuses are human”, “god will punish anyone who aborts 

children” and “children have the right to live”. The reason he raised these arguments is 

not because he believed in them but because they support the false conclusion that he is 

against abortion. It is thus natural to imagine that the conclusion comes into the deceivers’ 

minds before the arguments do. According to Levi (1996), “The addition of the 

supposition to the agent’s state of full belief does not require jettisoning any convictions 

already fully believed. The result of this modification of the state of full belief by 

supposition is a new potential state of full belief containing the consequences of the 

supposition added and the initial state of full belief”, which means that the reasoning with 

suppositions is regular reasoning with the addition of knowledge that has been assumed 

before the reasoning starts. The argument does not refute the possibility that the 

reasoning with a supposition may infer exactly the same arguments as regular reasoning 

in which the supposition in the former case is a true belief. In this case, deception 

detection becomes extremely difficult. However, the increase of reasoning complexity in 

the knowledge can reveal the difference between a deceiver’s beliefs and a truth teller’s 

beliefs by leaking cues on the arguments that deceivers missed to manipulate. As a result, 

it is less likely for a deceiver to generate the same arguments as a truth teller. Moreover, 

deceivers and truth tellers differ in their communicative goals. As a deceiver, one 

provides strong arguments to support the falsified conclusion, while as a truth-teller, one 
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provides arguments to infer the most likely conclusion. As a result, their beliefs and 

processes of reasoning are different even though they may claim the same conclusion. In 

particular, if an opinion-based story is required from the speaker, truth tellers propagate 

beliefs from evidence, while deceivers adapt beliefs to suppositions. If an event-based 

story is required, truth tellers retrieve relevant memory which is related to past behavior 

and past behavior is based on past belief, which was propagated from past evidence, 

while deceivers assume a part of the event and adapt this fantasy to the supposition. All 

in all, deception involves the intentional formation of arguments based on false beliefs, 

while truth involves the intentional or unintentional formation of arguments based on true 

beliefs. There are two cognitive processes that distinguish deception from legitimate 

argumentation. Firstly, the conclusion that is mutually exclusive to the original 

conclusion is fed into the knowledge system before reasoning. Secondly, the reasoning 

engine takes the false conclusion as an assumption in addition to observed evidence. 

Bearing in mind that a rational person’s reasoning resembles Bayesian knowledge 

inference, we can simulate a deceiver’s reasoning by setting a wrong state of his 

conclusion as evidence. The cognitive process behind deceptive argument formation can 

be depicted as in Fig. 2(b). This fundamental difference in the reasoning of deceivers and 

truth tellers is unavoidable due to the intentionality of deceivers. It provides a theoretic 

basis according to which schemes of deception detection can be built. 

 

Our selection to utilize BNs and the theory of argument compellingness to represent the 

knowledge system is one of many possible ways to interpret human reasoning. Our 

proposal of the knowledge system guides the development of the detection model which 
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will be presented in the next chapter. Our detection method assumes that the arguments 

are related in some way, but it can be applied independent of the representation of human 

reasoning. The assumptions in this chapter are only critical to the learning of speaker’s 

cognitive process. The learning of cognitive processes is a complex task as human 

reasoning is featured with incompleteness, uncertainty and ambiguity. We encountered 

these challenges when dealing with real data, which will be discussed in Chapter 4.3. 
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Chapter 3 Deception Detection using Human Reasoning 

3.1 Overview 

Through the exploration of the cognitive models, it is clear that deception starts from a 

malicious intent to manipulate others, which then drives the reasoning with false 

presuppositions. Although we cannot see reasoning directly from communication output, 

we can obtain the results of reasoning, which are the semantic arguments. Since the 

semantic arguments are determined by the reasoning process, the type of reasoning, 

deceptive or honest, is embedded in the semantic arguments in some fashion. Therefore, 

the task of deception detection, or detection of any type of reasoning, is to find 

observable patterns from the semantic arguments and their relationships.  

 

3.2 Model of Detection 

Inspired by Johnson et al.’s work (2001), we propose a model of deception detection 

composed of three modules: (i) discrepancy detection, (ii) reasoning pattern identification, 

and (iii) classification. Discrepancy detection finds suspicious deviations by comparing 

observations with expectations. Reasoning pattern identification attempts to explain the 

unexpected deviations with respect to how strong they fit the hypothesized patterns of 

deception. Their materiality in each pattern is combined in the classification module in 

order to classify the input text to deception/truth. 

 

3.2.1 Module I: Discrepancy Detection 
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What kind of reasoning patterns are the most effective for deception detection? Probably 

the ones that frequently appear in either deceptive reasoning or honest reasoning but not 

both can best serve for deception detection. As we have discussed, truth tellers and 

deceivers may share the same reasoning results. However, they do not usually derive the 

same arguments in the real world because they do not share the same belief system that 

supports their reasoning. If, in the case they do share the same belief system, they would 

likely reach the same conclusion without any deception and thus, there would be no need 

to deceive. Deceivers may be successful in manipulating conclusions in a way to mimic 

truth tellers’ conclusions and distorting arguments to support the manipulated conclusions, 

but the supporting arguments are biased by their original beliefs.  Psychological studies 

that echo this finding (Johnson and Raye, 1981; Markus, 1977; Mehrabian, 1972, Wiener 

and Mehrabian, 1968) suggest that deceivers are not able to produce the same stories as 

truth tellers because (i) their stories are solely based on imaginations, and they do not 

have the same knowledge to back their stories up, and (ii) they do not embrace the stories 

as much as truth tellers do since they do not believe in the stories. These two points 

clearly summarized the difference between deceivers and truth tellers in terms of 

reasoning. To put them in another way, a deceiver’s inferred arguments are different from 

truth tellers’ as well as from his own beliefs. That is to say, by comparing a deceiver with 

himself and with the truth tellers we are able to identify potential deceivers through 

expecting the following discrepancies in a deceptive story: 

1. Discrepancies in arguments that are manipulated by deceivers can be expected 

because (i) arguments with presupposition may be different from arguments 
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without presupposition, and (ii) arguments inferred from false beliefs are different 

from arguments inferred from true beliefs. 

2. Discrepancies in arguments that deceivers are reluctant to believe but truth tellers 

embrace can be expected because inferences based on knowledge that cannot 

reach the claimed conclusion is different from inferences based on knowledge that 

can reach the claimed conclusion. 

 

We will name the first discrepancies as “inconsistency” because behaving differently 

from the self indicates inconsistency, and the second discrepancies as “untruthfulness” 

because it deviates from the truth provided by others. Our focus is to explain and measure 

them in terms of human reasoning. Since these two principles of discrepancies agree with 

the studies in various domains (Mehrabian, 1972; Wiener and Mehrabian, 1968; Johnson 

and Raye, 1981; Markus, 1977), it suggests that our proposal of the deceptive reasoning 

is a reasonable explanation of the cognitive process in deception. 

 

Although untruthfulness is straightforward to measure, the measurement of inconsistency 

is complicated because individuals’ own beliefs are subjective and hidden. This requires 

us to avoid implementing general rules but customize rules of detection according to each 

individual. In our daily life, it is not difficult for anyone to predict/anticipate the behavior 

of close acquaintances. Although people’s behavior may not be perfectly logical or 

rational, they are predictable because someone knows them so well. Tindale (1999) also 

agrees that “The rational agent is more predictable than many other human characters.” 

This intuition can be applied to our method for the purpose of inconsistency detection. 
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We can expect that honest people are consistent over time. Even if a person may be 

different from others, he is consistently different. Thus, we still can predict his opinion 

based on opinions from other people. If his exact opinion deviates too much from what 

we expect, his opinions are regarded as inconsistent. This is more realistic than to expect 

people to agree with each other because distinctive opinions do not make a person 

deceptive but might indicate innovation and make him more valuable to the group. 

Computationally, it means that given a pair of agents whose past arguments correlate 

with each other, it is possible to calculate the expected value of one agent’s future 

arguments given the other agent’s future arguments. The mathematical method was first 

proposed by GroupLens and applied to recommendation systems (Resnick et al., 1994). It 

was later applied to deception detection by Santos and Johnson (2004) and discussed in 

our prior work (Santos and Li, 2010) in detail. We generalize and incorporate the method 

in our model. 

 

The measurements of inconsistency and untruthfulness give us an indicator of unexpected 

deviations in one’s stories. They can be obtained from the following framework (Fig. 3). 

The first module (Discrepancy Detection) of the framework is composed of two 

networks: the correlation network and the consensus network. The correlation network 

connects each speaker with others who correlate with him in a specific argument. 

Neighbors in the correlation network represent acquaintances who can anticipate each 

other’s arguments. The consensus network connects speakers with similar conclusions. 

Neighbors in the consensus network represent people who agree with each other. We 

have pointed out that deception is deviations from one’s own subjective beliefs, but not 
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deviations from the objective reality or from the public. Thus, the correlation network is 

essential in predicting a speaker’s belief according to the neighbors who can anticipate 

his opinions, and the prediction can be used to evaluate the speaker’s inconsistency. The 

methodology of inconsistency detection can be achieved using the following steps: 

       1) Compare Opinions: An acquaintance’s opinion can be anticipated by correlating 

one’s own opinion with him. This observation enables us to predict one’s opinion based 

on his correlation with others. Thus, the first step is to calculate the correlation between 

each two speakers based on multiple repeats of their past opinions. The historical 

reasoning process is also called the training process, and the opinions generated in the 

past are called the training data. We assume that the training data does not contain any 

deceptive opinion. Thus, it does not play a role in identifying inconsistency but is used to 

obtain the correlation values. The correlation measure we use is the Pearson Correlation, 

which is calculated in the following formula: 

 

where rAB represents the Pearson correlation coefficient. For the i
th

 repeat, we define Ai as 

the posterior probability of speaker A, and Bi as the posterior probability of speaker B.  ̅ 

denotes the average of the probabilities assigned to speaker A over all repeats, and 

likewise for B.  

 

       2) Predict Opinions: After the correlations are calculated, we predict each speaker’s 

opinion in a repeat using the opinions of his acquaintances, where a speaker is an 
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acquaintance of another speaker if their correlation is beyond a threshold. The reasoning 

process from which we want to detect inconsistency is called the testing process, and the 

opinions generated from the reasoning process are called the testing data. The technique 

we use to predict opinion is based on GroupLens prediction, which allows us to estimate 

what opinion is expected for each speaker provided that his historical opinions are 

sufficient:   

            

    ̅  
∑    

    ̅          

∑       
     

 

where             

  denotes the predicted probability of the j
th

 speaker Aj in repeat t,      
 is 

defined as the Pearson correlation coefficient between Ai and Aj, and    represents the 

correlation network with the set of speakers A.               iff       
    where N 

is the total number of speakers. 

 

       3) Identify Inconsistency: If a speaker’s actual opinion on a given problem is very 

different from the predicted opinion, it means that he provided an inconsistent opinion. In 

practice, we predict the benevolent training data, measure the errors of prediction. and 

use the prediction errors as a reference for legitimate noise. We assume that the 

prediction error has a normal distribution. If the prediction error of the testing data 

deviates from the prediction errors of the training data by more than some std. deviations, 

the testing data is regarded as inconsistent. Inconsistency is measured as how many 

number of std. deviations a speaker’s prediction error deviates from his historical 

prediction errors. 
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The consensus network provides a sampled population of truth tellers who reach the same 

conclusion as the deceiver. If the deceiver had told the truth, he should have behaved no 

differently from the population. The deviation from the truth tellers can be measured 

using std. deviations:  

  
  √

 

   
  

∑   
    ̅̅ ̅  

    
 

  

where   
  denotes the std. deviation of the population A in repeat t,   ̅̅ ̅ denotes the average 

of the probabilities assigned to all speakers in A in repeat t, and   
  represents the 

consensus network with A given the same set of evidence in repeat t.              
  

iff Ai and Aj have the same conclusion in repeat t. If the probability assigned to a speaker 

in   
  deviates from the population by more than some numbers of   

 , it is regarded as 

untruthful. Likewise, the untruthfulness is measured as how many number of std. 

deviations a speaker deviates from the population in the consensus network. The 

correlation network explains why the deceiver is convincing, or what manipulations make 

his story convincing, whereas the consensus network explains why the deceiver is 

unconvincing when compared against the real truth tellers. 

 

To summarize, the first module of the framework detects the basic discrepancies in 

deceptive reasoning, which are inconsistency and untruthfulness. Inconsistency means 

that the arguments in the story contradict with what the speaker believes. It is particularly 

important when individual difference is considered. Untruthfulness means that the 

arguments in the story contradict with what a truth teller believes in order to reach the 

conclusion. Measuring untruthfulness is particularly effective in detecting deception from 
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strangers. On the other hand, the principle of inconsistency indicates that an honest 

person should behave as he always does, the detection of which requires some familiarity 

with the speaker, whereas the principle of untruthfulness indicates that an honest person 

should behave as a reasonable and convincing person, the detection of which requires 

some knowledge of the topic domain.  

 

Figure 3 Architecture of the model of deception detection 

 

3.2.2 Module II: Reasoning Pattern Identification 

Deceivers do not deviate from themselves and from truth tellers in random ways because 

manipulations without the purpose to deceive also exhibit inconsistency and/or 

untruthfulness. For example, a changed opinion contains inconsistency but not 
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untruthfulness as it changes the prior knowledge while still maintaining to be truthful, 

whereas innovation may not conform to traditional attitudes but is still consistent as 

innovation is unpredictable truth. Yet, other types of misinformed opinion may exhibit 

both discrepancies such as misunderstanding, but obviously they are not derived from 

deceptive reasoning, and thus are expected to show different patterns of deviation. 

 

3.2.2.1 A Case Study 

We propose that deceivers can be distinguished by the manner they manipulate 

arguments. To see how a deceiver’s reasoning results differ from an honest teller’s, we 

take the example of a lawsuit case shown in a TV drama in which a female celebrity 

deceptively claimed that she was raped by a young Indian male. The deceiver’s 

arguments sound convincing at first, but were later found to be deceptive by the jury. In 

the study, we perform two tasks: model the reasoning process of the deceiver and that of 

a hypothetical truth teller following our proposed cognitive models in order to verify the 

capability to identify discrepancies, and simulate unintentional misinformation so as to 

explore unique patterns in a deceiver’s reasoning results. The detail of the case is 

described as follows:  

A female celebrity coded as A claims that she was raped by an young 

Indian male, coded as B. A claims that she keeps away from B because 

both her and her mother do not like the physical odor of Indians. A claims 

that B once joined her birthday party without any invitation and fed A 

drugs. B then conveyed A home and raped A. After A’s boyfriend arrived, A 

called police. However, the truth is that B is a fan of A and joined A’s party 
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at A’s invitation. A lied about her aversion to Indians because she used to 

prostitute to Indians. Besides, B is new to the party club, so it is unlikely for 

him to obtain drugs there. A used drugs and enticed B to have sex with her. 

 

This artificial scenario is a simplification of a possible legal case, which provides more 

realistic explanations as opposed to data that simulate deception arbitrarily without 

considering the intent of the deceiver. We did not choose to model real cases or surveys 

because it is difficult to find any survey with sufficient information about the reasoning 

of the deceiver, while data from real cases usually lacks ground truth. Data with both 

sufficient information and ground truth, such as military combat scenarios, is mostly 

focused on behavioral deception instead of communicative deception. In addition, real 

cases may contain noisy data in which the communication content is mediated by factors 

other than reasoning. For the purpose of exploring patterns in deceptive reasoning it is 

ideal to use clean data that only contains the semantic meaning of arguments. We use a 

BN to represent the knowledge base of A as discussed earlier. The semantic meaning of 

arguments and their conditional relationships are encoded in the BN. For example, the 

causal rule that B drives A home because B knows A’s address can be encoded in the 

conditional probability P(B_drive_A_home|B_know_A_s_adr)=0.9. We designed a BN 

representing A’s belief system and another BN representing the belief system of a 

hypothetical victim of the rape case according to the description of the scenario. More 

specifically, we connect two arguments if their causal relationship is explicitly described 

by the deceiver or by the jury when they are analyzing the intent of the deceiver. The 

conditional probabilities between states of arguments are set as 0.7 to 0.99 according to 
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the certainty of the speaker if the arguments are explicitly described. As to the states that 

are not mentioned in the case, they are usually implied in or can be inferred from the 

scenario if their mutually exclusive states are described in the scenario, such as the 

probability of A_hate_Indian given that B’s relation with A’s mother is good and that A 

used to prostitute to Indians. Otherwise the mutually exclusive states of an argument are 

given the same or similar probabilities indicating that they are uncertain. To make sure 

that the discrepancies in deception are resulted from the manner of reasoning instead of 

from the inherent difference between the deceiver’s belief system and the hypothetical 

victim’s belief system, we minimize the difference between their belief systems. 

Specifically, we keep all their conditional probabilities the same by assuming that both A 

and the hypothetical victim are rational people with the same domain knowledge. Only 

their prior probabilities of A’s experience as prostitute and whether B is new to the party 

are adjusted differently because they are the essential truth from a victim’s perspective. 

That is to say, those who do have strong prejudice against Indians could not prostitute to 

them, and to obtain drugs from the party club, B has to be a regular guest. As a result of 

sharing a similar belief system with the hypothetical victim, the deceiver’s story may 

become highly convincing. Although we expect it to be hard to detect the untruthfulness 

of the deceiver, the deceiver’s simulation is not unrealistic because some deceivers are 

consistently found to be more credible than others based on the study by Bond and 

Depaulo (2008). It is likely that a randomized BN with a perturbed copy can also serve 

the purposes of this study, but again, building belief systems based on the intent of 

deception will provide more realistic data, more convincing results and more intuitive 
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explanations. The BN of the deceiver is depicted in Fig. 4. The conditional probability 

tables can be found in Appendix D.  

 

Figure 4 BN of the deceiver in the rape case 

 

We use the inference scheme proposed in Chapter 2.3.2 to perform the reasoning, and the 

product of reasoning is represented by the inferred probabilities of the nodes. As we 

proposed earlier, in the reasoning process, the deceiver presupposes her target argument, 

that is, she was raped, by adding the argument as an additional piece of evidence. The 

inference results of A in both deceptive and honest cases and the inference results of the 

hypothetical victim are shown in Table 1. The arguments 

B_relation_with_A_s_mother=bad, B_drive_A_home=true, A_is_celebrity=true and 

A_s_boyfriend_catch_on_the_scene=true are set as evidence as suggested by the 

scenario. 
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People express arguments as binary beliefs (believe or not believe in something) in 

communication if not as beliefs with certainty modifiers, but not as degree of belief 

formulated by real-valued probabilities. To map degree of belief to binary beliefs, we 

need to know how strong an argument needs to be for a person to believe in it, or in other 

words, what is the probability threshold of something being true. Research has suggested 

that truth threshold varies by proposition and by individual, which means it is a 

subjective criterion (Ferreira, 2004). In Chapter 2.2.3, we proposed to use the theory of 

compellingness from Carenini and Moore (2006) to select strong arguments. In this study, 

as we use simulated data, we arbitrarily choose the probabilities 0.67 and 0.33 as the 

thresholds since they equally space the interval of an argument being true, unknown and 

false. By thresholding the probabilities of each argument to prefer the state with a high 

probability we generate the semantic arguments of the deceiver, the honest beliefs of the 

deceivers, and the beliefs of the hypothetical victim, as depicted in Table 1. For the 

purpose of exploration in this pilot study, we simplified the selection of explicit 

arguments, but we will incorporate the full scheme of argument selection in the 

experiments on real life data. To verify the inferred beliefs we compare Table 1 with the 

scenario. An argument is validated if it is in the same state as described in the scenario or 

in the unknown state if it is ignored in the scenario. We verified that 13 out of the 16 

arguments in the deceptive story correspond with what the deceiver claims, and, all of the 

arguments in the honest story correspond with what is the truth. Although we cannot 

directly verify the hypothetical victim’s story as we do not have the ground truth, we 

observe that all the arguments are reasonable and most of them, except the evidence, are 

contrary to the deceiver’s honest story. 
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In looking for reasoning patterns, we should first detect the inconsistency and the 

untruthfulness of the deceiver. According to the detection model, the computation of the 

discrepancies assumes some familiarity with the deceiver, which requires a sufficient 

number of history data and acquaintances of the deceiver. To this end, we simulated 19 

agents by perturbing the deceiver’s BN and another 10 agents by perturbing the victim’s 

BN. In total, we have 29 truth telling agents and 1 deceiving agent. We simulated 100 

repeats of training data by inferring the network of each agent 100 times with a different 

set of evidence in each repeat, and convert the inferred probabilities to binary beliefs. We 

also observe patterns on an unintentional misinformed story in order to find out the 

patterns that are unique to deceivers. A misinformed story is simulated by adding random 

errors to the probabilities of the true arguments. 

Table 1 Inferred results of the deceiver’s deceptive story, her honest story and the hypothetical 

victim’s story (left: inferred probabilities of arguments; right: selected states of arguments) 

Arguments Decept

ive 

Hone

st  

Tr

ue  

 Arguments Decept

ive 

Hone

st  

Tru

e  
B_relation_with_As_mother

=good 

0 0 0 B_relation_with_As_moth

er 

bad bad bad 

A_have_exp_of_prostitution

=T 

0.66 0.88 0.11 A_have_exp_of_prostituti

on 

unknn T F 

A_hate_Indian=T 0.74 0.07 0.89 A_hate_Indian T F T 

A_is_nice_to_B=T 0.18 0.88 0.18 A_is_nice_to_B F T F 

B_relation_with_A=rape 0.98 0.16 0.96 B_relation_with_A rape fan rape 

B_in_A_s_party_by=self 0.9 0.4 0.90 B_in_A_s_party_by self unknn self 

B_knows_A_s_adr=T 0.95 0.95 0.95 B_knows_A_s_adr T T T 

B_drive_A_home=T 1 1 1 B_drive_A_home T T T 

B_is_new_to_party=T 0.76 0.82 0.16 B_is_new_to_party T T F 

A_have_drug_from=B 0.76 0.07 0.92 A_have_drug_from B self B 

sex_by=rape 0.93 0.08 0.98 sex_by rape entice rape 

As_boyfriend_catch_on_the

_scene=T 

1 1 1 As_boyfriend_catch_on_t

he_scene 

T T T 

A_is_celebrity=T 1 1 1 A_is_celebrity T T T 

B_refuse_to_pay=T 0.8 0.85 0.50 B_refuse_to_pay T T unk

nn 

A_claim_being_raped=T 0.6 0.7 0.60 A_claim_being_raped unknn T unk

nn 

cry_for_help=T 0.8 0.2 0.80 cry_for_help T F T 

 

We use the method described in Chapter 3.2.1 to detect the inconsistency within the 

stories. More specifically, we predict binary beliefs in the deceptive story using 
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GroupLens method (Resnick et. al, 1994) based on stories of neighboring agents in the 

correlation network. We then compare the binary beliefs in the deceptive story with 

predicted binary beliefs to measure the deviation of each argument due to inconsistency. 

We measured how many std. deviations the prediction error in the deceptive story 

deviates from the prediction errors in the training data, and plotted them according to 

their locations in the BN, which is shown in Fig. 5, together with the results from the 

misinformed story. The width of the links represents the sensitivity of each variable to its 

neighbors. The result from the deceptive story first verified that we are able to detect 

most of the manipulated arguments. If we compare the deceptive story with the honest 

story in Table 1, we obtain 9 arguments manipulated by the deceiver. Out of these 9 

arguments, 8 are successfully identified as inconsistent as in Fig. 5 if we assume that the 

inconsistency threshold is 3 std. deviations. Next, we observe that the variables at the 

boundaries of the graph and not sensitive to neighbors (e.g. B_is_new_to_party) are 

ignored by the deceiver, while the variables in the center or sensitive to other inconsistent 

variables (e.g. A_hate_Indian) are manipulated significantly. It seems that manipulations 

propagate to closely related arguments. Unrelated arguments are probably considered as 

irrelevant or are simply ignored by the deceiver. However, in the misinformed story, only 

two arguments (B_is_new_to_party and B_refuse_to_pay) are found to be inconsistent. 

No evidence shows that the inconsistencies propagate to related nodes. 

 

Paying more attention to the inconsistent nodes in the deceptive story 

(A_have_exp_of_prostitution=unknn, A_hate_Indian=T, A_is_nice_to_B=F, 

B_relation_with_A=rape, B_in_A_s_party_by=self, A_claim_being_raped=unknn, 
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cry_for_help=T), we found that all but one argument (A_claim_being_raped=unknn) 

strongly support the conclusion when compared with their honest states. Based on this 

finding, we hypothesize that the manipulated arguments are effective in reaching the goal 

and at the same time satisfing the evidence. This finding has also been brought up in 

cognitive studies and selected as verbal cues to detect deception (DePaulo et al., 2003). In 

this dissertation, we use “functionality” to refer to the effectiveness of an argument in 

supporting another. Being functional to the conclusion and the evidence indicates that an 

argument can be expected from the goal and the evidence. Hence we can estimate the 

functionality of each manipulated argument in the following way: For each inconsistent 

argument, we measure its correlations with the other arguments during the past using the 

training data. We then predict each argument’s binary belief based on the value of the 

conclusion and the values of the evidence using the GroupLens method. If the predicted 

belief agrees with the belief in the deceptive story, the variable is regarded as functional. 

We compare the functionalities of the deceptive arguments with those of the misinformed 

arguments. As the results show in Table 2 and Table 3, all but one inconsistent argument 

in the deceptive story complies with the value expected by the conclusion and the 

evidence, but none of the inconsistent arguments in the misinformed story does. Although 

the result shown in Table 3 came from a random sample of the misinformed stories, we 

observed that most of the samples show the same functionality rate. Therefore, the 

functionality rate of the deceptive story is 6/7, and the functionality rate of the 

misinformed story is around 0/3. 
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Table 2 Functionality of the deceiver’s story 

Arguments Pred. Decept. 

A_have_exp_of_prostitution=T 0.24 0.5 

A_hate_Indian=T 0.85 1 

A_is_nice_to_B=T 0.07 0 

B_relation_with_A=rape 0.99 1 

B_in_A_s_party_by=self 1 1 

A_claim_being_raped=T 0.58 0.5 

cry_for_help=T 0.86 1 
 

Table 3 Functionality of the misinformed story 

Arguments Pred. Misinfo. 

B_in_A_s_party_by=self 0.45 0 

B_knows_A_s_adr=T 0.90 0.5 

A_claim_being_raped=T 0.94 0.5 

 

Next, we want to compare the deviations due to inconsistency with respect to the 

deceiver herself and the deviations due to untruthfulness with respect to the truth tellers. 

To compute the untruthfulness, we calculate the deviations of the binary beliefs in the 

deceptive story from the population of truth tellers’ stories who agree with the deceiver in 

the consensus network using the method in Chapter 3.2.1. The results are shown in Table 

4. If we compare the deceptive story with the victim’s story in Table 1, we found that 3 

arguments in the deceptive story are untruthful. The result of the untruthfulness shows 

that 2 of the 3 arguments are beyond 1.44 std. deviations of the population of true stories, 

and all of them are beyond 0.95 std. deviations. The small deviations indicate a high 

credibility of the deceiver, which is caused by the similarity between the belief systems 

of the deceiver and the victim. Among all 8 inconsistent arguments, none of them is 

identified as untruthful if we assume that the untruthfulness threshold is 1 std. deviation. 

It implies that significant manipulations are often convincing and unconvincing 

arguments usually can be found in slightly manipulated or ignored arguments. The only 

exception in the result is the argument B_knows_As_address, which is not manipulated 
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but convincing. It is probably because the evidence B_drive_A_home enforced it to 

remain honest. Compared with the deceptive story, all inconsistent arguments in the 

misinformed stories are regarded as untruthful, which shows that the negative association 

cannot be found in misinformed stories.  

Table 4 Comparison of inconsistency and untruthfulness of the deceiver 

Belief Incon. Untru. 

B_relation_with_As_mother=good N/A N/A 

A_have_exp_of_prostitution=T 3.48 0.95 

A_hate_Indian=T 3.48 0.28 

A_is_nice_to_B=T 3.31 0.28 

B_relation_with_A=rape 3.25 0 

B_in_A_s_party_by=self 3.39 0.28 

B_knows_A_s_adr=T 0.04 0 

B_drive_A_home=T N/A N/A 

B_is_new_to_party=T 0 1.59 

A_have_drug_from=B 2.93 0 

sex_by=rape 3.95 0 

As_boyfriend_catch_on_the_scene=T N/A N/A 

A_is_celebrity=T N/A N/A 

B_refuse_to_pay=T 0.48 1.44 

A_claim_being_raped=T 4.63 0.41 

cry_for_help=T 3.37 0.41 

 

A summary of the computations performed in this section is listed in Table 5. From this 

study we discovered three patterns in deceptive reasoning: manipulations propagate 

through closely related arguments, deceptive arguments are usually functional to the 

deceiver’s goal and evidence, and inconsistency and untruthfulness are negatively 

associated, which may serve as effective and measurable patterns to reveal deceptive 

intent given the arguments of a speaker. 
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(a) 

 

(b) 

Figure 5 Inconsistency deviation of each variable (a) of the deceiver’s BN, and (b) of the 

misinformer’s BN 
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Table 5 Computation steps of the pilot study on reasoning patterns 

Step 

1 

Infer stories. (Table 1) Perform reasoning on AgentD with evidence 

to get the value of the honest arguments.  

Perform reasoning on AgentD with evidence 

and presupposition of the false conclusion to 

get the value of the deceptive arguments. 

Perform reasoning on AgentV with evidence 

to get the value of the true arguments. 

Step 

2 

Simulate misinformed stories. Generate multiple copies of AgentV’s story 

In each copy, perturb the probabilities by 

adding random noise 

Step 

3 

Covert the values into binary polarities (Table 1) 

Step 

4 

Detect inconsistency and untruthfulness. 

Step 

5 

Evaluate the detection of  inconsistency 

in the deceptive story 

Compare inconsistent nodes with the 

difference between the deceptive arguments 

and the honest arguments 

Step 

6 

Evaluate the detection of untruthfulness 

in the deceptive story 

Compare untruthful nodes with the difference 

between the deceptive arguments and the true 

arguments 

Step 

7 

Evaluate the propagation of manipulation 

in the deceptive story and the 

misinformed story (Figure 5) 

Plot the inconsistency on the corresponding 

r.v.s 

Compare the inconsistencies with neighbors’ 

inconsistencies 

Step 

8 

Evaluate the functionality in the 

deceptive story and the misinformed story 

(Table 2 & Table 3) 

Predict the value of each manipulated 

argument from conclusion and evidence 

using GroupLens 

Compare the predicted values with the actual 

values 

Step 

9 

Evaluate the association of inconsistency 

and untruthfulness in the deceptive story 

and the misinformed story (Table 4) 

Find out the proportion of inconsistent 

arguments that are untruthful 

 

3.2.2.2 Reasoning Patterns 

The case study provided an intuitive demonstration of the patterns that we can find from 

deceptive reasoning. It indicates that deception and truth are separable, but it is not clear 

why we are able to observe the patterns or how to quantify their boundaries in truth and 

deception. Therefore, we plan to find explanations of the patterns following the cognitive 

process of deceivers, and develop computational methods to quantify the hypothesized 

patterns in such a way that deceptive reasoning can be distinguished.  
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Stories told by experienced deceivers usually sound convincing. However, with only the 

prior knowledge and evidence, a deceiver's true beliefs are in conflict with what he wants 

to convey. Therefore, to make his arguments flow to the conclusion smoothly, he has to 

manipulate one or more arguments. A reasonable way is to let the distortion of the 

original conclusion impact related arguments, which can be better accomplished through 

natural reasoning instead of explicit manipulations of individual arguments. The exact 

impact depends on the network, but we can derive that the more closely an argument 

relates to the conclusion, the stronger it will be impacted. Likewise, the impacted 

argument will influence its related arguments. This is probably why manipulations can 

propagate to dependent arguments. If we imagine the structure of connected arguments as 

a terrain of arguments, the manipulation of the conclusion would transfer to the entire 

terrain like the epicenter of an earthquake, with related arguments receiving higher levels 

of manipulation and unrelated arguments receiving lower levels of manipulation. The 

purpose of propagating the manipulation is to derive convincing arguments to support the 

manipulated conclusion. Without it, the deception would be as blatant as insisting an 

illogical conclusion, which rarely happens in serious deceptions. Since the manipulations 

in misinformed stories are not generated by natural reasoning, misinformed stories do not 

exhibit this pattern. 

 

The definition of deception indicates that deception is an intentional act. Referring back 

to Chapter 1.3, an intentional behavior must be driven by a desire, and to fulfill the desire 

a person adjusts his perception of the world to a yet to be realized state. In the context of 

deception, deceivers fit arguments to states that can support his targeted conclusion for 
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the desire of misleading listeners. They are persuaders, who reach arguments from 

conclusions, while others reach conclusions from arguments. According to the theory of 

satisfaction of intention (Mele, 1992), an intention is "satisfied" only if the behavior in 

which it issues is guided by the intention-embedded plan. This means that deceivers 

choose the best behavior (argument) that is guided (inferred) by his desire (conclusion), 

but not any behavior that can fulfill his desire. In particular, deceivers will choose the 

states of arguments in the story that are most effective compared with the other states of 

arguments in reaching the conclusion of the story. For example, in an honest 

communication, a speaker who claimed that he walked his dog today would equally 

likely say that the weather is good or that the weather is bad assuming that the listener 

has no knowledge about the weather. But by presupposing that he walked his dog while 

he actually did not, a deceiver is more likely to argue that the weather is good because it 

sounds more logical and supportive. Although there is nothing wrong if a truth teller’s 

arguments are all functional to the conclusion, research has demonstrated that it is not a 

common conduct among truth tellers (DePaulo et al., 2003). In fact, truth tellers tend to 

make some arguments that conflict with their conclusions. On the other hand, in Bayesian 

belief revision, functional and nonfunctional nodes may result in the same MPE. 

Therefore, from both the psychological perspective and the computational perspective of 

reasoning, truth tellers’ arguments are less functional than deceivers’. The functionality 

of an argument can be revealed from the history data of a speaker. By studying historical 

data, we can evaluate which arguments are effective to which others according to the 

belief of the speaker.   

 



 60 

With the absence of knowledge, it is usually very hard for deceivers to infer the same 

stories as truth tellers. This means no matter how convincing a deceiver’s story sounds, 

his selection of arguments is different from a truth teller’s. For the purpose of persuasion, 

it is reasonable to raise the most critical and relevant arguments, but deceivers fail 

because they do not have a complete view of the entire story, and thus they may leave out 

some subtle but critical arguments. As a result, some arguments may sound overly certain 

while others may sound unconvincing. Deceivers heavily manipulate some arguments 

probably because they believe that these arguments can convince the listeners of the 

conclusions, and consequently these arguments, after manipulations, sound more 

reasonable in support of the conclusion. Nevertheless there are also exceptional cases in 

which deceivers cannot avoid overly manipulating arguments that are usually ignored by 

truth tellers. We call them Type I incredibility:  incredibility due to over-manipulation. 

The arguments that are not convincing usually can be found in the arguments that were 

slightly manipulated or ignored by the deceiver because deceivers do not know that they 

are important supports to the conclusion but truth tellers never neglect these details. This 

is called Type II incredibility: incredibility due to ignorance. Type I and Type II 

incredibilities are two examples of unconvincing arguments (According to DePaulo et. al 

(2003), liars tell less compelling tales than truth tellers), which can be quantitatively 

measured in the semantic arguments. We summarize the incredibility types in Table 6. In 

the law case example, Type I incredibility does not occur, but Type II incredibility 

appears in the argument B_is_new_to_party and B_refuse_to_pay. The deceiver ignored 

these arguments, which results in the incredibility of the story. On the other hand, 



 61 

misinformed stories do not show this correspondence between inconsistency and 

untruthfulness.  

Table 6 Incredibility types of manipulated arguments (Soriginal refers to the value of the original state 

of argument, Struth refers to the value of the true state of argument, and Smanipulation refers to the value 

of the manipulated state of argument) 

Type I Incredibility due to over-manipulation Soriginal <Struth<Smanipulation or  

Soriginal >Struth>Smanipulation 

Type II Incredibility due to ignorance Soriginal<Struth   Smanipulation<Struth or  

Soriginal>Struth   Smanipulation>Struth 

 

These patterns indicate that the uniqueness of the deceivers’ reasoning process lies with 

not only the exhibition of inconsistency and untruthfulness, but also with a specific 

distribution of inconsistency and untruthfulness within the knowledge base. Propagated 

manipulations, functionality and dependence between inconsistency and untruthfulness 

are the guiding concepts of our deception detection method, which forms a general model 

independent of the domain knowledge. Among all three patterns, only functionality of 

arguments has been studied in earlier research (DePaulo et al., 2003). Often, the 

functionality is measured subjectively by human raters, but here we can derive and 

explain all the patterns theoretically and measure them computationally based on the 

cognitive model of argumentation.  

 

We compute the scores of the patterns that indicate their strengths in a story. The first 

pattern, propagation of manipulation, depends on the relationship or dependence between 

arguments. The dependence of two arguments can be measured by the concept of mutual 

information (Li, 1990), which is a quantity that measures the mutual dependence of two 

variables. The dependence between two variables with discrete states can be obtained 

using the following equation (Li, 1990): 
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where        represents the dependence between argument A and B, i refers to the i
th

 

state of A, and j refers to the j
th

 state of B.           if and only if A and B are 

independent. This is easy to see in one direction: if A and B are independent, then P(AB) 

= P(A)P(B). The higher        is, the more dependent A and B are, and the more likely 

that manipulations propagate from one to the other. The observation that manipulations 

propagate to dependent arguments indicates that inconsistency of an argument is 

contributed to by its influential neighbors. Therefore, to measure the propagation, we first 

estimate the inconsistency of an argument contributed by its dependent arguments, and 

then calculate how strongly the exact inconsistency correlates with the contributed 

inconsistency. The contributed inconsistency of an argument can be calculated as the sum 

of the inconsistencies of all other arguments weighted by the argument’s dependences on 

them, which is: 

            (  )  ∑                           

       

 

where             (  ) denotes the contributed inconsistency of argument   , and N 

denotes the total number of arguments. 

The score of the pattern is calculated as: 

                
                                     

                                 
 

where                 denotes the correlation between the exact inconsistencies and the 

contributed inconsistencies of the nodes in the set A, and                   denotes the 

inconsistency of argument   . 

http://en.wikipedia.org/wiki/If_and_only_if
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Being functional to the conclusion indicates that an argument is close to the expected 

value based on its relationship with the conclusion and the assumptions. Thus, 

functionality can be calculated by predicting the value of an argument using the value of 

the conclusion and the values of the evidence, which is: 

 ̂             
           ̅̅ ̅̅ ̅̅ ̅  

∑              ̅̅ ̅̅ ̅̅ ̅         

∑       
 

where  ̂             
      denotes the probability of the argument    predicted by the 

conclusion and the evidence in repeat t,        denotes the probability of the argument    

in repeat t,      ̅̅ ̅̅ ̅̅ ̅ denotes the average of the probabilities of    over all repeats, and     

denotes the Pearson Correlation between    and   . E is the set of evidence and c is the 

conclusion. For the purposes of presentation, we will name the argument predicted by the 

goal and the evidence as the functional argument and the argument predicted by the 

correlation network as the expected argument. An argument is functional to the 

conclusion and the assumptions if the actual argument leans towards the functional 

argument instead of towards the expected argument, or computationally, the probability 

of the actual argument and the probability of the functional argument are on the same 

side by reference to the probability of the expected argument. We calculate the 

functionality of a story as the ratio of arguments that are functional, which is: 

                 

  
∑  {( ̂          

            )( ̂          
       ̂             

     )   }                 

                 
 

where                  denotes the functionality of the story A,        denotes the 

probability of argument    in repeat t,  ̂             
      denotes the probability of the 
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functional argument of   ,  ̂          
      denotes the probability of the expected 

argument of   , and                 denotes the set of inconsistent nodes in the story A. 

 

The negative association between inconsistency and untruthfulness indicates that if an 

argument is inconsistent it is unlikely to be untruthful. To measure this pattern we 

compute the fraction of inconsistent arguments that are not untruthful as  

                   
                              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

                 
 

where                   represents the dependence between the inconsistencies and 

the untruthfulness in the story A, and                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the arguments that are 

not identified as untruthful by the consensus network. A higher proportion indicates a 

stronger dependence. 

 

3.2.3 Module III: Classification 

Based on the scores obtained from the module for reasoning pattern identification, we 

form a feature vector with three dimensions to represent the reasoning patterns in a story, 

and label each story with deception or truth. As in conventional methods of detection, 

supervised classifications are used to learn the model of classification and map unseen 

data to the categories of deception and truth. The predictive performance of the classifier 

is evaluated using 10-fold cross-validation. In our framework, we select logistic 

regression for the classification due to its simplicity instead of the commonly used 

classifiers of Naïve Bayes and Support Vector Machine (SVM). Logistic regression is a 

type of regression analysis used for predicting the outcome of a categorical dependent 

variable based on one or more predictor variables. It generates a probability score to 

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Categorical_variable
http://en.wikipedia.org/wiki/Dependent_and_independent_variables
http://en.wikipedia.org/wiki/Dependent_and_independent_variables
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indicate the likelihood of the category of a test case. We use logistic regression to predict 

how likely a story is deceptive depending on the feature vector of the reasoning patterns.   

 

3.2.4 Summary 

We proposed a model to detect deception using three steps. In the first step, inconsistency 

is identified by the deviation from the speaker and untruthfulness is identified by the 

deviation from the truth tellers. These deviations bring unexpected observations to the 

attention of the detector, and their distributions provide further explanations about the 

speaker’s reasoning. In particular, if the manipulation propagates to related arguments 

according to dependence, the manipulated arguments are functional to the claimed 

conclusion; and, if there is little overlap between the inconsistent arguments and the 

untruthful arguments, then the story is likely to be deceptive. Based on the strengths of 

the patterns, a trained model of classification classifies the story into the category of 

deception or truth.  

 

We realize that our model shares similar processes with Johnson et al.’s (2001) model. 

The first process in Johnson et al.’s model catches the discrepancies as we did in our 

model. The discrepancies are identified through domain-specific knowledge, which is 

financial knowledge in Johnson et al.’s case, whereas in our model, expectations of 

domain knowledge are represented by the context knowledge obtained from correlated 

agents other than supplied by domain experts. In addition to the deviation from the group 

norm, we require the stories to be consistent with the speaker’s historical data because the 

deviation from one’s own belief is a necessary component of deception. In their second 
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and third processes, hypotheses are proposed and evaluated to explain the discrepancies. 

The hypotheses are generated according to the taxonomy of deception tactics and some 

domain-specific goals. We explain the discrepancies by evaluating the reasoning patterns 

involving the discrepancies. Since the patterns are derived from the types of reasoning 

instead of from the deception tactics in a specific domain, the patterns can be generally 

applied to any topic. The last process that combines all accepted hypotheses to produce a 

final outcome can be mapped to the classification module in our model. Driven by the 

intent of deception, we are able to take the modeling of the detection processes one step 

further by generalizing methods and removing assumptions. Since the manipulation of 

arguments in a communication is so flexible that there are innumerable ways to deceive, 

we look for the universal patterns of deception and verify indicators through domain-

independent criteria. On the contrary, Johnson et al. customize the expectations of 

observations and map indicators to a limited number of deception tactics based on 

domain knowledge. Our model also performs detection on data with a more flexible form 

than the accountant reports in Johnson et al.’s case. Overall, our model of detection 

generalizes Johnson et al.’s model. It is completely domain independent and does not 

assume the form of data as long as it provides text-based content with sufficient levels of 

reasoning.  

 

3.3 Outcome of Detection 

The final output of the model includes a quantified result indicating the likelihood of 

deception in a story. Quantified results are not only more informative but also more 
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reasonable because telling the whole truth or a whole lie is rarely a desirable action in the 

real world. A qualified (binary) result can be obtained by thresholding. 

 

The contribution of our model lies with its detection power and its analysis capability, a 

combination of which we have rarely found in any existing work. This analysis capability 

includes deception editing, deception explanation and hypothesis evaluation. Deception 

editing restores the honest arguments of a deceiver using GroupLens prediction method. 

Deception explanation explains why a story is deceptive in terms of (i) how the deception 

was formed and (ii) how the deception was detected. To explain how the deception was 

formed, a hierarchy of the manipulated arguments in a deceptive story can be constructed 

to illustrate the flow of manipulations. Together with a comparison between the deceptive 

arguments and their honest versions, the type of manipulation can be revealed. To explain 

how the deception was detected, we analyzed the strength of the reasoning patterns 

discovered from a story. In particular, we can evaluate the score and the activation of 

each pattern. These analyses can provide human detectors with valuable evidence of 

deception in that they can further review and/or confirm the decisions. In our model, the 

reasoning patterns are not limited to the three we proposed. Any quantifiable hypotheses 

regarding human reasoning can be incorporated into the model and serve as features to 

classify deception. As such, hypotheses on the patterns of deceptive reasoning can be 

evaluated in a computational way. Embodying this function, the capability of hypothesis 

evaluation can also assist the psychological and cognitive studies of deception. 
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Chapter 4 Detecting Real World Deceptions 

4.1 Overview 

We have argued and verified through experiments that the major discrepancies between 

deception and truth lie with the inconsistency of a speaker’s behavior and his 

untruthfulness compared with truth tellers. The discrepancies are measurable through 

computational models. We have also described and credited three reasoning patterns of a 

deceiver that non-deceptive communications do not exhibit: manipulations propagate to 

related arguments according to dependence, manipulated arguments are functional to the 

claimed conclusion, and inconsistency and untruthfulness are negatively associated. Our 

earlier verification of the hypotheses was based on an artificial scenario. Here, we will 

attempt to evaluate the hypotheses again using real world cases.  

 

When applying the model to real life scenarios, we will face practical problems that have 

not been faced when just using word-level cues. Firstly, it is a challenging task to elicit 

the semantic arguments from natural-language communications. There are several 

problems we need to address during the process, such as the retrieval of the semantics 

from a natural-language story. We may rely on natural language processing (NLP) tools 

to tackle the problem directly, but tools that can process subjective information as 

sensibly and precisely as a human would are not available. Secondly, historic data from 

multiple agents are required in our framework in order to measure one’s deviation from 

the self. Although this kind of data exists in the real world, it is seldom recorded 

especially for the purpose of deception detection because people avoid admitting 



 69 

deceptive acts, and detection by others lacks ground truth. Unfortunately, it is also 

unusual for surveys to record historical information because individual differences have 

rarely been considered in past studies. (There are no longitudinal studies that we are 

aware of.) A third obstacle is that real world data is noisy. Real world deceivers may not 

strictly follow the reasoning process we proposed. Psychological status and 

communication environment mediate the process of argumentation although consciously 

making changes to the reasoning process is very difficult. Most of the problems are 

within the realm of NLP and intent modeling. Although NLP and intent modeling are not 

the focus of this thesis, we will provide a comprehensive analysis of possible methods. 

 

The outline of our experiments and evaluations are presented in Fig. 6 and Fig. 7. To 

apply our detection method on existing real world datasets, we need to synthesize data in 

a reasonable way. To this end, we first build the cognitive models of the speakers 

according to the stories in the datasets, and then synthesize stories by conducting 

inference on the models. The evaluation of the cognitive model includes a parametric 

study that analyzes the sensitivity of the model to different assumptions during its 

construction. The evaluation of the detection model is accomplished through evaluating 

the inconsistency detection, evaluating the detection of deception, and discussing analysis 

capability. For inconsistency detection, we used both simulation data and real data to 

measure the performance. In deception detection we first evaluate detection performance 

on classifying truth and deception with real data, and then synthesize misinformed agents 

to evaluate its capability to distinguish deception from misinformation. To study the 

behavior of the detection model we also perform parametric studies to evaluate how 
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inconsistency detection and deception detection react to different types of datasets. In 

addition to the detection capability, we also present the analysis capability of the model 

which enables the restoration of truth and the explanation of deception. 

 
Figure 6 Outline of the experiments in the construction of cognitive models 

 

 
Figure 7 Outline of the experiments in deception detection 
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4.2 Deception Datasets 

According to Gokhman et. al (2012), deception datasets commonly used in the field of 

deception detection can be categorized into sanctioned deception and unsanctioned 

deception. In sanctioned deception the experimenter supplies instructions to individuals 

to lie or to tell the truth. In unsanctioned deception, the participant lies of his or her own 

accord. The majority of studies on deception detection employ sanctioned datasets in 

which experimenters recruit participants for a lab survey and randomly assign them to a 

lie or truth condition. Sanctioned datasets are easy to control, and thus are able to provide 

clean data with ground truth. However, they are found to be not as realistic as 

unsanctioned datasets. In reality, people are motivated to lie instead of instructed to lie. 

The benefits of success and the risks of failure of deception strongly influence the 

performance of deceivers. Unsanctioned datasets address this problem by asking the 

participants to record their daily lies, but the participants may not always completely 

recall the lies they made and sometimes unconsciously deny the lies. Another type of 

unsanctioned deception involves incentivizing the participants to cheat in an environment 

and to lie about the cheating later. This type of data collection is very labor intensive and 

usually yields very small number of lying cases. In this thesis, we use lab surveys as our 

datasets since lab surveys provide clean data in which the participants are not influenced 

by the different testing environments, sufficient information about the survey can be 

provided for analysis, and ground truth are available for the purpose of evaluating 

performance.  
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Among all lab surveys that are available for research purposes, Mihalcea et. al’s surveys 

of opinions on controversial topics (2009) and Ott et. al’s hotel reviews (2011) are most 

popularly used by existing researchers as benchmarks. We choose their datasets for the 

purpose of facilitating the comparison of our methods with existing methods. In Mihalcea 

et. al’s surveys, 100 participants were asked to imagine that they were taking part in a 

debate. To prepare for their speech, each of them needed to provide a story of at least 4 or 

5 sentences to illustrate his true opinion on a topic. Next, they were also asked to provide 

stories to illustrate false opinions on the topic, that is, to lie about their opinions. For 

example, on the topic “abortion”, participants may argue about why abortion is good if 

they support abortion, and also argue about why it is bad as if they did not support it. 

Among the three topics they surveyed (“abortion”, “death penalty” and “my best friend”), 

we select the data under the topic “abortion” because there are sufficient numbers of both 

positive and negative opinions on it in both true and deceptive stories, which provides us 

with some information of how arguments from different sides influence the conclusion, 

or in other words, enable us to learn the reasoning behind the comments, and at the same 

time prevent us from being biased to one side of the story. The hotel reviews from Ott et 

al. are composed of 800 true reviews collected from TripAdvisor for 20 hotels in the 

Chicago area and 400 deceptive reviews gathered using Amazon Mechanical Turk 

(AMT) for the same 20 hotels. To make sure that the hotel reviews are comparable to the 

opinion surveys, we randomly selected 5 hotels to form a corpus of 100 deceptive 

reviews and 200 true reviews. Samples of the abortion data and the hotel reviews can be 

found in Appendix E. In both surveys, the participants were asked or assumed to provide 

all true arguments in the true stories, but were not required to provide all lies in the 
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deceptive stories. This means that we only have ground truth for global lies, that are lies 

in the conclusion of a story, but not for local lies, that are lies in their individual 

arguments. The major difference between the opinion surveys and the hotel reviews are: 

opinion surveys provide opinion-based stories that are subjective beliefs on a topic while 

hotel reviews provide fact-based stories which are concluded based on facts and 

experience; and in opinion surveys each participant provides a true story and a deceptive 

story while in hotel reviews true stories and deceptive stories are provided by different 

speakers. The first difference also refers to the difference between opinion-based stories 

and fact-based stories. Opinion-based arguments are subjective beliefs about ethics or 

feelings of the speaker, which rarely changes according to observations due to the 

cognitive dissonance (Festinger, 1962) aroused by the conflict between facts and opinions. 

Depending on the topic, they may or may not contain objective facts. Opinion-based 

stories, especially those on controversial topics, can be very different from person to 

person such as the diverse views on abortion. It is hard to detect deception in opinion-

based arguments because speakers usually can argue on both sides without the support of 

facts. As a result, deceivers are not necessarily less compelling than truth tellers. On the 

other hand, in fact-based stories speakers usually hold similar attitudes towards the same 

observations such as the sentiment on a large hotel room, the attitude on a low price and 

the attitude on a heavy laptop. However, speakers’ attitudes and conclusions are sensitive 

to observed facts if they do not have a strong bias towards one side of the story. Thus, we 

can expect to see an improvement in the performance of detection in fact-based stories 

compared with opinion-based stories. Mihalcea et al.’s work demonstrates that their 

detection performance on the dataset involving both facts and opinions (my best friend) is 
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significantly better than the performance on the purely opinion-based stories (abortion 

and death penalty). Testing on both opinion-based and fact-based stories gives us a good 

spectrum on the performance of our model.  

 

One major limitation of existing deception datasets is that historic data and/or multiple 

stories from each participant are not available, and it is this information which deception 

detection should rely on to establish the original beliefs of each participant unless the 

participants’ opinions can be predicted by human experts or other mechanisms. To cope 

with this problem, we model the entire cognitive process of argumentation and synthesize 

historic data for each speaker in both datasets. A cognitive model of a speaker is called an 

agent in our experiment.  

 

Another limitation in the hotel reviews is that the true stories and the deceptive stories are 

provided by different people. We require paired stories of truth and deception because it 

is necessary to know one’s history in order to measure his inconsistency. When testing 

the opinion surveys, we can directly classify deceptive stories from true stories, but when 

testing using the hotel reviews we cannot use the stories directly. Instead, we use the true 

hotel reviews to generate individual agents and use the agents to synthesize true stories 

and deceptive stories. The synthetic true stories should be similar to the original true 

reviews because the agents were learned based on the original reviews. To ensure that the 

detection on the hotel reviews is comparable to that on the opinion surveys we picked 

100 agents whose stories contain the highest levels of reasoning as determined by 

computing the number of edges between the explicit arguments in their stories. Deception 
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with higher level of reasoning is more common among experienced deceivers, and thus is 

more difficult to detect. We will discuss the level of reasoning in detail in Chapter 4.7.2.2. 

 

4.3 Data Synthesis and Cognitive Process Modeling 

In real time communication environments where the history of each speaker can be 

recorded only techniques that retrieve semantic arguments from communications are 

enough for data gathering, but in other areas where history data is inaccessible, intent 

modeling techniques that can synthesize stories are necessary. Unfortunately, as our 

literature review revealed, none of the existing datasets contains multiple true stories 

from a participant because real life deception data over a long period of time are very rare 

and any survey data would require massive human effort. Usually each participant 

provides one true story and/or one deceptive story. Synthesizing stories is a challenging 

task because we need to make sure these stories are consistent with the stories in the 

dataset, or in other words, the synthesized stories are likely to be produced by each 

individual participant of the survey, and at the same time sound realistic and reasonable. 

To this end we model the cognitive process of the participants by learning their reasoning 

processes and generating artificial knowledge bases, (BNs in our case), accordingly 

assuming that the datasets are the presentations of their reasoning results, followed by the 

inference of possible stories and the selection of arguments through the use of their 

cognitive models.  Learning of the reasoning process or even retrieval of the semantic 

meaning from natural language is a major challenge for NLP. The difficulties in our work 

particularly include the identification of relevant arguments, the extraction of polarities 

on arguments, and the construction of the relationships between arguments.  
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As discussed in Chapter 2.3, relationships between arguments are encoded by graphical 

representations of BNs in the cognitive model. A node in a BN represents an argument, 

which is instantiated by two states referring to the positive (believe) and negative (not 

believe) polarities of the argument. To retrieve the semantic arguments from the stories 

we use rule-based keyword mapping combined with some manual effort. Specifically, we 

pick out the most frequent K arguments from all true stories by manually picking out the 

arguments containing the most frequent N words. As an example, the arguments under 

the abortion dataset are listed in Table 7. We use a stemmed word to represent the key to 

each argument, and the argument “abort” is the conclusive argument for stories in the 

abortion data. To retrieve the polarities of the arguments from each speaker’s story, we 

need to first identify the arguments and then extract their sentiments. Both processes are 

accomplished through mapping phrases with argument related key words (e.g. “woman”, 

“right”, “bodi” are key words related with the argument “right”) and sentiment related 

key words (e.g. “not”, “couldn’t” are key words related to the negative polarity). An 

agent’s polarity on an argument can be positive, negative or missing. We use a vector of 

real numbers to represent the arguments in a story with 1 denoting the positive polarity 

(e.g. fetus is human), 0 denoting the negative polarity (e.g. fetus is not human) and a 

special number (usually 0.5 or -1) denoting a missing argument as in: 

Storyi = {            } 

where Storyi denotes the story of the i
th

 agent, N is the number of arguments,    

represents the polarity of the j
th

 argument, and     . An entire dataset can be 

represented as 
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Datasettopic = {

      

       

 
      

} 

where Datasettopic denotes the dataset of topic topic, and M is the total number of stories. 

The true dataset and the false dataset can be respectively represented as  

Dataset
True

topic = {

      

       

 
        

}  Dataset
False

topic = 

{
 
 

 
       

 
  

       

 
  

 
      }

 
 

 
 

 

where Dataset
True

topic denotes the true dataset of topic topic, where Dataset
False

topic 

denotes the false dataset,        represents the true story of the i
th

 agent,       

 
  

 

represents the false story of the i
th

 agent, and M/2 is the total number of true stories and 

false stories. After the generation of the polarities, we carefully go through all the stories 

to confirm the mappings. We have detailed the process of data elicitation in Appendix C. 
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Table 7 Arguments in the abortion dataset 

Abort (conclusive 

argument)  

I support Abortion.  

Right  Women have the right to do whatever they want with their 

bodies.  

Govern  Government should interfere with people’s decision on 

abortion.  

Care  Unwanted children are put into unregulated care systems.  

World  Unwanted children should be brought up in the world.  

Life  Unwanted children’s lives are miserable.  

Murder  Abortion is murder.  

Health  Some pregnant women have health problems.  

Option  Abortion is an option.  

Time  The time to allow abortion should be fixed.  

Early  Abortion should only be allowed at early time.  

Population  Abortion can help birth control.  

Adopt  Adoption is an option.  

Rape Some pregnant women were raped. 

Carry  Women should be forced to carry babies.  

Child  Children have the right to life.  

Couple  There are families and couples who want to adopt babies.  

Educate  Education should be provided to prevent unwanted 

pregnancy.  

Mistake  People use abortion to correct their mistakes.  

Teenager  Some teenagers get pregnant.  

Inconvenience  Pregnancy is inconvenient.  

Responsible  People should take responsibility.  

Sex  People are forced to have sex.  

Birth  Some pregnancies have birth defects.  

Human  Unborn children are human.  

Concept  Life starts from conception.  

God  Religion plays an important role in the decision.  

Circumstance  There are circumstances when people need an abortion.  

Want  People want abortion.  

Legal  Abortion is legal.  

 

4.3.1 BN Learning 

The first task in the agent modeling is to build a BN for each speaker based on the stories 

in the dataset. The agents are represented by BNs with the same structure, whose 

parameters are respectively learned from the agents’ individual stories. The task of BN 

learning is achieved through two steps: building the graphical structure of the BN and 
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filling in the numerical parameters of the BN, which are the conditional probability tables 

(CPTs). This problem has been studied in depth over the last decade, and consequently 

there is a considerable number of learning algorithms. Existing methods to build BN 

structures can be grouped into two categories: methods based on score functions and 

search, and methods based on independence tests. Score and search based methods are 

more frequently used in learning BN structures. The algorithms attempt to find a structure 

that maximizes the fitness between the graph and the data measured by a scoring function. 

Search algorithms are combined with the scoring function to explore structures with high 

scores within a space of feasible solutions. Brute-force search is usually unaffordable. 

Therefore heuristic search algorithms were proposed to efficiently reduce the search 

space. The advantage of score and search based methods is that they usually can find the 

global optimal solution, but the computational complexity can be extremely high. 

Compared with the quantitative approach of scoring and searching, methods based on 

independence tests build BNs through qualitative studies of prior knowledge in the 

domain. They discover causal relationships through analyzing the dependence between 

random variables (r.v.s) and form graphs that encode assertions of conditional 

independence. The algorithms are able to build the structures more efficiently by 

following the intuition that the structure of a BN corresponds to dependencies implied by 

the distribution subject to the observational data. The algorithm we use is an 

independence test based algorithm called PC algorithm (Sprites, 2000). PC algorithm is 

widely used to generate BNs from correlations and partial-correlations of observations. 

The basic idea of PC algorithm is to test the conditional independence using d-separation. 

If a path connecting a node u and a node v is d-separated by a set of nodes Z, u and v are 



 80 

said to be conditionally independent. The d-separation can be tested using the partial 

correlation between u and v given Z. After the nodes are connected based on d-separation, 

heuristics that avoid cycles are applied to direct arcs. The advantage of using PC 

algorithm is that it conforms to the intuition that causally related arguments are always 

correlated and that it saves computational and memory costs of searching a huge space of 

all feasible structures while still being able to distinguish causality from correlation. 

Assuming all agents share the same structure, we use Dataset
True

topic to generate a BN in 

which each node represents an argument. The true stories from 100 agents provide us 

with a good measure of the correlations and partial correlations between arguments, 

which are further used in the PC algorithm to derive causal relationships. We have 

detailed the process of learning BN structure in Appendix C. During the process of BN 

learning, we varied the threshold of correlation under which the edge between two 

arguments should not be preserved. A high correlation threshold means that two 

arguments are allowed to be causally related only when they are strongly correlated. We 

select the BN learned from the threshold that can minimize the number of arcs without 

disconnecting the graph. Figure 8 depicts the graph that we built from the abortion 

dataset. 

 

The objective of BN learning, in general, is to construct the BN that best fits the learning 

data, which is accomplished by finding the parameter that can maximize the likelihood of 

data given a structure. In our experiment the parameter of each agent’s BN is 

individualized according to his personal beliefs. Obviously deceptive stories cannot be 

included in the learning data because they do not represent the true beliefs of the speakers. 



 81 

This leaves us with one piece of data, (the true story), for each BN, which means we need 

to learn parameters from extremely sparse data. Also arguments are missing in each story, 

so our data is incomplete. Theoretically, there can be an infinite number of BNs fitting 

one piece of data. However, we require additionally that the BN realistically represents a 

human speaker, which means that it should (i) most likely generate the speaker’s story, 

(ii) represent the corresponding speaker better than any other BN, and (iii) consider other 

possibilities of the speaker’s attitude. We are able to fulfill the first requirement by 

maximizing the likelihood of the speaker’s data. The second and third requirements are 

actual conflicting. The second requirement can be fulfilled by maximizing the diversity 

of the agents and minimizing their uncertainties, which implies that the agents are 

extremely biased by their original stories and are reluctant to change with different 

evidence. In this case, the third requirement that speakers possess alternative attitudes 

cannot be fulfilled, therefore the learning algorithm is required to balance the bias of the 

agents by favoring the agent’s story while sharing knowledge with others. Why do we 

want a model that favors one story but also considers other possibilities? A model 

represents the reasoning process of a speaker. If a model is very biased to the speaker’s 

own story it indicates that the speaker’s reasoning is deterministic, and consequently that 

the speaker will strongly insists on the same arguments no matter what evidence is 

observed, which is a very unrealistic scenario. On the other hand, an extremely certain 

model will artificially ease the detection of deception. Since the model always biases to 

the same arguments, the training data becomes very similar and the prediction turns out 

to be precise and certain. As a result any deviation from the true stories is regarded as 

inconsistent. By considering more possibilities of arguments the agent becomes hard to 
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predict which then maximizes the difficulty of deception detection. Modeling speakers in 

this way we can have an estimate of the lower bound of our detection performance. This 

requirement in modeling suggests two considerations. Firstly, people reason with 

uncertainty. Although the story is the speaker’s best selection of arguments, he may have 

sub-optimal selections, and his preference on the sub-optimal selections may not deviate 

significantly from the best one. An ideal model should appropriately encode uncertainty. 

In addition, a speaker’s model should incorporate context knowledge of the domain 

which is not explicitly mentioned in the speaker’s story since the context knowledge may 

shed light on the other possible selections of arguments. The considerations elicit two 

more constraints in the learning of parameters: maximize the uncertainty of the agent, and 

use data from all agents as a reference of context knowledge. Overall, we want to build 

personalized models with uncertainty based on a common ground of knowledge instead 

of independent models that can best fit their individual stories. Note that we do not 

require the models to avoid fitting the deceptive stories because it will artificially 

increase the detection rate. 

 

We determined that an approach based on the principle of maximum entropy can satisfy 

our constraints. The approach handles missing data in the following way: “when we make 

inferences on incomplete information, we should draw them from the probability 

distribution that has the maximum entropy permitted by the information which we do 

have”, (Moens, 2006). According to this idea the joint probability of the “actual argument” 

and the “presented argument” can be estimated using the maximum entropy principle, 

subject to the constraint that the marginal for the “presented argument” agree with the 
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maximum likelihood estimates (MLE) of the learning data. Under the assumption that 

data are missing at random, the Maximum-entropy algorithm is equivalent to a localized 

EM algorithm, (Cowell, 1999). Entropy-based algorithms specify two constraints: 

maximizing the likelihood of learning data, and maximizing or minimizing the entropy of 

the model. By maximizing entropy we interpret the reason for missing data as because 

the speaker is uncertain about it. Minimizing entropy can be interpreted in two ways: the 

data is ignored because the speaker is very certain about it (or it is common sense), or the 

data is not mentioned because the speaker does not believe in it. 

 

Figure 8 Agent generated from one hundred true stories from the abortion data 
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When learning the parameter for the i
th

 agent we try to enrich the context knowledge of 

his model by using the entire Dataset
True

topic as learning data, but with a lower weight 

relative to       . We want to find the minimum weight of his story that can be used to 

build a BN generating his own story as the MPE. The intuition behind this method is as 

follows: Assuming that people’s knowledge on daily topics is learned from similar 

observations, we can expect them to share similar context knowledge, which is also 

called common sense. People also form their individual opinions because a particular 

observation(s) was enhanced more frequently than others, and the most frequent 

observation(s) becomes the most likely story that one believes. 

 

4.3.2 Argument Selection 

A BN learned based on semantic arguments using the Maximum-Entropy based 

algorithm represents a rational person who infers the given data as his most likely story 

without losing generality to the common sense of the majority of people. However, when 

his inferred story is communicated, it is usually presented as binary polarities, which are 

“believe” (positive), “not believe” (negative) or “unknown”, instead of by probabilities. 

Positive and negative polarities can be easily identified by favoring the state with a higher 

probability, but not all explicated arguments are presented. Although speakers may have 

opinions on all arguments, they may not mention certain arguments for some reasons. As 

we have presented in Chapter 2.3.3, cognitive scientists (Carenini and Moore, 2006) 

suggested that an argument is worth mentioning if it is significantly more compelling to a 

target argument compared with other arguments. We use the method proposed in Chapter 

2.3.3 to measure the compellingness of arguments. An argument is notably-compelling, 
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(worth-mentioning), if its compellingness exceeds all other arguments’ by k std. 

deviations. When determining the notably-compelling arguments given k we build a 

hierarchy of mutual impact starting from the conclusion. Specifically, we insert the 

conclusion in the lowest level of the hierarchy. For each argument on the current level we 

calculate the compellingness of all other arguments to it and insert the notably-

compelling arguments in the next level if it is not in the hierarchy yet. Then, we move to 

the next level and continue the process until no new argument is added. Fig. 9 depicts a 

hierarchy of mutual impact built in this manner. This is a reasonable way to elicit 

compelling arguments because the purpose of the arguments is to support the conclusion. 

An argument is worth mentioning only if it can support the conclusion or support other 

arguments supporting the conclusion. 

 

 

Figure 9 A mutual impact hierarchy to determine notably-compelling arguments 

 

The value k in determining notably-compellingness can be used to represent a speaker’s 

personal tendency to believe in an argument. We measure k for each agent by 
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maximizing the likelihood of representing explicit arguments as notably-compelling and 

implicit arguments as not notably-compelling.  

 

When reasoning through a BN, observations and assumptions can be set as evidence. 

When evidence is not explicitly pointed out in a dataset we need to select evidence 

manually. Selection of evidence is not as straightforward as it seems to be. Evidence 

means objective truth, but even in fact-based stories like hotel reviews people’s 

perceptions of facts can be different. For example, some customers may regard two 

bathrooms as a plus but others may feel it redundant. The size of a bed and the rate of a 

room can be judged differently according to people’s preference, therefore, we identify 

an argument as evidence only when all speakers in the same environment agree on it. 

Specifically, for a topic with the same setting (e.g. the hotel reviews for the same hotel), 

if all speakers who explicitly mention an argument agree on the argument, it is identified 

as evidence. An example of evidence is “The hotel charges extra fees on facilities”. Some 

other arguments are set as evidence manually because they are premises or events. An 

example is “We stayed more than 3 nights”.  

 

4.3.3 Validation of Cognitive Model 

A cognitive model has a representational power if its inferred true story is similar to the 

original speaker’s true story and its inferred deceptive story is similar to the speaker’s 

deceptive story. To infer a true story the corresponding agent’s BN is reasoned given the 

evidence of the true story. To infer a deceptive story, both the original evidence and the 

pre-assumed conclusion are set as evidence, then the inferred arguments are classified as 
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explicit (mentioned), or implicit (missing), according to the significance of their 

compellingness. To evaluate the representational performance of the cognitive models all 

stories are inferred and the similarities between the inferred stories and the original 

stories are measured. The performance is calculated as the fraction of the actual 

arguments that have the same polarities as the inferred arguments.  Firstly, we validate 

that our deceptive reasoning is far better than random guessing. If a person randomly 

picks polarities of arguments to represent true stories, and also ensures that his conclusion 

is deceptive (mutually exclusive to the honest conclusion) to represent deceptive stories 

his performance are shown in Table 8, whereas our performance of representing the true 

stories in the abortion data is 0.913333 and that of representing the deceptive stories is 

0.811333. Both results are significantly better than random guessing. 

Table 8 Representational performance of deriving arguments by random guessing 

support arguments 

# 

2 3 4 5 10 19 29 30 

Deceptive 0.5555 0.5 0.4666 0.4444 0.3939 0.3666 0.3555 0.3548 

Honest 0.2222 0.25 0.2666 0.2777 0.3030 0.3166 0.3222 0.3225 

 

In our model we do not strictly require the BNs to accurately infer the deceptive stories 

because we do not claim our proposed deceptive reasoning is the only strategy a deceiver 

takes. The deception strategy may depend on the deceiver’s skill, his psychological status, 

and his knowledge about the listener. It may also be mediated by the environment of 

communication. However, we believe that the deceptive reasoning we proposed is a key 

process in a deceiver’s cognition. Thus, we expect that the story inferred by the deceptive 

reasoning is better than that inferred by the honest reasoning in terms of representing the 

deceptive story. In particular, we want to show: 
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For any deceptive story Y’, 

                    ̅̅ ̅  

    
 

                   

    
 

where X = {x1, x2, …, xn} is an ordered set of states, where the order follows that of a 

complete set of the arguments,        refers to the joint probability of X given evidence 

E, and                denotes the set of argument states that can maximize the joint 

probability of X given E, which is the MPE. Suppose the k
th

 argument is the conclusion 

and   ̅̅ ̅ is the state of the original conclusion, then    ̅̅ ̅ denotes the mutually exclusive 

state of the original conclusion, which is the state of the deceptive conclusion. This 

inequality means that the deceptive story is more likely to be generated by supposing the 

deceptive conclusion than by not supposing it. We tested this hypothesis and evaluated 

the representational power of the BNs using the abortion data. The test results are 

presented in Table 9. In the table, Hr2Hs denotes the test to represent true stories using 

honest reasoning, Dr2Ds denotes the test to represent deceptive stories using deceptive 

reasoning, and Hr2Ds denotes the test to represent deceptive stories using honest 

reasoning. Although the score of Dr2Ds is only slightly higher than the score of Hr2Ds, 

the difference between their performances is significant (<0.05). It may be because the 

individual difference of the models’ performances is small and the performance of 

deceptive reasoning is in general better than that of honest reasoning. Assuming that the 

representational power is similar across different speakers, we doubt whether the 

similarity between different models’ representational powers is caused by high 

similarities between the speakers, as a result of which personalized models may not be 

necessary. To test this hypothesis we evaluate whether a speaker’s story can be better 

inferred by another speaker’s model. In particular, we compare the performance of using 
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an agent to represent his story and the performance of using random agents to represent 

his story. The results are shown in Table 10, in which RHr2Hs denotes the test to 

represent true stories using random agents’ honest reasonings, and in which RDr2Ds 

denotes the test to represent deceptive stories using random agents’ deceptive reasonings. 

Table 10 demonstrates that the original model significantly outperforms the random 

models with regards to representing the stories, thus, we can conclude that there is a 

significant difference between individual cognitive processes, and that our cognitive 

models are able to encode the difference. 

Table 9 Results of the representational performance of agents generated with the abortion data 

Hr2Hs Dr2Ds Hr2Ds Hr2Ds v.s. 

Dr2Ds 

score Std. 

deviation 

score Std. 

deviation 

score Std. 

deviation 

Significance (p-

value) 

0.913333 0.109483 

 

0.811333 0.112139 

 

0.751 0.113949 

 

0.0114 

 
Table 10 Representational performance of agents generated with the abortion data compared with 

the performance of randomly shifted agents 

RHr2Hs Hr2Hs v.s. 

RHr2Hs 

RDr2Ds Dr2Ds v.s. 

RDr2Ds 

score Std. 

deviation 

Significance (p-

value) 

score Std. 

deviation 

Significance (p-

value) 

0.782917 0.107059 

 

0 0.80341 0.105455 

 

3.02E-19 

 

4.3.4 Data Synthesis 

The careful modeling of the agents guarantees that we are able to synthesize reasonable 

and realistic stories which are likely to be believed by the speakers of the original stories. 

To synthesize history data for each speaker we infer the arguments based on his cognitive 

model with random evidence and represent the inference results as polarities according to 

the methods described in Chapter 2.3. The synthesis of historic data is carried out for 

each agent over a number of repeats. During each repeat, all agents are fed with the same 
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set of evidence. The synthesized data of a speaker can be represented by a matrix of 

polarities, with the rows denoting repeats and columns denoting arguments. This serves 

as the history of the speakers, which provide us information with regard to the correlation 

between speakers and the mutual dependence between arguments.  

 

During deception detection each story in the dataset serves as a repeat of testing with a 

distinct set of evidence. For i
th

 repeat, the i
th

 story, which belongs to the i
th

 agent, serves 

as testing data. For any other agent, we synthesize an honest story with the i
th

 set of 

evidence by supposing that each agent has provided a story given the set of evidence in 

each repeat. The synthesis data is composed of 100 99 honest stories for the true testing 

data, and 100 99 honest stories for the deceptive testing data. These honest stories are 

used to form a consensus network for the i
th

 agent at the i
th

 repeat and to calculate the 

inconsistency and the untruthfulness of the i
th

 true story and deceptive story. 

 

4.3.5 Parametric Study 

When building the models we found that several parameters have a large impact on the 

representational power of the agents, namely the accuracy of argument retrieval, the level 

of uncertainty of the agents, the weight of individual’s stories in learning data, the size of 

learning data, and the similarity between agents. We performed a parametric study to 

evaluate the sensitivity of a model’s representational performance with respect to these 

parameters. 

 

4.3.5.1 Argument Retrieval 



 91 

In our current experiments the learning data, which is the semantic arguments, are 

generated through key word mapping along with manual effort in order to minimize the 

error from the retrieval of semantics. However, different raters may assign different 

polarities according to their respective understanding of the semantics. To minimize labor 

cost and avoid subjective bias in the process of argument retrieval, we can adopt NLP 

tools which support the automation of topic classification and sentiment retrieval. NLP 

methods may introduce errors to the retrieval of arguments and further degrade the 

representational performance of the model thus we want to test the influence from the 

process of argument retrieval by replacing the semi-manual method with an NLP tool that 

performs sentiment analysis automatically. Another purpose of this study is to evaluate 

the potential of automatically retrieving arguments using tools. Sentiment analysis refers 

to applications that extract subjective information such as attitude and emotion from text-

based materials at the document, sentence or feature level. Early works in sentiment 

analysis, (Turney, 2002; Pang et al., 2002), were applied to the analysis of consumer 

reviews – whether a review expresses a positive or negative feeling. Although sentiment 

analysis achieves encouraging results in areas such as product reviews, it is not as 

accurate as human raters in understanding human opinions in general since sentiment 

analysis is domain-specific and its capability to retrieve subjective information from 

objective expressions is yet immature. We used an application called Semantria to 

perform sentiment analysis on our datasets. Semantria supports the extraction of 

sentiments based on customized concepts. Given a document it first breaks it into basic 

parts of speech based on POS tags. It then identifies sentiment-bearing phrases by 

mapping with user-supplied key words, and gives a polarity score to each sentiment-
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bearing phrase according to how frequently it occurs to a set of known positive words 

and a set of known negative words. Since an argument can be expressed in multiple 

phrases the polarity scores are combined to determine the overall polarity of an argument 

in a text. We provide the same key words we used in argument classification to the 

application as seeds of arguments. Polarities retrieved by sentiment analysis may have 

different interpretations with ours, but the polarities are valid as long as the 

interpretations are consistent over all stories. The presentation performance of the BNs 

learned from the data generated by sentiment analysis is showed in Table 11. This (on 

Table 11) shows that although the performance increases in general by using automatic 

method, the deceptive reasoning is no better than the honest reasoning in representing the 

deceptive stories. We may explain this as follows, the BNs can better fit the data 

probably because the arguments of different agents generated by sentiment analysis are 

similar. Not only the learning data (true arguments) but also the deceptive arguments are 

similar. As a result, the learned BNs are not good representations of the individual 

speakers’ knowledge bases because they can always fit the data regardless of the 

evidence. Overall the models learned from automatically retrieved data are not as 

representational as those learned from semi-manually retrieved data because 

automatically retrieved data does not encode personal difference appropriately. 

Table 11 Representational performance of BNs with different semantics retrievals 

Semantics 

retrieval 

Hr2Hs Dr2Ds Hr2Ds Hr2Ds v.s. 

Dr2Ds 

 score Std. 

deviation 

score Std. 

deviation 

score Std. 

deviation 

Significance 

(p-value) 

manual 0.9133 0.1094 0.8113 0.1121 0.751 0.1139 0.0114 

automatic 0.9343 0.0794 0.8513 0.0904 0.8206 0.0785 0.8651 

 

4.3.5.2 Level of Uncertainty 



 93 

As we have discussed, maximizing entropy of data and minimizing entropy of data 

during the learning of BN handles missing data in different ways. Maximum entropy 

maximizes the unpredictability of an agent, while minimum entropy assumes the 

omission of arguments caused by certainty. In addition to entropy-based algorithms, the 

EM algorithm is another learning method that deals with incomplete data. EM algorithm 

iterates through the process of expecting missing data based on the current estimate of the 

parameter and the process of updating the parameter by maximizing the likelihood of 

learning data until the parameter converges. EM algorithm depends on an initial guess of 

the parameter, which may influence the uncertainty of the model. Our assumption on the 

level of uncertainty and the choice of the learning method significantly impact how much 

the generated BNs fit the learning data and how flexible the BNs respond to future 

inferences. We test the representational performance of the model using maximum-

entropy, minimum-entropy, and EM algorithm. For EM algorithm we vary the initial 

parameter from 0.5 to 1. The results are presented in Table 12, ordered by the level of 

uncertainty. We find out that maximum-entropy (MaxE) generates the same model as EM 

algorithm with initial CPTs equal to 0.5 as suggested by Cowell (1999). According to 

Table 12, the representational performance is in decreasing order along with the level of 

uncertainty. It means the more uncertain a model is, the better it can represent the original 

stories. It is because by maximizing entropy missing values are filled with uncertain 

probabilities. According to the definition of compellingness, arguments with uncertain 

values are relatively uncompelling, thus missing arguments are correctly classified as 

implicit.  
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Table 12 Representational performance of BNs with different levels of uncertainty 

Initial guess of 

EM or Entropy 

method 

Hr2Hs Dr2Ds Hr2Ds  Hr2Ds v.s. 

Dr2Ds 

 score Std. 

deviation 

score Std. 

deviation 

score Std. 

deviation 

Significance 

(p-value) 

0.5/MaxE 0.9133 0.1094 0.8113 0.1121 0.751 0.1139 0.0114 

0.5-0.75 0.8653 0.1430 0.8163 0.1446 0.7666 0.1436 0.1548 

0.75-1 0.794 0.1752 0.751 0.1689 0.7103 0.1785 0.6064 

MinE 0.751 0.1892 0.5176 0.1659 0.629 0.2113 2.03E-08 

 

4.3.5.3 Weight on Individual Stories 

The learning data for an individual agent is composed of all true stories in the dataset 

with a higher weight assigned to the individual’s story. The purpose is to personalize the 

model so that it will most likely infer the same arguments as those in the original story 

while still preserving the common knowledge of the domain. How much weight we put 

on a speaker’s story determines how biased his model is towards his subjective beliefs. 

An overly biased model is not flexible enough to change according to evidence, whereas 

an under-biased model is not able to represent the individual but simply agrees with the 

majority. In practice, under the constraint of favoring the speaker’s own story we want to 

minimize the distance between the individual and the majority, thus when we vary the 

weight on an speaker’s story, to form the learning data we select either the weight we 

choose or the minimum weight that satisfies the constraint, whichever is smaller.  

 

The result of the test is shown in Table 13. The results show that 100:1 and 60:1 are 

reasonable ratios of weights since they are able to produce models that are diverse 

enough to represent their distinctive deceptive stories. It seems that the performance of 

100:1 is not significantly better than that of 60:1. This is because most of the models can 

infer the original story as the MPE with a weight less than 60. On the other hand, models 
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learned from the data formed by the weight of 30 cannot incorporate personal difference 

appropriately. 

Table 13 Representational performance of BNs with different interpretations of uncertainty 

weight Hr2Hs Dr2Ds Hr2Ds Hr2Ds v.s. 

Dr2Ds 

 score Std. 

deviation 

score Std. 

deviation 

score Std. 

deviation 

Significance (p-

value) 

Min (min, 

30) 

0.8853 

 

0.1073 

 

0.804 

 

0.1129 

 

0.7593 

 

0.1177 0.0825 

 

Min (min, 

60) 

0.9103 

 

0.1081 0.8133 

 

0.1131 

 

0.7543 

 

0.1165 

 

0.0126 

 

Min (min, 

100) 

0.9133 0.1094 

 

0.8113 0.1121 

 

0.751 0.1139 

 

0.0114 

 

4.3.5.4 Size of Learning Data 

The learning data basically determines the context knowledge, or the “common sense” 

generally believed by the group of agents. The context knowledge provides a reference to 

the agents when inferring with unseen evidence. The more complete it is, the more 

possibilities an agent can think of. A larger group of agents can provide more complete 

context knowledge with more detail given other things being equal. Whereas an agent 

built based on knowledge from a small group may lose possible arguments due to the 

lack of detail. Consequently, the stories inferred by an agent, honest or deceptive, will not 

be very different from the agent’s learning data. This is exactly what we see from the test 

results in Table 14. The results show that 30 or fewer agents are not sufficient to form a 

comprehensive context to build the BNs. In reality, the requirement of having more than 

30 agents delivering opinions on the same topic may be infeasible. If context knowledge 

can be provide by domain experts we may be able to use fewer agents to achieve the 

same level of performance. 
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Table 14 Representational performance of BNs with different sizes of group 

Group 

size 

Hr2Hs Dr2Ds Hr2Ds Hr2Ds v.s. 

Dr2Ds 

 score Std. 

deviation 

score Std. 

deviation 

score Std. 

deviation 

Significance (p-

value) 

100 

agents  

0.9133 0.1094 

 

0.8113 0.1121 

 

0.751 0.1139 

 

0.0114 

30 

agents 

0.9016 

 

0.1117 

 

0.799 

 

0.1142 

 

0.746 

 

0.1181 

 

0.0603 

 

10 

agents 

0.9106 

 

0.1228 

 

0.793 

 

0.1216 

 

0.7466 

 

0.1179 0.2547 

 

  

4.3.5.5 Similarity between Agents 

There are both advantages and disadvantages to using similar agents. Similar agents can 

help generate the true stories more precisely because every agent agrees with the 

“common sense”. However, if they are not diverse enough they cannot provide us with 

both sides of the story. As a result of this, the inferred stories will be overly certain and 

insensitive to evidence. In this test only the stories that deviate from a speaker’s story by 

a certain amount of arguments are included in the speaker’s learning data when building 

his BN.   The result in Table 15 credits our hypothesis by showing that stories different 

from each other by more than 5 different arguments are necessary to build models that 

can represent both true and deceptive stories, but, with a larger difference with the group, 

an agent’s performance of Hr2Hs and Dr2Ds are decreased. 

Table 15 Representational performance of BNs with different similarities between agents 

Different 

arguments # 

Hr2Hs Dr2Ds Hr2Ds Hr2Ds v.s. 

Dr2Ds 

 score Std. 

deviation 

score Std. 

deviation 

score Std. 

deviation 

Significance 

(p-value) 

0-5 0.9536 0.0487 0.7926 0.0923 0.7746 0.0864 0.2857 

5-10 0.9073 0.1138 0.803 0.1162 0.744 0.1170 0.0318 

10- 0.89 0.1649 0.7893 0.1443 0.72 0.1416 0.0164 

  

The parameters in the learning of cognitive models that have impact on the 

representational performance include the accuracy of argument retrieval, the level of 
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uncertainty of the agents, the weight of individual’s stories in learning data, the size of 

learning data and the similarity between agents. Below we summarize their impacts on 

the learning of cognitive models.  

1. Automated retrieval of arguments may not be applicable to our framework since 

the retrieved arguments are not diverse enough to generate personalized models.  

2. The level of uncertainty determines how missing data is handled during the 

learning of BN parameters. Maximizing the uncertainty improves the 

representational performance as well as personalizes the individual models.  

3. The weight of an individual’s story in the learning data controls the bias of the 

agent towards his subjective beliefs. For the abortion data, we can generate 

models that favor their individual stories with a weight lower than or equal to 60. 

We think this parameter may be specific to topic. In topics where attitudes are 

diverse, a higher weight of or a larger bias towards an individual’s story is 

necessary. 

4. The size of group determines the completeness of the context knowledge of the 

agents. The more complete the context knowledge is, the greater the number of 

possibilities of arguments the models can provide.  

5. The similarity between agents determines whether the learned BNs cover both 

sides of the story, and thus influences the certainty and the flexibility of the BNs. 

 

Although there remain problems to be addressed, learning of cognitive process from 

natural language can be approximated to some extent using a combination of NLP and 

modeling techniques as described. Improvement in the performance can be anticipated if 



 98 

more advanced and relevant NLP tools are utilized. However, as we have argued, the 

construction of the cognitive process is not an essential part of the detection method if 

sufficient data is provided. To execute the detection method, it is only necessary to 

retrieve the semantics of arguments from the verbal content. 

 

4.4 Detection Results and Evaluations 

We performed deception detection on the two datasets (hotel reviews, and abortion data) 

based on the detection model in Fig. 3. For each dataset we first synthesized 100 repeats 

of historic data for each agent. The historic data is treated as the training data, which is 

then used to form correlation networks and provide information on the relations between 

arguments for the purpose of measuring reasoning patterns. Each story in the dataset is 

then treated as a repeat of testing with a distinctive set of evidence. In the testing process 

we assume that only the i
th

 agent at the i
th

 repeat exhibits deceptive behavior, which is 

represented by the deceptive stories. For the i
th

 repeat of testing, we synthesize an honest 

story for each agent other than the i
th

 agent by supposing that each agent had provided a 

story with the same evidence as the i
th

 agent. These honest stories are used to form 

consensus networks and calculate the inconsistency and the untruthfulness of the stories 

in the testing data. The reasoning patterns are evaluated based on the inconsistency and 

untruthfulness together with the relations between arguments believed by the respective 

agents. Finally, we obtain the scores of the reasoning patterns for each story in the testing 

data, which are classified as deception or truth through logistic regression. The entire 

process of the deception detection is summarized in Table 16. 
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Table 16 Steps of deception detection 

Step1 Build agenti for the i
th

 speaker based on the true dataset. 

Step2 Sample the agents to simulate several repeats of historic data. 

Step3 Obtain the correlations between agents and form correlation networks. 

Predict the historic data and measure the prediction errors. 

Step4a For the i
th

 repeat of the true dataset, simulate honest data for the agentj 

where j≠i using evidence in the i
th

 true story. Form consensus network for 

agenti in the i
th

 repeat of the true dataset. 

Step4b For the i
th

 repeat of the deceptive dataset, simulate honest data for the 

agentj where j≠i using evidence in the i
th

 deceptive story. Form consensus 

network for agenti in the i
th

 repeat of the deceptive dataset. 

Step5a Measure inconsistency in the i
th

 true story by taking the difference 

between the true story and the predicted true story. 

Step5b Measure inconsistency in the i
th

 deceptive story by taking the difference 

between the deceptive story and the predicted deceptive story. 

Step 6a Measure untruthfulness in the i
th

 true story by comparing the true story 

with agenti’s consensus network in the i
th

 repeat of the true dataset 

Step 6b Measure untruthfulness in the i
th

 deceptive story by comparing the 

deceptive story with agenti’s consensus network in the i
th

 repeat of 

deceptive dataset 

Step 7 Measure reasoning patterns of the i
th

 true story and the i
th

 deceptive story 

for the i
th

 agent. 

Step 8 Classify the i
th

 true story and the i
th

 deceptive story as deception or truth. 

 

4.4.1 Evaluation of Inconsistency Detection 

We first evaluate the performance of inconsistency detection since we are the first to 

apply it to deception detection and the detection performance heavily depends on it. We 

will perform a pilot study using simulation data to evaluate its performance in general, 

followed by the evaluation on the deception datasets.  

 

To ensure that the experimental results apply in general we simulate the knowledge base 

of a speaker using an existing BN and perform random test cases. The Alarm Networks 

(Beinlich et. al, 1989) was selected as our first test subject due to its reasonable size. 

Belief updating was performed to generate the reasoning results for the ease of the 

experiment. By perturbing the CPTs in the Alarm Network we simulated agents that are 
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slightly different in their conditional probabilities, which would reflect similar but not 

exactly the same uncertainty about knowledge. We used a perturbation value to control 

the noise added in the conditional probabilities. For example, if the perturbation value is 

0.1, the noise to be added is within +/-0.1. In this study, 1000 repeats of inference were 

conducted on 100 simulated agents, each with a different set of 10 pieces of evidence, 

both in the training and testing processes. In the testing process, the agents generate two 

versions of values: true values and deceptive values. The deceptive values are simulated 

by simply rotating each agent’s posterior probabilities. The methodology of inconsistency 

detection can be summarized as follows: First, we calculate the correlations between each 

two agents by comparing their past opinions. Next, based on the GroupLens prediction 

technique (Resnick et. al, 1994), we predict each agent’s opinion about the current task. 

Finally, inconsistency will be identified if the predicted opinions are far different from 

the actual opinions. In practice, we allow 4 std. deviations for a normal prediction error. 

The effectiveness of this method has been shown in Santos and Johnson’s study (2004). 

Here we repeat the experiment with a modified parameter setting in order to verify the 

results and provide a more comprehensive analysis. Table 17 shows the experimental 

result which echoes earlier studies. From the data we can see that the mean detection rate 

is around 87%, which is much higher than the human detection rate (around 55%). The 

false alarm rate is around 1%, which is also acceptably low.  

Table 17 Statistics on the inconsistency detection rates of alarm network 

Parameters Agents=100, Repeats = 1000, Perturbation = 0.1, Evidence = 1-10, std. 

deviation # = 4 

True positive 

Rate 

Max 1.0 False positive Rate Max 0.2518 

Min 0.3770 Min 0.0 

Mean 0.8716 Mean 0.011 

Med 0.9627 Med 0.003 
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In addition to validating the performance on the Alarm Network, we further considered 

how the system performs using general BNs as testbeds. As such, we conducted the same 

experiment on several other BNs which are Hailfinder Network (Abramson et. al, 1996), 

Diabetes Network (Andreassen et. al, 1991), and Munin Network (Andreassen et. al, 

1989) with increasing number of nodes and increasing complexity of structure. The 

structures and the detection rates of the networks can be found in Table 18. We 

surprisingly find out that the Diabetes network has the lowest detection rate (0.443) 

although its number of nodes, number of states, and number of arcs are not among the 

largest. We further studied the structures of the networks. One discovery was that the 

height of the Diabetes network is more than 100 levels while the other networks’ heights 

are within 20 levels. Inspired by Yuan’s idea (Yuan, 2007) that detection rate is largely 

influenced by the network’s intra-dependency, which is a measure of how dependent the 

states’ probabilities are on the evidence, we hypothesize that in the Diabetes network,  

nodes have the least dependence on evidence because the nodes are highly separated 

from one another. Experiments supported our hypothesis. Since detection rate is 

positively correlated to intra-dependency, which means that the detection rate increases 

with the increase of the intra-dependency; the low detection rate of the Diabetes Network 

is shown to be due to its great height. Overall, the detection method is valid on networks 

with moderate intra-dependencies. If the height of the network is too large, the network 

will be too weak to propagate the evidence to all the nodes, and thus some inconsistent 

information cannot be detected. For further information about intra-dependency and the 

experimental results please refer to Appendix A. 
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When detecting inconsistency from the abortion data we regard an argument as 

inconsistent if its prediction error deviates from the prediction errors of the training data 

by more than 3 std. deviations. The detection result in Table 19 shows that 20.37% of the 

arguments in the deceptive stories are classified as inconsistent and 7.73% of the 

arguments in the true stories are classified as inconsistent. Out of all 200 stories only 20 

of the true stories do not exhibit any inconsistency. The inconsistency in the true stories 

may not be completely false alarms since deviations from the self can be due to opinion 

change, innovation and even mistakes. Although the inconsistency rates in the deceptive 

stories seem low compared with the results in the pilot study, it is reasonable because 

normally only part of the phrases in a deceptive story are deceptive, but unfortunately we 

do not have the ground truth of that fidelity. 

Table 18 Structures and detection rates of hailfinder, diabetes, munin networks 

Parameters Agents=10, Repeats = 1000, Perturbation = 0.1, Times of std = 4, 

Evidence = 30% of total nodes 

Network no. of 

Nodes 

no. of 

States 

no. of 

Arcs 

Mean positive 

detection rate 

Mean false 

detection rate 

Hailfinder 56 223 66 0.8050 0.0264 

Diabetes 413 4682 602 0.4430 0.0144 

Munin 1041 5651 1397 0.6283 0.0216 

 

Table 19 Performance of inconsistency detection with the abortion data 

Parameters Agents = 100, Repeats = 100, Perturbation = real, Evidence = 

1-7, Times of std = 3 

 Inconsistency rate in Deceptive 

Story 

Inconsistency rate in True 

Story 

Max 0.8 0.766667 

Min 0.033333 0 

Mean 0.203667 0.077333 

No. of stories with 

inconsistency 

100 80 

 

4.4.2 Evaluation of Deception Detection 
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An ideal deception detection method should be both accurate and reliable, meaning that it 

should successfully distinguish deception from truth and that its performance is robust to 

the change of environment. To evaluate the performance we compare our method with 

existing verbal-cue methods with respect to both accuracy and reliability. The recognized 

methods include bag of words, 2-gram word features, POS tags and LIWC. All the 

methods use supervised classification models to classify deceptive/true texts. They 

basically differ in the features retrieved from the texts. Bag of words models a text by a 

vector of the appearance of words (with or without frequency). The models based on n-

gram word features calculate the probability of n-gram patterns of words showing up in 

an honest/deceptive story. Based on this, the probability of a text being honest and 

deceptive can be obtained. To extract the n-gram word frequencies, we used the SRI 

Language Modeling Toolkit, which provides free applications for building and applying 

statistical language models primarily for use in statistical tagging and segmentation. POS 

tags can be automatically retrieved from given texts using Stanford Log-linear Part-Of-

Speech Tagger. For LIWC, which retrieves the cognitive features from a text, we use the 

whole of 29 variables of LIWC for the classification. In addition, it might also be 

interesting to see whether classification on simply the semantic arguments can be 

effective in deception detection with the hypothesis that deceivers tend to raise some 

arguments that truth tellers usually neglect. Naïve Bayes and SVM are found to be most 

effective classification methods in classifying deceptive/true texts based on these features.  

 

To compare our results on the hotel reviews with the results of the conventional cueing 

methods, we need to synthesize the natural-language stories of the agents. What we did is 
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we collected all the sentences that represent each argument from the original reviews and 

built a pool of true arguments and a pool of deceptive arguments. To synthesize the 

language based on our inferred arguments, we randomly selected sentences from a truth 

pool or a deception pool for the corresponding arguments. Below shows a synthesized 

story. The order of sentences is re-arranged for the ease of comprehension. 

Our room was really nice, and the best bed ever. We found all of the staff 

very helpful and prompt. But if you are looking for a hotel with a lot of 

restaurants around it, the hotel is far away from many attractions. Hope I 

will be able to stay there again in the future. 

 

In Table 20 and in Table 21 we show the detection performance of our method compared 

with existing methods. All methods were evaluated using 10-fold cross-validations. The 

classification rate is the percentage of stories that are correctly classified. This accounts 

for the detection of both the true stories and the deceptive stories. Precision, recall and F-

measure are the basic measures of performance in information retrieval. In the context of 

classification, precision measures the fraction of positive results (data classified as 

deception) that are actually deceptive, and recall measures the fraction of deceptive data 

that are detected. Another measure that is probably more relevant in the context of 

classification is the area under ROC curve (AUC) (Fawcett, 2006). The ROC curve is a 

graphical plot of the performance of a binary classification model varied by its 

discrimination threshold. The graph plots the true positive rate versus the false positive 

rate with different thresholds. A dot under the diagonal (x=y) of the graph represents a 

model that generates more false positives than true positives, therefore, the bigger the 
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area under the curve, the better the model performs. We compare the detection methods 

with respect to all the measures. The highest rate of each measure is bolded and 

underscored. We also bolded the highest rates from only the cueing methods. For the 

model based on bag of words, we provided the results on the abortion data that were 

claimed in Mihalcea’s work (2009) together with the results we produced. We can see 

that for both datasets our method has the highest classification rates and F-measures. We 

also have the highest AUC for the hotel reviews. Compared with the other methods 

including human detection, we have improved the performance of deception detection by 

3.5% to 29.5%. The performance with the hotel reviews is significantly better than that 

with the abortion data due to two reasons: (i) the hotel reviews are composed of synthetic 

arguments which strictly follow our proposal of the reasoning processes, and (ii) the 

detection is easier in fact-based data versus in opinion-based data. Except for our method, 

for the hotel reviews, the 2-gram model has the highest classification rate and F-measure, 

and the bag of words model has the highest AUC. For the abortion dataset, argument 

classification has the highest classification rate and AUC, and the bag of words model 

has the highest F-measure.  
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Table 20 Deception detection performance with the hotel reviews 

Hotel reviews  classification precision recall F-

measure 

AUC 

Classification using 

arguments 

Naïve 

bayes 

0.64 0.637      0.65       0.644       0.599 

SVM 0.59 0.587      0.61       0.598       0.59 

Classification using bag 

of words 

Naïve 

bayes 

0.76 0.789      0.71       0.747       0.875 

SVM 0.69 0.69       0.69       0.69        0.69 

Classification using 2-

gram
+
 frequency 

Naïve 

bayes 

0.77 0.787      0.74       0.763       0.87 

SVM 0.81 0.798      0.83       0.814       0.81 

Classification using 

POS 

Naïve 

bayes 

0.565 0.592      0.42       0.491       0.6 

SVM 0. 53 0.538      0.43       0.478       0.53 

Classification using 

LIWC 

Naïve 

bayes 

0.62 0.64       0.55       0.591       0.686 

SVM 0.665 0.651      0.71       0.679       0.665 

Our method with synthesis data 0.845 0.842      0.85       0.846       0.898 

 

Table 21 Deception detection performance with the abortion data 

Abortion data set  classification precision recall F-

measure 

AUC 

Classification using 

arguments 

Naïve 

bayes 

0.65 0.679      0.57       0.62        0.745 

SVM 0.685 0.664      0.75       0.704       0.685 

Classification using 

bag of words 

Naïve 

bayes 

0.70(claimed)/ 

0.675 

0.628      0.86       0.726       0.729 

SVM 0.675(claimed)/ 

0.635 

0.624      0.68       0.651       0.635 

Classification using 

2-gram
+
 frequency 

Naïve 

bayes 

0.65 0.656      0.63       0.643       0.661 

SVM 0.665 0.639      0.76       0.694       0.665 

Classification using 

POS 

Naïve 

bayes 

0.60 0.574      0.78       0.661       0.67 

SVM 0.66 0.638      0.74       0.685       0.66 

Classification using 

LIWC 

Naïve 

bayes 

0.62 0.64       0.55       0.591       0.686 

SVM 0.68 0.676      0.69       0.683       0.68 

Our method 0.725 0.683      0.84       0.753       0.739 

 

In general, word-level classifications outperform most other cueing methods. It is 

probably because a context-sensitive approach is more accurate than a universal feature-
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based approach. Our method performs even better than word-level classifications because 

we measure universal patterns with reference to context knowledge. However, as we have 

argued in Chapter 1, features retrieved by word-level classifications are heavily domain 

dependent. In (Mihalcea et al., 2009), the authors attempted to classify deceptive stories 

of one topic using the discriminative features obtained from another topic. The 

performance was found to be no better than the human detection rate. We also evaluated 

this finding using the databases we have. We first identified the most discriminative 

words by calculating the dominance score of each word using a modified version of the 

formula proposed by Mihalcea et. al. (2009): 

              
            

            
 

where              denotes the word coverage in the true corpus T, which is defined 

as the percentage of words from T being word W, and the dominance score 

               of word W is the ratio between its coverage in the deceptive corpus 

with respect to its coverage in the true corpus. The word coverage is obtained by: 

             
             

     
 

where               represents the total number of occurrences of word W inside the 

corpus D, and       represents the total size of corpus D. A dominance score close to 1 

indicates a similar distribution in the true corpus and the deceptive corpus. A score 

significantly larger than 1 indicates that the word is dominant in the deceptive corpus, 

and thus is likely to be a discriminative word for deception. On the other hand, a score 

significantly smaller than 1 indicates dominance in the true corpus. 
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We collected the 50 most discriminative words that are dominant in both the true stories 

and the deceptive stories. We found that around half of them are domain-specific (such as 

“room” in the hotel reviews). If we compare the discriminative words from the hotel 

reviews with those from the abortion data, only 4% of the discriminative words in the 

deceptive stories are the same and 0% of the discriminative words in the true stories are 

the same. An even more shocking finding is that some discriminative words for deceivers 

in one dataset can be dominant in the true stories in another dataset. For example, 

“definite” is a discriminative indicator of deception in the hotel reviews but becomes an 

indicator of truth in the abortion data. In total, 6% of the words that are dominant in the 

true abortion stories are actually dominant in the deceptive hotel reviews, and 2% the 

words that are dominant in the deceptive abortion stories are dominant in the true hotel 

reviews. The reason might be because people show different cognitive features when 

arguing about different topics. For example, people defending their own values may 

sound more emotional and those describing experiences may sound neutral. The gap is 

not only due to topical difference but also caused by individual difference. This can be 

observed by the discriminative words within the same database. We partition the true 

stories of the hotel reviews into 2 distinct parts, performed deception detection on the 

sub-datasets, and compared their discriminative words. Only 22% of the dominant words 

in the true stories are the same, therefore, we concluded that word features of deception 

are different across people and across topics. Classifiers trained on one dataset cannot be 

easily applied to new topics and new speakers. Another problem with respect to the 

reliability of word-cue methods is the possibility to escape detection by avoiding the 

discriminative words. To test this hypothesis we performed classifications based on the 



 109 

bag of words model again after replacing the discriminative words with their synonyms. 

We respectively changed 1%, 2%, 3%, 4% and 5% of the most discriminative words in 

each test and plotted the detection performance in Fig. 10. For both classifiers, the 

detection performance decreases as more discriminative words are replaced by synonyms. 

Compared with verbal cueing, our method is more reliable because i. it can work 

independently of the topic domain as we capture universal reasoning patterns that all 

deceivers exhibit given texts with sufficient levels of reasoning, and ii. by capturing the 

reasoning process, it is robust to the careful craft of wording and the change of 

communication factors because of the nature of deceit and the deceivers’ lack of true 

knowledge. 

 

 

Figure 10 Classification rates with the abortion data using bag of words by replacing discriminative 

words with synonyms 

 

We also observe from Table 21 that argument classification outperforms most other 

methods only in the abortion data. We notice that the true stories are dominated by 

opinions supporting abortion and the deceptive stories are dominated by opinions against 

abortion. Thus it occurs to us that the performance might be related to the population of 
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different attitudes on the topic. We looked at the discriminative arguments that have a 

dominance score smaller than 0.5 (dominating in the true stories) or bigger than 2 

(dominating in the deceptive stories) and evaluated their relationships with the 

conclusions. The discriminative arguments are presented in Table 22. In the table, a 

postfix of 0 denotes the negative state of an argument and a postfix of 1 denotes the 

positive state. It turns out that among all 6 arguments that are dominating in the true 

stories, 5 of them (unbolded) support abortion; and among the 12 arguments that are 

dominating in the deceptive stories, 11 of them (unbolded) are against abortion, therefore, 

the discriminative arguments are heavily biased by the imbalanced size of stories with 

different attitudes. With the positive attitude dominating the true stories and the negative 

attitude dominating the deceptive stories the bias in the population facilitates the 

detection because rather than classifying deception the method is classifying attitude. 

However, if different attitudes in the datasets are balanced, the classification using 

arguments may not be as successful. The imbalance in attitudes not only interferes with 

the classification on arguments, but also may bring about potential problems in word-

level classifications, that is to say, the words with discriminative power as proposed by 

existing research could possibly be words that support certain attitudes instead of words 

that deceivers tend to use. 

Table 22 Discriminative words for the deceptive stories and the true stories in the abortion data 

Classification Discriminative words 

True time1, child0, circumst1, legal1, carri0, god0 

Deceptive govern1, carri1, circumst0, legal0, life0, right0, world1, rape0, popul1, 

birth0, god1, care0 

 

Our intent-based method achieves the best detection performance so far. We explored 

whether a combination approach using both our method and the bag of words model can 
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further improve the performance. To this end we combined the feature vector of the 

reasoning patterns with the word features from the bag of words model, and built 

classifiers using Naïve bayes, SVM and logistic regression. The results in Table 23 and 

Table 24 show that in both datasets the Naïve Bayes classifer improved the performance 

with respect to all measures. Compared with all other methods, it achieved an 

improvement of 5% to 31%, but the improvement against our intent-based model is at the 

cost of the complexity of a Naïve bayes classifier. 

Table 23 Deception detection performance with the hotel reviews using combination approach 

Hotel reviews  classification precision recall F-

measure 

AUC 

Classification on 

reasoning feature + bag 

of words 

Naïve 

bayes 
0.86 0.919      0.79       0.849       0.946 

SVM 0.85 0.85       0.85       0.85        0.85 

logicstic 0.79 0.764      0.84       0.8         0.856 
 

Table 24 Deception detection performance with the abortion data using combination approach 

Abortion data set  classification precision recall F-

measure 

AUC 

Classification on 

reasoning feature + bag 

of words 

Naïve 

bayes 
0.77 0.729      0.86       0.789       0.829 

SVM 0.645 0.628      0.71       0.667       0.645 

logicstic 0.535 0.535      0.54       0.537       0.549 

 

4.5 Explanation of Detection 

Detected deception can be explained by examining how the deception was formed and 

how the deception was detected. The former way explains the tactics of the deceiver 

while the later explains the strategy of the detector. Our method is able to provide 

information on both. We will illustrate the analysis using an example in the synthesized 

hotel reviews. The example we present contains a deceptive story and an honest story of a 

deceiver. Below (Table 25) lists the arguments in the stories. The arguments that deviate 

from the honest story are in bold. 
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Table 25 A synthesized story of hotel reviews 

Argument  Honest Deceptive 

tv -1 -1 

fitness -1 -1 

charge_for_extra 0 0 

service 1 0 

checkin_checkout -1 -1 

front_desk 1 -1 

housekeeping -1 -1 

staff_respond -1 0 

location 1 1 

access_to_shopping_and_eating -1 -1 

access_to_attractions 1 -1 

michigan_ave 0 0 

stay 0 -1 

view -1 -1 

dining -1 -1 

design -1 -1 

facilities_condition -1 -1 

booking_agent -1 -1 

superior -1 0 

positive_reviews -1 -1 

return 1 0 

recommend 1 0 

functions 0 0 

room 1 0 

conclusion 1 0 

bed 1 -1 

bathroom -1 -1 

room_type -1 -1 

rate -1 -1 

parking -1 -1 

wifi 0 0 

 

How did the deceiver form the deceptive story? We can make a reasonable guess by 

comparing his deceptive arguments with their honest versions. The speaker’s purpose 

was to provide negative comments on the hotel while actually his experience in the hotel 

was positive. To this end, by distorting his opinions on the room and the service he 

claimed that this hotel was not as good as others and that he would neither come back nor 
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recommend it to anyone else. To prove that the hotel is worse than other hotels, he 

concealed the fact that the hotel is within easy access to attractions and fabricated a 

negative experience in which the hotel staff did not respond to his request appropriately. 

For the convincingness of his arguments he also concealed the positive comments on the 

friendly front desk service and the good quality of the bed. Note that this explanation may 

not be the ground truth since we cannot guarantee that all deviated arguments are 

deceptive.  

 

By utilizing our detection model, a similar explanation which provides more information 

than the above guess about the deceiver’s manipulations can be automatically obtained 

based on the following analysis. First of all, we can restore the story by predicting the 

honest arguments using GroupLens method. Through comparing the deceptive arguments 

with their honest probabilities we can find out how the deceiver manipulates the 

arguments as in Table 26. A manipulation from an uncertain state to a certain state is a 

fabrication of facts; reversing the state of an argument is a distortion of facts; and 

increasing the uncertainty of an argument is a concealment of facts. We notice that our 

method identifies not only the arguments that were possibly fabricated by the author but 

also those that were possibly hidden by the author (such as “stay”). Statements with 

hidden information are defined as half-truth (Crystal, 2003), which is also an intentional 

deception. A deceiver may indicate false information from a half-true statement such as 

“he is starving the cat” by omitting the fact that the cat is receiving a treatment. The 

ability to restore hidden information is a valuable but uncommon capability. Then we 

build a relational graph (Fig. 11) of all manipulated arguments based on their mutual 
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dependence calculated using the method in Chapter 3.2.2.2. Arguments with small 

dependences on all other arguments are omitted since their inconsistencies are not driven 

by the goal (conclusion) of the deceiver. This graph intuitively illustrates the flow of the 

manipulation, based on which we can derive a similar explanation with our earlier guess. 

This analysis shows how the false information was conveyed to the listener in a 

convincing manner by pinpointing the deceptive arguments and depicting the flow of 

possible deception.  

Table 26 Manipulated arguments and predicted truth for the purpose of deception explanation 

Argument Predicted honest Actual deceptive Manipulation 

service 0.926693 0 Distort 

staff_respond 0.432515 0 Fabricate 

stay 0.10014 0.5 Conceal 

superior 0.451421 0 Fabricate 

return 0.890742 0 Distort 

room 0.867221 0 Distort 

conclusion 0.87992 0 Distort 

 

 

Figure 11 Relational graph of manipulated arguments 

 

As a detector our model judges based on the reasoning patterns that were discussed in 

Chapter 3.2.2. Each pattern is a feature of deceptive reasoning, thus our model can 
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provide information about which aspect of the story indicates deception and how strongly 

each indicator supports the detection. Using the same example we analyze why the story 

is deceptive by looking at the three patterns. Table 27 lists the mutual dependence 

between the inconsistent arguments. Assuming that a dependence value smaller than 0 

indicates independence, we found that “stay” and “bed” are independent of other 

arguments. This means that their inconsistencies are not caused by the impact of the 

conclusion, which reduced their suspicion of being deceptive. According to our 

calculation of functionality (Table 28), all 7 inconsistent arguments are more functional 

to the conclusion compared with their honest versions. Furthermore, the comparison 

between their inconsistencies and untruthfulness in Table 29 shows that all of them are 

truthful (below 3 std. deviations). Overall, 5 of the 7 inconsistent arguments exhibited all 

three patterns and 2 of them activated two patterns (Table 30). By thresholding the 

pattern scores and the number of activated patterns human detectors can classify 

deception based on their own knowledge and experience. 

Table 27 Mutual dependence between inconsistent arguments 

Dependence service staff_respond stay superior return room conclusion  bed 

service n/a -0.015 -0.535 0.077 0.187 0.161 0.167 -0.296 

staff_respond -0.015 n/a -1.140 0.209 -0.005 -0.030 -0.035 -0.719 

stay -0.535 -1.140 n/a -0.673 -0.433 -0.434 -0.426 -0.587 

superior 0.077 0.209 -0.673 n/a 0.172 0.171 0.163 -0.373 

return 0.187 -0.005 -0.433 0.172 n/a 0.143 0.163 -0.330 

room 0.161 -0.030 -0.434 0.171 0.143 n/a 0.163 -0.349 

conclusion 0.167 -0.035 -0.426 0.163 0.163 0.163 n/a -0.334 

bed -0.296 -0.719 -0.587 -0.373 -0.330 -0.349 -0.334 n/a 

 
Table 28 Functionality of inconsistent arguments 

 service staff_respond stay superior return room bed 

functionality 1 1 1 1 1 1 1 
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Table 29 Comparison of the inconsistency and the untruthfulness 

 service staff_respond stay superior return room bed 

Inconsistency 6.4576 4.2657 4.3688 4.3601 6.5313 5.5116 5.3940 

untruthfulness 0.9761 1.0525 0.0953 0.4409 0.4844 0.7968 0.0622 

 
Table 30 Activation of deceptive patterns 

 service staff_respond stay superior return room bed 

Activated pattern # 3 3 2 3 3 3 2 

 

4.6 Misinformation 

As we have mentioned in Chapter 1, malicious intent is a key component of deception. It 

determines whether an unexpected deviation is an unintentional error or an intentional act 

of misleading. It is necessary to distinguish deception from unintentional errors because 

deceivers bring long-term damage with oriented targets while error maker is not aware of 

the falsity/deviation in his communication and does not present the false/deviated 

information regularly. In this dissertation, unintentional errors are referred to as 

misinformation. It is a challenging task to discriminate deception and misinformation 

using either computational or psychological methods because their effects are very 

similar. Our model is able to distinguish deception from misinformation because the 

reasoning patterns are derived from the unique cognitive process of deceivers. We have 

verified that deception and random manipulations are distinguishable by the patterns 

using simulation data in Chapter 3.2.2.1. The purpose of this section was to test our 

detection method using real world misinformation data, but unfortunately none of the 

existing deception datasets contains misinformation data. To evaluate the performance of 

our framework we synthesized misinformation data for both datasets. We consider three 

major types of misinformation: misunderstanding, wrong assumptions, and opinion 

change. Misunderstanding is defined as “a form of understanding that is partially or 
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totally deviant from what the speaker intended to communicate” (Weigand, 1999). 

Milroy (1984) describes misunderstanding as “the disparity between the speaker’s and 

the hearer’s semantic analysis of a given utterance”. That is to say, the speaker’s attitude 

on an argument is misinterpreted to another attitude. Misunderstanding occurs after the 

speaker has presented or formed his arguments. Moreover, the interpretation of one 

argument is not shown to be related to the interpretation of other arguments. Thus, to 

simulate misinformation we perturbed the probabilities of each argument by adding 

random noise. Assumptions are represented by evidence in our cognitive model. In each 

repeat of reasoning a set of evidence is fed to the BN to constrain the reasoning result. 

Wrong assumptions mean that the speaker selected wrong evidence before reaching 

conclusions so wrong assumptions can be simulated as randomly setting evidence before 

conducting reasoning. However, for the realness of the synthesis data the size of random 

evidence is constrained by the common sizes of evidence in the original stories. Opinion 

change indicates that one’s actual opinion is different from what was believed in the old 

knowledge. It is obvious that changed opinion is derived from valid and honest reasoning, 

thus the cause of a changed opinion is fundamentally a change in the knowledge base. In 

our cognitive models knowledge bases are represented by BNs, therefore, opinion change 

is simulated by perturbing the CPTs of an agent’s BN.  

 

Although it contains errors, misinformation is derived from valid and honest reasoning, 

thus, truth and the three types of misinformation are expected to differ from deception in 

terms of the reasoning patterns. The difference may not exist in the occurrence of the 

patterns but in the strength of each pattern. To provide an intuitive demonstration of the 
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difference we first present the scores of patterns for each type of reasoning. Our 

expectations of the strengths of patterns are listed in Table 31, in which  denotes a 

strong pattern, Δ denotes a weak pattern, and  denotes no pattern. Propagation of 

manipulation happens only when inconsistencies are formed by natural reasoning which 

includes wrong assumptions, opinion change, truth and deception. However, 

inconsistencies in truth are mostly false alarms. We expect the amount of inconsistencies 

to be small and the pattern of propagation to be weak. Although opinion change follows 

natural reasoning, our estimate of argument relations is based on a speaker’s old 

knowledge, and thus the pattern should be weak. Misunderstanding does not show this 

pattern because its error is caused by random noise. Functionality means that the 

arguments are manipulated to appear more supportive to the conclusion. Deception 

obviously shows the pattern. Wrong assumptions may or may not show the pattern 

depending on how strongly the wrong assumptions support the conclusion. Opinion 

change and truth may or may not show the pattern depending on the parameters of the 

BNs. Misunderstood arguments are usually not more functional than the original 

arguments because the conclusion was derived from the original arguments. Lastly, in 

deception inconsistent arguments are usually convincing while consistent arguments are 

not. This happens neither in truth nor in opinion change because unconvincing arguments 

are very rare in truthful reasoning. It does not happen in misunderstanding because 

arguments are manipulated randomly, and manipulated arguments are unlikely to agree 

with the arguments from truth tellers. In wrong assumptions we need to consider this 

pattern under two conditions. When the wrong assumptions are not strong enough to 

influence the conclusion the pattern will not appear because arguments manipulated by 
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the wrong assumptions are different from truth tellers’ corresponding arguments. When 

the wrong assumption is strong enough to influence the conclusion arguments 

manipulated by the wrong assumptions will be more convincing than unrelated 

arguments. However, the wrong assumptions themselves cannot be convincing because it 

is not truthful. The first condition is more likely to happen in opinion-based datasets 

while the second condition appears more in fact-based datasets, therefore, we can expect 

the wrong assumptions in the abortion data to not show the pattern but those in the hotel 

reviews to show a weak pattern. According to our expectations it seems that among all 

misinformation, misunderstanding is the most likely to be identified as non-deception and 

wrong assumption is the most likely to be identified as deception. This is reasonable 

because deception, according to our proposal of the reasoning process, is a special type of 

wrong assumption in which the assumption is the conclusion. 

Table 31 Expectations of the strengths of patterns for different types of reasoning 

 Propagation of 

manipulation 

Functionality Association of untruthfulness 

& inconsistency 

Misunderstanding    

Wrong 

assumptions 

 Δ (opinion)/ Δ (fact) 

Opinion Change Δ Δ  

Deception    

Truth Δ Δ  

 

The testbed of this experiment is composed of 100 true stories, 100 misunderstood stories, 

100 opinion changed stories, 100 stories with wrong assumptions and 100 deceptive 

stories. The purpose is to discriminate deception from all non-deceptions. To ensure that 

the evaluations for different types of reasoning are comparable we adjust the perturbation 

noise in each type of misinformation such that they produce similar numbers of 

inconsistent arguments. The scores of patterns for the hotel reviews are listed in Table 32, 
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and those for the abortion data are listed in Table 33. For the hotel reviews the scores of 

propagation of manipulation meet with our expectations, as do the scores of association 

of untruthfulness and inconsistency. The scores of functionality generally agree with 

expectations except that the score for true stories is slightly lower than expected. 

Nevertheless, it is not unreasonable because truth tellers tend to make conflicting 

arguments according to cognitive studies (DePaulo et al., 2003). For the abortion data the 

scores of functionality and the scores of association of untruthfulness and inconsistency 

agree with the expectations. The score of propagation of manipulation for deceptive 

stories is lower than expected. Our guess is that this measure strongly depends on the 

reasoning process of deceivers. The proposed cognitive model is not claimed to 

sufficiently cover every aspect of deceptive reasoning, and thus the manipulations on the 

arguments may not be completely caused by the impact from conclusion. That is to say, 

manipulations caused by other cognitive processes could interrupt the measure of 

contributions from the conclusion, and consequently introduce error to the score of the 

pattern.  

 

After obtaining the scores of patterns for each story we use a 10-fold logistic regression 

to classify the stories to deception (positive), and non-deception (negative). Data is 

classified correctly if deception is classified as positive and truth, misunderstanding, 

wrong assumptions or opinion change is classified as negative. Due to the imbalance of 

the data labels we weight deceptive data 4 times as non-deceptive data. Since 

misinformation is synthesized to the level of semantic arguments we only compare our 

performance with that of argument classification. In Table 34 and Table 35 we present 
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our detection results for the hotel reviews and the abortion data, together with the results 

classified by arguments. As we can see, our method performs significantly better than 

argument classification under all measures. The performance for the hotel reviews is 

slightly better than the performance for the abortion data. 

Table 32 Scores of patterns for different types of reasoning with the hotel reviews 

Hotel reviews Propagation of 

manipulation 

Functionality Association of untruthfulness 

& inconsistency 

Misunderstanding -0.27152 0.226776 0.144867 

Wrong 

assumptions 

0.390164 0.620128 0.392234 

Opinion Change -0.02896 0.270487 0.289683 

Deception 0.647718 0.812537 0.797543 

Truth 0.52567 0.190641 0.313 

 
Table 33 Scores of patterns for different types of reasoning with the abortion data 

Abortion data Propagation of 

manipulation 

Functionality Association of untruthfulness 

& inconsistency 

Misunderstanding -0.20424 0.123909 0.217961 

Wrong 

assumptions 

0.231692 0.3075 0.195 

Opinion Change -0.0064 0.22135 0.451431 

Deception -0.04997 0.453633 0.811495 

Truth 0.05208 0.251424 0.48715 
 

Table 34 Deception/non-deception classification performance with the hotel reviews 

Hotel data set  classification precision recall F-

measure 

AUC 

Classification of 

arguments 

Naïve 

bayes 

0.65875 0.668      0.63       0.649       0.706 

SVM 0.695 0.682      0.73       0.705       0.695 

Our method on synthesis data  0.84875 0.841      0.86       0.85        0.902 
 

Table 35 Deception/non-deception classification performance with the abortion data 

Abortion data set  classification precision recall F-

measure 

AUC 

Classification of 

arguments 

Naïve 

bayes 

0.70625 0.738      0.64       0.685       0.773 

SVM 0.6675 0.752      0.5        0.601       0.668 

Our method  0.81875 0.784      0.88       0.829       0.858 
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We suspect that in the above experiment misinformation stories might have similar 

arguments as true stories given small perturbation noise because misinformation stories 

were synthesized based on the evidence in the true stories, a factor which may facilitate 

the classification. To address this problem we synthesized misinformation again based on 

the evidence in the deceptive stories. In this case the misinformation stories could be very 

different from the true stories and the classification rate can be expected to decrease. The 

experimental results are listed in Table 36 and Table 37. We observe that the 

performance for the abortion data is degraded slightly. Since the abortion data is 

insensitive to evidence we estimate that the decrease in performance is due to the 

perturbation in misinformation. On the other hand, the performance for the hotel reviews 

does not decrease at all. Thus we believe that our method is able to detect deception from 

unseen data by accurately retrieving the universal features of deceptive reasoning. 

Table 36 Deception/non-deception classification performance using deceptive story evidence with the 

hotel reviews 

Hotel reviews  classification precision recall F-

measure 

AUC 

Classification of 

arguments 

Naïve 

bayes 

0.6525 0.66       0.63       0.645       0.697 

SVM 0.705 0.667      0.82       0.735       0.705 

Our method on synthesis data 0.86375 0.846      0.89       0.867       0.908 
 

Table 37 Deception/non-deception classification performance using deceptive story evidence with the 

abortion data 

Abortion  classification precision recall F-

measure 

AUC 

Classification of 

arguments 

Naïve 

bayes 

0.69625 0.721      0.64       0.678       0.771 

SVM 0.67875 0.754      0.53       0.623       0.679 

Our method 0.78625 0.754      0.85       0.799       0.833 
 

 

4.7 Understanding the Data 
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Both datasets contain 100 pairs of true stories and deceptive stories, each from a rational 

speaker. We wonder why the detection performs differently in the two datasets besides 

the level of facts involved in the stories, or more generally, what factors of a dataset 

facilitate the detection and what factors impede the detection. Our purpose in this section 

is to evaluate the behavior of the deception detection model more thoroughly by 

investigating the datasets. We propose to investigate the datasets from the following 

aspects: the features with regards to the group of agents, the features with regards to the 

individual agents and the features with regards to the stories. The experiment was partly 

performed on the abortion data because of the availability of paired stories, and partly 

performed on simulation data in order to evaluate the direct influence from the reasoning 

processes. 

 

4.7.1 With regards to the Group 

The group of agents basically determines the correlation networks, thus, the major impact 

of factors of the group focuses on the detection of inconsistency. With regards to the 

group of agents we consider the group size, the similarity of agents and the number of 

deceivers. 

 

4.7.1.1 Group Size 

With a larger group, we may expect the decision making process of inconsistency 

detection to be influenced by more participants. To evaluate this influence we performed 

inconsistency detection by varying the number of agents from 3 to 100. In order to have a 

general understanding of this parameter, we tested on the simulation agents: the perturbed 
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Alarm Networks. Table 38 displays the means of true positive and false positive rates. As 

the agent number increases the detection performance improves, but the improvement is 

not very explicit, and no evidence shows that the agent number influences the false 

positive rate. The results indicate that when more truth tellers are involved in the 

detection we can anticipate the behavior of the agents slightly better.   

Table 38 Detection performance with the size of group 

Inconsistency 

detection 

Repeats = 100, Evidence = 10, std. deviations # = 4, Perturbation 

= 0.2 

Agents 3 10 30 100 

True positive 0.838475 0.848329 0.86418 0.856521 

False positive 0.0163721 0.0142754 0.0154445 0.0157893 

 

Since the influence of the group size on inconsistency detection is minor, and the 

detection of deception does not strongly depend on the rate of inconsistency, we can 

expect its influence on the detection of deception to be negligible. 

 

4.7.1.2 Similarity between Agents 

Since the detection of inconsistency is based on the assumption that agents are highly 

correlated, by varying the difference between the agents we can observe how sensitive 

the system is to this assumption. If the agents have similar knowledge they tend to form 

similar opinions and agree with each other. Consequently the inconsistency appears to be 

the more obvious. The difference in agents’ stories is caused by their distinctive 

knowledge bases, therefore, to evaluate the sensitivity of inconsistency detection to 

agents’ similarity, we vary the perturbation value added to the CPTs of each agent 

simulated by the Alarm Network. Table 39 displays the means of true positive and false 

positive rates. The perturbation value is inversely proportional to the true positive rate 
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because the more correlated the agents are, the more obvious the inconsistency appears to 

be. Since a high correlation leads to a high detection rate it will also cause a high false 

positive rate.   

Table 39 Detection performance with the similarity between agents 

Inconsistency 

detection 

Repeats = 100, Evidence = 10, std. deviations # = 4, Perturbation 

= 0.2 

Pert. value 0.1 0.2 0.3 0.4 

True positive 0.932075 0.856521 0.810289 0.759478 

False positive 0.014392 0.015789 0.021366 0.022349 

 

This result caught our attention because we do not want the detection to be more difficult 

on deceivers who are not correlated with others. In other words, we do not want deceivers 

to escape detection because they are unpredictable, therefore, we evaluated the deception 

detection performance with respect to agents with different coherences with the group. 

Specifically, we performed ANOVA to test the difference in the coherences between two 

sets of deceivers, one set contained only detected deceivers and the other set contained 

undetected deceivers. The coherence was calculated in two ways: in one, we calculated 

the average similarity between an agent and the group; in the other, we calculated the 

maximum similarity between an agent and the group. The experiment shows that the 

average similarities are not significantly different between detected and undetected agents, 

but the maximum similarities of detected agents are significantly larger than the 

maximum similarities of undetected agents. These results mean that being an outlier or 

being unexpectable to the group does not make a deceiver more difficult to be detected as 

long as there is at least one acquaintance who can anticipate the deceiver’s opinions very 

well. 
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4.7.1.3 Number of Deceivers  

Up to now, all the experiments we conducted contained only one deceiver in each repeat 

no matter how many agents are in the group. However, in reality, we may face the 

situation that more than one deceiver is working or even cooperating wither other 

deceivers to mislead the listener. Taking this into consideration we studied the 

performance of the model in detecting inconsistencies of several deceivers. Likewise we 

use Alarm Networks to represent the agents in this experiment. We adjusted the 

proportion of agents being deceivers while changing the total number of agents at the 

same time. The true positive rates are shown in Table 40. As we can see from Table 40, 

when half or more of the agents are honest the detection rates are above 67%, which is 

still relatively high compared with human detection ability. However, as soon as the 

majority of the agents act as deceivers, our detection rates drop rapidly. This result agrees 

with our real world experience that if the majority is lying, it is hard for the listener to tell 

the truth. Figure 12 shows the plotted detection rate against the proportion of agents as 

deceivers. The three lines represent the systems with different number of agents. We 

observe from the figure that the detection rate is inversely proportional to both the 

proportion of agents as deceivers and the total number of agents. However, the impact 

from the number of agents is relatively small. Therefore, it is more critical to make sure 

that the proportion of benevolent agents is high rather than to have a large number of 

benevolent agents for the purpose of detecting deception effectively.   

 

Besides the influence on inconsistency detection, the number of deceivers also has a 

significant impact on the measure of untruthfulness because by dominating the group the 
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deceivers can distort the truth. We can expect that with more deceivers in the group, it is 

more difficult to detect deception. 

Table 40 Inconsistency detection rate of adjusting the number of agents together with that of 

deceivers 

No. of agents \ proportion of agents being deceiver 10% 30% 50% 70% 90% 

3 NA 0.8538 NA 0.6642 NA 

10 0.8728 0.8362 0.6783 0.4680 0.1935 

30 0.8654 0.8045 0.6979 0.4880 0.1815 

100 0.8502 0.7864 0.6668 0.4515 0.1396 

 

 
Figure 12 Plot of detection rate against the proportion of agents being deceivers 

4.7.2 With regards to the Agent 

Next, we study the features with regards to the individual agents. The parameters include 

the change in agents’ arguments and the level of reasoning involved in the stories. 

 

4.7.2.1 Change in Agents’ Arguments 

Since opinion-based arguments are reluctant to change with evidence, we can expect 

one’s opinions to be similar under different evidence, and any deviation in his arguments 

can indicate inconsistency, thus, the difference between an agent’s true story and 
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deceptive story can provide an estimation of the ground truth of inconsistent arguments. 

To verify that our model is able to catch inconsistency we measure the similarity between 

one’s true story and deceptive story and find its correlation with the inconsistency 

detection rate of the deceptive story. We found that the similarity between an agent’s 

deceptive story and true story has a large negative correlation (-0.41233) with the 

detection rate. It credits our hypothesis that inconsistencies can be accurately identified 

through our method. To evaluate the impact of inconsistency on deception detection we 

calculated the correlation between the similarity and the deception score obtained from 

the classifier of logistic regression. It turns out that the correlation (-0.25952), although 

not as high as with the inconsistency detection, is significantly large at 0.005 level 

according to the statistics on correlation significance with 100 samples (Table 41). These 

results indicate that the less inconsistency a deceiver demonstrates, the more difficult it is 

to detect deception.  

Table 41 Statistics on correlation significance with 5 and 100 samples 

One-tail probabilities 0.05 0.025 0.005 0.0005 

Correlation for 100 samples (absolute value) 0.165 0.197 0.256 0.324 

Correlation for 5 samples(absolute value) 0.805 0.878 0.959 0.99 

 

It cannot be asserted that insisting on the same opinion can escape detection because the 

detection is not solely based on the distance between an agent’s current opinion and 

historical opinion. We see this by observing the distance between an agent’s training data 

(historical benevolent stories) and each type of testing data (stories with different types of 

reasoning) together with the detection performance for each type of testing data. During 

the synthesis of misinformation data in Chapter 4.6, we already ensured that all types of 

misinformation data generate similar numbers of inconsistent arguments as the deceptive 
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data. Thus we only look at the rates of deception detection, which are listed in Table 42. 

Obviously, the difference between the training data and the test data does not correlate 

with the detection rates (the correlation value 0.415041 is not significant with 5 samples 

according to Table 41). This means that the detection performance is not sensitive to the 

change in one’s story but is influenced by the type of reasoning and the inconsistency of 

the speaker. 

Table 42 Comparison of change in agents’ arguments with detection performance 

 Truth Deception Change Wrong Misunderstand 

Difference in arguments with 

history  data 

1256 2377 2823 1005 1782 

Detection rate 0.41 0.87 0.33 0.16 0.04 

  

4.7.2.2 Level of Reasoning 

Deception detection is more meaningful if a higher level of reasoning is involved in the 

stories. Deception formed by complex reasoning is more challenging, and blatant lies that 

simply claim a falsified conclusion without considering the consistency of the entire story 

or stories in which conclusions were not reached by logically relate arguments are not 

common in serious deceptions, therefore, in our experiments we ensure that there are 

sufficient levels of reasoning in the stories. It occurs to us that the hotel reviews may 

involve less reasoning compared with the abortion data because opinion-based stories are 

usually derived by competing arguments but fact-based stories are derived by memories 

or experiences. To verify the hypothesis, we need to measure the level of reasoning 

involved in each story. According to Wilhelm (2005), a major determinant of the 

difficulty of a reasoning task is the number of mental models that are compatible with the 

assumptions. The assumption “A is left of B. B is left of C. C is left of D. D is left of E.” 

can be easily integrated into one mental model, in which the entities are arrayed as “A B 
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C D E” from left to right, but the assumption “A is left of B. B is left of C. C is left of E. 

D is left of E.” calls for the construction of two possible mental models (“A B C D E” 

and “A B C E D”). In our cognitive model based on Bayesian inference, “mental models” 

refer to the possible options of arguments derived from a set of evidence through belief 

revision. The more options of arguments an agent can select to believe in, the more 

complicated the inference is. Based on this idea, we propose that reasoning can be 

measured by the number of hypotheses derived from a knowledge base with a set of 

evidence. Given this definition, a reasoning task is more complicated if  

1. There are more arcs in a BN (meaning arguments are more logically related) 

2. There are more nodes in a BN (meaning more details and aspects are covered) 

3. There is less evidence (More evidence can constrain the number of possible 

hypotheses, and thus makes the reasoning task easier.) 

 

We measured the level of reasoning in the abortion dataset, the hotel reviews and the “my 

best friend” dataset which describes the speaker’s best friend with arguments partially 

based on facts and partially based on opinions. Since we manually constrain the number 

of nodes and select evidence, the level of reasoning can be estimated by the number of 

arcs in the BNs provided that the BNs have similar size. In addition to the number of arcs, 

we performed analysis based on basic graph theories and compared the results of 

different datasets. The measures that are significantly different between fact-based 

reasoning and opinion-based reasoning are presented in Table 43. As we have expected, 

there are more arcs in the BNs of the abortion data than those of the hotel reviews and the 

best friend data. We also observe that although there are more arguments in the fact-
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based datasets, the arguments are less connected, thus, there is a lower level of reasoning 

in the hotel reviews and the best friend data even without considering the evidence. To 

ensure that the level of reasoning in the hotel reviews is comparable with that in the 

abortion data, we allow a higher threshold of correlation to connect nodes during the 

construction of BN structure. The measures of the new BN (denoted as Hotel review*) 

are now comparable to those of the abortion data. The hotel reviews used in the deception 

detection as described in Chapter 4 were synthesized based on the new BN with higher 

level of reasoning. Most of the measures in Table 43 are related to the number of arcs but 

we notice that with similar number of arcs the Hotel reviews* have fewer and bigger 

maximum cliques than the abortion data. Although not directly related with the level of 

reasoning, we prefer big numbers of small cliques instead of small numbers of large 

cliques because BNs with small cliques are more hierarchically organized whereas in 

BNs with big cliques each argument is related with each other argument. For the same 

reason we also prefer smaller centrality closeness given similar number of arcs and 

similar sizes of cliques since in a hierarchical graph nodes are relatively farther apart.   
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Table 43 Basic graph theory analysis on the BNs of different datasets 

Dataset Abortion data Best friend Hotel review Hotel 

review*  

Arguments # 

(average) 

5.29 6.302703 7.96 10.91042 

Arcs # 48 39 39 46 

Degree (average) 3.2 2.5161 2.5161 2.9677 

Max cut 42 36 35 43 

Size of clique 

(average) 

3.2000 2.5484 2.5484 3.0323 

Clique number 2 2 2 3 

Maximal cliques # 48 40 40 46 

Cliques containing 

each vertex # 

(average) 

4.133333 

 

2.451613 2.419355 3.032258 

 

Centrality closeness 0.3645 0.278581 0.295689 0.361191 

Density 16/145=0.1103 13/155=0.0839 13/155=0.0839 10/93=0.1075 

Dominating set size 7 11 10 8 

   

4.7.3 With regards to the Story 

Parameters with regards to the story include the size of historic data, the level of noise in 

historic data, the level of noise in testing data, and the size of evidence. 

 

4.7.3.1 Size of Historic Data 

Historic data is mostly used to calculate the correlation between agents which are 

basically used in the detection of inconsistency, thus, in this test we detect inconsistency 

from the simulation agent “Alarm Network” by varying the number of repeats in the 

training data. Table 44 shows the experimental results. Surprisingly, the results do not 

demonstrate a significant influence of the size of historic data on the true positive or false 

positive rate. Likewise, we do not expect a significant influence on deception detection 

either. 
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Table 44 Inconsistency detection performance with the number of repeats 

Inconsistency 

detection 

Agents = 10, Evidence = 10, std. deviations # = 4, Perturbation 

= 0.2 

Repeats 10 100 1000 10000 

True positive 0.887225 0.848329 0.854309 0.860704 

False positive 0.109151 0.0142754 0.0107823 0.0111045 

 

4.7.3.2 Noise in Historic Data 

During a communication, speakers sometimes are not able to precisely deliver their 

inferred arguments, but the deviation should not be big enough to change their opinions, 

therefore to simulate realistic historic stories, random noise was added to each agent’s 

threshold of the compellingness of arguments. This means that speakers may mistakenly 

present arguments that they do not believe to be compelling and ignore arguments that 

they believe to be strong. We expect that the level of noise in the historic data may 

influence the calculation of agent correlations and result in the degradation of 

inconsistency detection. To this end we perform inconsistency detection on the abortion 

data by simulating historic data with different levels of noise. We are not able to use 

simulation agents in this experiment because simulation agents do not select arguments 

based on compellingness. The result is provided in Table 45. The results in Table 45 

support our hypothesis that a higher level noise in the historic data degrades the 

performance of inconsistency detection. We wonder whether this degradation would be 

brought into the detection of deception, but according to our experimental results in Table 

46, detection performance is robust to the noise in historic data. 

Table 45 Inconsistency detection performance with the level of noise in historic data 

Inconsistency 

detection 

Agents = 100, Evidence = 1-7, std. deviations # = 3, , 

Perturbation = real 

Noise in training data 0.1 0.3 0.5 

Deceptive stories 0.203667 0.194333 0.171333 

True stories 0.077333 0.069 0.059667 
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Table 46 Deception detection performance with the level of noise in historic data 
Noise in training data classification precision recall F-measure AUC 

0.1 0.81875 0.784      0.88       0.829       0.858 

0.3 0.81125 0.784      0.86       0.82        0.836 

0.5 0.82875 0.804      0.87       0.836       0.857 

 

A more realistic situation is that there might be deceptive stories in the historic data. We 

expect that as long as the majority of the historic data is honest, the performance of 

detection will remain satisfactorily high. To test this hypothesis, we simulated deceptive 

historic stories using deceptive reasoning in respectively 10%, 30% and 50% of the 

historic data. Table 47 presents the results of inconsistency detection, and Table 48 

presents the results of deception detection. As more deceptive stories are contained in the 

historic data, the detection of inconsistency is less accurate. However, since deceptive 

stories are derived from natural reasoning, they do not introduce errors in other measures. 

Consequently, a moderate fraction of historic data being deceptive does not degrade the 

detection of deception. 

Table 47 Inconsistency detection performance with the deception in historic data 
Inconsistency 

detection 

Agents = 100, Evidence = 1-7, std. deviations # = 3, 

Perturbation = real 

Deception in training 

data 

0% 10% 30% 50% 

Deceptive stories 0.203667  0.202333 0.199 0.194 

True stories 0.077333 0.077333 0.074333 0.075 

 

Table 48 Deception detection performance with the deception in historic data 
Deception in training data classification precision recall F-measure AUC 

0% 0.81875 0.784      0.88       0.829       0.858 

10% 0.8125 0.78             0.87       0.823 0.863    

30% 0.815 0.789      0.86       0.823       0.871 

50% 0.8175 0.793      0.86       0.825       0.873 

 

4.7.3.3 Noise in Testing Data 
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Automatic argument retrieval introduces noise to the testing data. Unfortunately we 

cannot precisely evaluate the influence of automatic argument retrieval on inconsistency 

detection as we do not have the ground truth of inconsistency to the argument level. In 

this experiment, we mainly evaluate how strong the detection of deception depends on 

the noise introduced through argument retrieval. Below we compare the detection 

performance of manual argument retrieval (with small noise) and automatic argument 

retrieval (with large noise) using the abortion data. Table 49 presents the classification of 

true/deceptive stories, and Table 50 presents the classification of deceptive/non-deceptive 

stories. It seems that the classification rates and F-measures in both detections decrease. 

However, the detection using automatic argument retrieval still outperforms the verbal-

cue methods and argument classification. 

Table 49 Deception/truth classification performance with the argument retrievals 
Abortion true/false classification precision recall F-measure AUC  

Manual argument retrieval 0.725 0.683      0.84       0.753       0.739 

Automatic argument retrieval 0.71 0.684      0.78       0.729       0.781 
 

Table 50 Deception/non-deception classification performance with the argument retrievals 

Abortion misinformation classification precision recall F-measure AUC  

Manual argument retrieval 0.81875 0.784      0.88       0.829       0.858 

Automatic argument retrieval 0.78125 0.761      0.82       0.789       0.867 

 

4.7.3.4 Size of Evidence 

During an inference, evidence imposes constraints on the reasoning results. We propose 

that the size of evidence has impact on the performance of deception detection, thus we 

first evaluate the impact of evidence on the inconsistency detection using simulated 

agents. Since deception only occurs in the testing process, our hypothesis is that the more 

evidence we provide the higher detection rate the system will achieve. The hypothesis 

can be explained intuitively by the fact that the more information we have about the 
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environment the more capable we are to detect any unusual observables. The results in 

Table 51 support our hypothesis. 

Table 51 Detection performance with the size of evidence  

Inconsistency 

detection 

Agents = 10, Repeat =100, std. deviations # = 4, perturbation = 

0.2 

Testing Evidence 1-5 6-10 11-15 16-20 21-25 26-30 31-35 

True positive 0.9073 0.9403 0.9440 0.9576 0.9403 0.9447 0.9457 

False positive 0.0440 0.0971 0.1507 0.2585 0.2673 0.3769 0.3639 

 

From the observations in Chapter 4.6 that the detection rate of deception does not change 

significantly by replacing the evidence from the true datasets with the evidence from the 

deceptive datasets, it is reasonable to expect that this evidence does not have a strong 

impact on the detection of deception. To verify this expectation, we calculated the 

correlation between the size of evidence in a story and the deceptive score of the story 

from the classifier. The experiment shows that the correlation between the size of 

evidence and detectability is 0.078738, which is not significant. It agrees with our 

expectation that the size of evidence does not influence the performance of deception 

detection. 

 

We now summarize the parametric study in terms of the parameters’ impacts on 

inconsistency detection and deception detection. The significances of the impacts on 

inconsistency detection were also tested and verified by ANOVA. To evaluate the 

robustness of the model the parametric experiments on inconsistency detection were also 

performed on the other simulation networks including Hailfinder Network, Diabetes 

Network, and Munin Network. The result shows that although the detection rates vary 

from network to network, the influences of the parameters are the same. This, again, 
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proves that the method of inconsistency detection is robust to different structures and 

sizes of BNs as long as the network is ensured to have a moderate intra-dependency. A 

complete study that reports the parametric analysis on inconsistency detection can be 

found in Appendix B. The entire parametric study is summarized in Table 52. 

Table 52 Summary of parametric study on inconsistency detection (ID) and deception detection (DD) 

Parameter Group of agents Individual agents 

group size similarity 

between 

agents 

Deceivers # inconsistency of 

agents 

change in 

agent's story 

Significance 

to ID 

Minor Yes Yes Yes No 

Significance 

to DD 

Expected 

No 

No with 

condition 

Expected Yes Yes No 

 

Parameter Stories 

size of 

historic 

data 

noise in 

historic data 

deception in 

historic data 

noise in testing 

data 

size of 

evidence 

Significance 

to ID 

No Yes Yes N/A Yes 

Significance 

to DD 

Expected 

No 

No No Yes No 

 

Among all 9 parameters, 6 parameters (similarity between agents, number of deceivers, 

inconsistency of agents, noise in historic data, deception in historic data and size of 

evidence) are found to significantly influence the performance of inconsistency detection, 

but deception detection is only sensitive to the number of deceivers, the inconsistency of 

agents, and the noise in testing data introduced by argument retrieval. The results can be 

explained as follows: 

1. The size of the group determines the number of truth tellers who present opinions 

on the same topic as the deceiver. The more truth tellers we refer to, the better we 

can predict the opinions of the deceiver, and thus, it is easier to catch inconsistent 
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opinions. This impact is not explicit and is not expected to be brought into the 

detection of deception. 

2. The similarity between agents determines how often the agents agree or disagree 

with each other. The deceiving agent’s abnormal opinion will appear more 

distinct if the benevolent agents always agree or disagree with each other than if 

the benevolent agents have no clue about how the other agents will conclude. 

However, we do not find strong relationships between the coherence of the agents 

and the detection of deception except when an agent cannot be predicted by any 

other agent in the group.  

3. The number of deceivers has a significant impact on the inconsistency detection. 

As soon as more than half of the agents becoming deceivers, the detection rate 

becomes unacceptably low. Together with the deceivers’ influence on the 

distortion of expected truth we may be faced with unreliable deception detections. 

4. The ground truth of inconsistency in the deceptive abortion data can be estimated 

by comparing the deceptive stories with the true stories. Combined with the 

results on the similarity between agents our method is proved to capture 

arguments that are internally inconsistent but not arguments that are different 

from others. By reducing inconsistency, deceivers can reduce the possibility of 

being detected.  

5. However, being inconsistent does not indicate being changeable. Smaller 

differences between the testing story and the training story do not make agents 

less detectable. 
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6. The size of historic data determines how many repeats of data we can use to 

calculate the correlations between agents. Nevertheless, the number of repeats 

does not directly impact the performance of inconsistency detection, and thus is 

unlikely to impact the performance of deception detection either. 

7. The noise in historic data influences the calculation of agent correlations, and 

hence reduces the detection rate of inconsistency. However, the degradation of the 

performance does not cause the decrease of deception detection rate. 

8. When deceptive stories are mixed with true stories in historic data, the detection 

of inconsistency becomes inaccurate as it is harder to tell the normal behavior of a 

speaker. However, the errors do not interfere with other measures, nor cause the 

decrease of deception detection rate. 

9. The noise in testing data can be due to the method used to retrieve semantics from 

natural-language stories such as the automatic argument retrieval using sentiment 

analysis. The noise can cause the decrease of deception detection rate, but even 

with noise in testing data our method still outperforms the verbal-cue methods. 

10. The size of evidence determines how much knowledge we know before detecting 

inconsistency, thus more evidence can facilitate the detection of inconsistency. 

However, the size of evidence is not correlated with the detection of deception. 
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Chapter 5 Conclusion and Future Works 

5.1 Overview 

Deception and truth are two intertwined concepts since to tell a lie one needs to have 

some knowledge of the truth. Likewise, the understanding of deceivers is the key to 

telling the truth. A deceptive act is an intentional behavior meant to mislead the listener, 

and thus the intent of deception is a determinant of many behaviors of a deceiver. An 

effective detection method should enable the users to have a peek at the intent of the 

speaker. This is the insight that drives our research. 

 

5.2 Contributions and Limitations 

Inspired by many remarkable theories in human cognition and philosophical arguments 

on deception we learned that the reasoning process of deception can be regarded as 

normal reasoning with presupposing false conclusions. Thus, the first contribution of this 

dissertation is a proposal of a cognitive model of argumentation and deception. The 

model represents the knowledge of a speaker using a knowledge base and performs 

inference in a similar way to human reasoning. 

 

The cognitive model of a speaker can be learned from his verbal content with the context 

knowledge supplied by similar speakers. Verbal content in the real world 

communications is uncertain, incomplete, and imprecise. The proposal of a learning 

method and its application on real test subjects are another key contribution of this work. 

With the extremely sparse and incomplete data from a subject’s verbal content we are 
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still able to build a reasonable and realistic knowledge system that reflects the opinion of 

the subject, maximizes the uncertainty in his reasoning, and allows different possibilities 

of change in the opinion.  

 

A third contribution, which is also the most important one, is the development of a 

detection model that detects deception by identifying deviations, explaining the 

deviations using the hypotheses of deceptive patterns, and combining the results for 

classification. This model is inspired by Johnson et al.’s (2001) process-based model and 

derived from the proposed cognitive model of deceivers. Driven by the intent, our model 

is able to discriminate unintentional misinformation such as misunderstanding, opinion 

change and wrong assumptions. Since the intent of deception cannot be avoided and is 

also hard to hide, our model detects deception in an effective and reliable fashion. 

 

Other contributions lie with the analysis capability of the model to restore the truth, 

explain deceivers’ tactics, provide evidence of deception and evaluate detection 

hypotheses computationally, which greatly facilitates the practical implementation of 

deception detection. 

 

Limitations of this work arise from two aspects. The first aspect is with regards to the 

human reasoning process. As we have argued in this dissertation, the reasoning process 

of a deceiver is not guaranteed to deviate from a truth teller. Even backed up by different 

knowledge, a deceiver may still derive the same reasoning results as a truth teller. This 

could happen by chance or with competent deceivers who comprehensively master the 
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knowledge of a truth teller and carefully derive the arguments from the perspective of a 

truth teller. However even the best human or machine detectors have their limitations on 

the types of deception that they cannot detect, as there will likely to continue to exist 

deceptions that are undetectable. Another limitation of this work exists in the accuracy of 

semantics retrieval. Manual retrievals of the semantics are labor intensive and sometimes 

biased by the human raters’ subjective interpretations. However, automatic sentiment 

retrieval techniques are still immature especially in understanding subjective information 

implied in the objective content. As our experiment shows, the detection of deception is 

sensitive to the error in the semantic arguments, therefore, the performance of this model 

is somewhat restrained by the accuracy of semantics retrieval. 

 

5.3 Findings 

The model of detection has been comprehensively evaluated using simulation data, 

synthesis data and real datasets. By comparing with the popular verbal-cue methods 

including bag of words, n-gram word features, POS tags and LIWC, we found our 

method to be the most accurate (effort in Chapter 4.4.2). Reliability issues that arise from 

the verbal-cue methods are that word features cannot be transferred from one topic to 

another and the discriminative words of a speaker cannot be applied to another, and that 

by re-wording, deceivers can significantly reduce the detection rate (effort in Chapter 

4.4.2). We are not expected to have such problems because our model looks for universal 

patterns in deceptive reasoning that are independent of the domain knowledge and the 

wording of deceivers. 
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Two types of arguments were evaluated and compared: arguments based on facts and 

arguments based on opinions. We found that arguments based on opinions involve higher 

levels of reasoning, which is more complex than fact-based arguments (effort in Chapter 

4.7.2.2), and that opinion-based arguments are less sensitive to evidence as people’s 

subjective beliefs rarely change (effort in Chapter 4.6). 

 

By studying different parameters of the datasets we found that the performance of 

detecting unexpected deviations is significantly influenced by the similarity between 

agents, the number of deceivers, the inconsistency of agents, the noise in historic data, the 

deception in historic data and the size of evidence (effort in Chapter 4.7). Not all of the 

parameters impact the detection of deception. Deception detection is only sensitive to the 

number of deceivers, the inconsistency of agents, and the noise in the testing data 

introduced by argument retrieval (effort in Chapter 4.7). These factors define the scope of 

deception where our method will be at a disadvantage. This scope contains the deception 

manipulated by multiple deceivers, the deception in which few manipulations are needed 

to distort the conclusion, and the deception in which arguments are not correctly 

represented. 

 

5.4 Future Works 

There is still room for improvement on the detection model, the selection of testbed, the 

evaluations, the sensitivity analysis and the post-analysis.  

 



 144 

In terms of the detection model, extended studies can be carried out on the reasoning 

patterns. As we have implied in our expectations of the patterns with respect to different 

types of reasoning, the pattern “association of inconsistency and untruthfulness” seems to 

be most effective in discriminating deception and non-deception. We want to evaluate 

whether we are able to detect deception with this pattern alone. Currently we assume 

independence between the patterns. However, interactions between the patterns may exist. 

By incorporating the interactions between the patterns in the detection model, the 

performance may be further improved. We are also in search of new patterns. More 

effective patterns can be derived by borrowing ideas from the cueing methods. Another 

improvement regards the semantic arguments retrieved from the verbal content. Although 

people’s attitudes of an argument are usually expressed as polarities, their degrees of 

belief are embedded in the phrases, sometimes with certainty modifiers and sometimes 

with arguments on both sides. The degree of belief is lost if only the polarity of 

arguments is encoded. Actually, existing sentiment analysis tools can automatically 

retrieve the degree of a polarity instead of the binary states of arguments. We want to 

evaluate the performance of the tools and their impact on deception detection. 

 

During the evaluation, a pilot study was conducted to evaluate the situation with multiple 

deceivers. A natural extension on this testbed is to consider the interaction between the 

agents in a group. According to (Hung, 2012), deceivers who collaborate to dupe others 

behave differently while their “partners in crime” are speaking. In addition, truth tellers 

may also be influenced by deceptive speakers as a result of social pressure (Asch, 1955). 
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In particular, we want to embed the interaction between deceivers and the interaction 

between deceivers and truth tellers into the testbed. 

 

In terms of the evaluation we expect that our model is more reliable than verbal-cue 

methods because the retrieval of arguments is insensitive to the wording and the scoring 

of the deceptive patterns are independent of the topic. Empirical experiments can be 

performed to verify this expectation. In particular, we can use automatic sentiment 

analysis tools to extract the polarities of arguments based on the stories in which the 

discriminative words are replaced by synonyms. The classifier learned from one dataset 

can be used to classify stories of another dataset in order to evaluate the patterns’ 

dependence on topic; and the classifier learned from a part of a dataset can be used to 

classify the other part of the dataset in order to evaluate the patterns’ dependence on 

individual speakers. 

 

During the construction of the cognitive models we have made a few assumptions such as 

that the arguments can be accurately extracted, the speakers are fairly uncertain about the 

arguments, and ignored arguments are close to what the majority agrees. We have 

evaluated the sensitivity of a speaker’s cognitive model to these assumptions, but 

according to the analysis in Chapter 4.7.3.3, which evaluates the performance of 

detection with regards to the retrieval of arguments, we observed that errors introduced to 

the construction of cognitive models can be brought into deception detection. A thorough 

analysis can be performed by detecting deception using erroneous cognitive models 
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caused by automatic methods of selecting topics, higher levels of uncertainty in the 

cognitive models, lower weights of an individual’s story in the learning data, and etc. 

 

In terms of post-analysis, another important task is to study deceivers’ behavior. We have 

argued that some deceivers are undetectable through investigating their reasoning results. 

An interesting problem would be what kind of deceiver is less detectable or more credible. 

Bond and DePaulo have in their paper (Bond and Depaulo, 2008) suggested that some 

deceivers are more credible than others whether lying or truth-telling, and some speakers 

are more detectable meaning that the validity of their statements is easier to be detected. 

We believe that the credibility and the detectability of speakers are determined by their 

knowledge structures. A future direction would be to investigate what structure enables a 

deceiver to infer more convincing results and what structure makes an agent significantly 

truthful when telling truth and significantly untruthful when telling lies. This can be 

helpful in quantifying and explaining verbal cues and shed lights on the discovery of 

more effective verbal cues. 
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Appendix 

Appendix A- Experimental results of Intra-dependency 

 

According to Yuan (2007), detection rate is largely influenced by the network’s intra-

dependency.  The intra-dependency index measures how dependent the states’ 

probabilities are on the evidence. It can be calculated using (Yuan, 2007): 
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Normally, the farther away a node is from the evidence, the less strongly it depends on 

the evidence. Since the nodes in Diabetes network are highly separated from one another 

due to its larger height, we form the hypothesis that the nodes’ dependency on the 

evidence is the weakest among all networks we tested on. To confirm our hypothesis, an 

experiment was conducted to measure the intra-dependency indices of all the networks. 

Table 53 shows the test result. The result confirms our hypothesis that Diabetes Network 

has the lowest intra-dependency. 

 
Table 53 Intra-dependency index of different networks 

Network Intra-Dependency Index 

Alarm 0.023946267072262 

Hailfinder 0.011272353508164927 

Diabetes 0.001618689030060108 

Munin 0.002419162273260489 

 

In Yuan (2007), parameters that influence the intra-dependency index were also studied. 

It demonstrates that the amount of evidence and the range of perturbation used in the 

multi-agent experiments mainly determine the intra-dependency of the nodes. This is due 

to the fact that the more evidence we possess, the more strongly the nodes depend on the 

evidence, but the dependency turns out to be weaker if the agents are perturbed more 

heavily. In addition to these two parameters, we showed that the structure of the network, 

specifically the height, also impacts the intra-dependency. 

  



 148 

Appendix B- Parametric experimental results of identification of inconsistency 

 

An exhaustive definite study of this can be found in (Santos and Li, 2010). The results 

presented here are updated due to a bug in the program.  

 
1) Results on the number of agents and the perturbation value: 

Table 54(a) shows the means of Pearson correlation values of all states. As we can see, 

the Pearson correlation values are only determined by perturbation values. This is 

because the more heavily we perturb the agents, the less correlated the agents are. Table 

54(b) shows the means of the standard deviations of the prediction error. It seems that the 

standard deviation has a slightly negative correlation with the number of agents. This can 

be explained by the fact that having more agents increases the number of correlation 

values for each agent, and thus increases the precision of predicting opinions. On the 

contrary, the perturbation value has a significant influence on the standard deviation 

because the less correlated the agents are, the more difficult it is to predict their opinions.  

Overall, the result shows that the more correlated the agents are, the more obvious the 

inconsistency appears to be. 
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Table 54 Detection performance with the number of agents. (a) means of Pearson correlation values. 

(b) means of prediction error stdev. (c) means of positive detection rate. (d) means of false detection 

rate. 

(a) 

Parameters Repeats = 100, Evidence = 10, No. of stdevs = 4 

Pert.\ Agents 3 10 30 100 

0.1 0.904056 0.914231 0.902494 0.893539 

0.2 0.829023 0.82672 0.826863 0.817745 

0.3 0.729068 0.755321 0.750651 0.761878 

0.4 0.701626 0.707899 0.698671 0.699698 

(b) 

Parameters Repeats = 100, Evidence = 10, No. of stdevs = 4 

Pert.\ Agents 3 10 30 100 

0.1 0.0434926 0.0362296 0.0375804 0.0371846 

0.2 0.0468883 0.0424275 0.0390635 0.0406773 

0.3 0.0490258 0.0424262 0.0402245 0.0390285 

0.4 0.0558387 0.0439094 0.0408072 0.0399069 

(c) 

Parameters Repeats = 100, Evidence = 10, No. of stdevs = 4 

Pert.\ Agents 3 10 30 100 

0.1 0.901392 0.940865 0.923081 0.932075 

0.2 0.838475 0.848329 0.86418 0.856521 

0.3 0.770829 0.791666 0.799054 0.810289 

0.4 0.606502 0.715911 0.744098 0.759478 

(d) 

Parameters Repeats = 100, Evidence = 10, No. of stdevs = 4 

Pert.\ Agents 3 10 30 100 

0.1 0.0192964 0.0201131 0.0162917 0.0143921 

0.2 0.0163721 0.0142754 0.0154445 0.0157893 

0.3 0.0186278 0.0178021 0.0224165 0.0213662 

0.4 0.0098979 0.0172704 0.019955 0.0223486 

 

2) Results on the number of repeats:  

The result in Table 55 does not show significant correlation between repeats and 

detection. 
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Table 55 Detection performance with the number of repeats. (a) means of Pearson correlation values. 

(b) means of prediction error stdev. (c) means of positive detection rate. (d) means of false detection 

rate. 

(a) 

Parameters Agents=10, Evidence=10, No. of stdevs=4 

Pert.\ Repeats 10 100 1000 10000 

0.1 0.895688 0.914231 0.907112 0.902621 

0.2 0.786274 0.82672 0.823928 0.825596 

0.3 0.711214 0.755321 0.756259 0.765995 

0.4 0.695493 0.707899 0.69208 0.692727 

(b) 

Parameters Agents=10, Evidence=10, No. of stdevs=4 

Pert.\ Repeats 10 100 1000 10000 

0.1 0.0352783 0.0362296 0.0387869 0.0388422 

0.2 0.0354494 0.0424275 0.0434013 0.0429281 

0.3 0.0389239 0.0424262 0.0444829 0.0445376 

0.4 0.0393172 0.0439094 0.0421055 0.0440204 

(c) 

Parameters Agents=10, Evidence=10, No. of stdevs=4 

Pert.\ Repeats 10 100 1000 10000 

0.1 0.914639 0.940865 0.930501 0.928079 

0.2 0.887225 0.848329 0.854309 0.860704 

0.3 0.849395 0.791666 0.782353 0.776183 

0.4 0.792878 0.715911 0.727012 0.722417 

(d) 

Parameters Agents=10, Evidence=10, No. of stdevs=4 

Pert.\ Repeats 10 100 1000 10000 

0.1 0.0617718 0.0201131 0.0121549 0.0132868 

0.2 0.109151 0.0142754 0.0107823 0.0111045 

0.3 0.0868499 0.0178021 0.0111043 0.0106883 

0.4 0.0645721 0.0172704 0.0138269 0.0105358 

 

3) Results on the amount of evidence in the testing process: 

The hypothesis can be explained intuitively by the fact that the more information we have 

about the environment, the easier for us to identify any abnormal phenomenon. The 

results in Table 56 support our hypothesis. 
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Table 56 Detection performance with the number of pieces of evidence in the testing process. (a) 

means of Pearson correlation values. (b) means of prediction error stdev. (c) means of positive 

detection rate. (d) means of false detection rate 

(a) 

Parameters Repeats = 100, Agents = 10, Training Evidence = 1-5, No. of stdevs = 4 

Pert.\ Test. evi. 1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.906734 0.904841 0.908053 0.904443 0.906235 0.905514 0.905574 

0.2 0.826037 0.818982 0.821374 0.817364 0.818707 0.806348 0.826104 

0.3 0.767322 0.761859 0.749494 0.762457 0.743148 0.742437 0.753039 

0.4 0.6743 0.668007 0.697072 0.699263 0.680636 0.692426 0.701311 

(b) 

Parameters Repeats = 100, Agents = 10, Training Evidence = 1-5, No. of stdevs = 4 

Pert.\ Test. evi. 1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.0264153 0.0264478 0.028317 0.0278283 0.0277945 0.027646 0.0294502 

0.2 0.0302722 0.0288494 0.0304743 0.0281466 0.0321399 0.028686 0.0298523 

0.3 0.0325099 0.0337676 0.0305145 0.0314473 0.0307659 0.0317314 0.0328154 

0.4 0.0330761 0.0313959 0.0321072 0.0293773 0.0310706 0.0314706 0.0340528 

(c) 

Parameters Repeats = 100, Agents = 10, Training Evidence = 1-5, No. of stdevs = 4 

Pert.\ Test. evi. 1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.96059 0.966432 0.968372 0.96055 0.96131 0.952192 0.952818 

0.2 0.907332 0.940319 0.944091 0.957625 0.940315 0.944709 0.945776 

0.3 0.865615 0.896799 0.922156 0.922417 0.940554 0.941941 0.933806 

0.4 0.820115 0.848268 0.873377 0.917588 0.917499 0.915642 0.925681 

(d) 

Parameters Repeats = 100, Agents = 10, Training Evidence = 1-5, No. of stdevs = 4 

Pert.\ Test. evi. 1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.0263437 0.0762742 0.145813 0.19918 0.241546 0.289513 0.269343 

0.2 0.0440153 0.0971125 0.150783 0.258578 0.267313 0.376949 0.363976 

0.3 0.0408427 0.0683694 0.17988 0.248691 0.345157 0.390614 0.441941 

0.4 0.0485377 0.095276 0.181732 0.297085 0.366939 0.415675 0.485484 

 

4) Results on the amount of evidence in the training process: 

The number of training evidence indicates the size of evidence space. 75% of evidence 

has the largest evidence space, which results in the training data that is irrelevant to the 

testing data.  The experimental results are shown in Table 57. 

 
 

 

 

 

 



 152 

Table 57 Detection performance with the number of pieces of evidence in the training process. (a) 

means of Pearson correlation values. (b) means of prediction error stdev. (c) means of positive 

detection rate. (d) means of false detection rate 

(a) 

Parameters Repeats = 100, Agents = 10, Testing Evidence = 1-5, No. of stdevs = 4 

Pert.\ Train. 

evi. 

1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.89816 0.913618 0.922451 0.904141 0.906847 0.917435 0.887753 

0.2 0.823716 0.834601 0.854739 0.841038 0.833634 0.849105 0.834878 

0.3 0.737116 0.775518 0.779752 0.789052 0.79364 0.797002 0.796899 

0.4 0.703018 0.699213 0.724156 0.747219 0.745863 0.755436 0.729103 

(b) 

Parameters Repeats = 100, Agents = 10, Testing Evidence = 1-5, No. of stdevs = 4 

Pert.\ Train. 

evi. 

1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.0260764 0.0429822 0.0557096 0.0681927 0.0767133 0.0779643 0.0775439 

0.2 0.029799 0.0521842 0.0655847 0.0813936 0.0895538 0.0994152 0.0958367 

0.3 0.0304199 0.0548619 0.0707517 0.0847784 0.0936349 0.101635 0.103183 

0.4 0.0333709 0.0561343 0.0725266 0.0891179 0.0984678 0.105822 0.107264 

(c) 

Parameters Repeats = 100, Agents = 10, Testing Evidence = 1-5, No. of stdevs = 4 

Pert.\ Train. 

evi. 

1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.959565 0.893376 0.860812 0.799447 0.782748 0.780562 0.797792 

0.2 0.897879 0.768845 0.685397 0.589983 0.533972 0.480152 0.526503 

0.3 0.825663 0.655597 0.548082 0.434086 0.403563 0.352897 0.396509 

0.4 0.734696 0.577444 0.48275 0.366147 0.305052 0.292564 0.322489 

(d) 

Parameters Repeats = 100, Agents = 10, Testing Evidence = 1-5, No. of stdevs = 4 

Pert.\ Train. 

evi. 

1-5 6-10 11-15 16-20 21-25 26-30 31-35 

0.1 0.0314239 0.0023884 0.0008331 0.0006186 0.0012465 0.0057588 0.0521203 

0.2 0.0183397 0.0012748 0.0004945 0.0002918 0.0025096 0.0006032 0.0097322 

0.3 0.0245182 0.0019625 0.0005257 0.0002063 2.875E-52 0.000792 0.0217482 

0.4 0.0238318 0.0034444 5.66E-57 0.0001156 2.938E-52 0.0002653 0.0119077 

 

5) Results on the number of standard deviations: 

The results shown in Table 58 indicate that if we relax the number of standard deviations, 

we will get fewer positive and negative alarms. This is very intuitive to understand since 

the more forgiving we are, the fewer inconsistencies we will care about.  
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Table 58 Detection performance with the number of standard deviation. (a) means of Pearson 

correlation values. (b) means of prediction error stdev. (c) means of positive detection rate. (d) means 

of false detection rate 

(a) 

Parameters Agents=10, Repeats=100, Evidence=10 

Pert.\ No. of stdevs 4 3 2 1 

0.1 0.914231 0.905259 0.894034 0.902577 

0.2 0.82672 0.818914 0.821617 0.822027 

0.3 0.755321 0.759824 0.767907 0.760969 

0.4 0.707899 0.696742 0.702926 0.705274 

(b) 

Parameters Agents=10, Repeats=100, Evidence=10 

Pert.\ No. of stdevs 4 3 2 1 

0.1 0.0362296 0.0362954 0.0345131 0.0373867 

0.2 0.0424275 0.0388624 0.0429311 0.0426748 

0.3 0.0424262 0.0399345 0.0427087 0.0432754 

0.4 0.0439094 0.0413434 0.0416888 0.0457272 

(c) 

Parameters Agents=10, Repeats=100, Evidence=10 

Pert.\ No. of stdevs 4 3 2 1 

0.1 0.940865 0.968434 0.983273 0.995557 

0.2 0.848329 0.912573 0.966484 0.988483 

0.3 0.791666 0.884303 0.934539 0.980235 

0.4 0.715911 0.836423 0.919155 0.965634 

(d) 

Parameters Agents=10, Repeats=100, Evidence=10 

Pert\ No. of stdevs 4 3 2 1 

0.1 0.0201131 0.039236 0.134116 0.316018 

0.2 0.0142754 0.0521267 0.106949 0.296226 

0.3 0.0178021 0.0524848 0.127107 0.290299 

0.4 0.0172704 0.0548502 0.121914 0.321566 

 

From Table 54 to Table 58, we can also see that except when the training evidence is not 

relevant to the testing evidence, the detection rate is always above 60% (higher than 

human detection rate). Therefore, to ensure a good detection performance which is robust 

to environmental change, it is necessary to make sure that the communication 

environment for the history data is consistent with the environment for the current data.  
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Appendix C- Learning of the Reasoning Process 

 

The structure of the knowledge base is built based on the following steps. 

 

Step 1: Retrieval of the arguments 

We decided to use 30 arguments to represent the nodes in the BN since 30 nodes form a 

BN with moderate size and 30 topics contain the majority of the arguments presented in 

both true and false stories.  Firstly, we remove the punctuations of the stories, which 

includes ,, ---, --, : , ; , ", (, ) , !, /, ? and .. Secondly, we use an open-source program 

called “snowball” to stem all the words into their root forms. Then we build a dictionary 

of all words and a vector for each story to indicate the frequency of each word that exists 

in the story. After the dictionary is built, we retrieve the most frequent N words over all 

stories, from which we manually summarize 30 topics. N is currently set as a number 

slightly larger than 100. It may vary according to the dataset.  

 

Step 2: Retrieval of the sentiments 

We use key word mapping to map a sentence with one or several arguments. Specifically, 

we select some key words to represent an argument, e.g. right, choose, control, decide, 

own, body, woman, mother, every and their variations represent the argument that Women 

have the right to do whatever they want with their bodies. If a sentence contains one or 

several of the key words, the story which contains the sentence is said to contain the 

argument. The polarity of the sentence with regards to this argument is also retrieved by 

mapping key words that represent negativity such as cannot, never, isn’t. Similar 

techniques have been used in sentiment analysis (Liu, 2010). The sentiments are filled 

into a matrix with m rows and n columns where m represents the number of stories and n 

represents the number of arguments, and are encoded into 1 if the positive attitude of the 

argument is expressed and 0 if the negative attitude is expressed.  After the automatic 

generation of the sentiments, we carefully go through all the stories to confirm the results. 

We eliminate entries that do not have the semantic meaning of the mapped arguments and 

change the polarities that were mapped wrong.  

 

Step 3: Building BN structures 

We use PC algorithm to build the structure of a BN. The basic idea of PC algorithm is 

that partial correlation between r.v.s indicates d-separation. PC algorithm can be divided 

into two parts: connection and orientation. Below is a pseudo code of PC algorithm. 
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Let V denote the set of all nodes. Let ADJx denote the set of nodes that are 

adjacent to node x. Let p(x,y|S) denote the partial correlation between x and y 

given set S. 

I(x,y|S) represents the state that x and y are independent given S. I(x,y|S)=true 

if p(x,y|S)<some threshold 

 

1. Start with a complete undirected graph g 

2. i = 0 

3. While i<some threshold 

3.1 For each node     

3.1.1 For each        

3.1.1.1 Determine if there is          with |S| = i and 

I(x,y|S) 

3.1.1.2 If this set exists, remove link between x and y from g 

3.1.2 Until          

3.2 i = i+1 

4. For each uncoupled structure x-z-y 

4.1 If       , Orient x-z-y as       

5. While no more edges can be oriented from 4 

5.1 For each uncoupled structure       

5.1.1 Orient     as     

5.2 For each x-z such that there is a directed path from x to z 

5.2.1 Orient     as     

5.3 For each uncoupled structure       such that    ,     and 

    

5.3.1 Orient      as     
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Appendix D- Conditional Probabilities of the Bayesian Network of A’s Belief System 

 

B_relation_with_A_s_mother 
good bad 

0.2 0.8 

 

A_hate_Indian 
A_have_exp_of_prostitution B_relation_with_A_s_mother T F 

T good 0.1 0.9 

bad 0.3 0.7 

F good 0.5 0.5 

bad 0.55 0.45 

 

B_relation_with_A 
A_is_nice_to_B B_relation_with_A_s_mother rape fan 

T good 0.4 0.6 

bad 0.4 0.6 

F good 0.5 0.5 

bad 0.8 0.2 

 

B_is_new_to_party 
T F 

0.8 0.2 

 

A_is_nice_to_B 
A_hate_Indian T F 

T 0.3 0.7 

F 0.7 0.3 

 

A_have_drug_from 
B_is_new_to_party B_relation_with_A B self 

T rape 0.7 0.3 

fan 0.1 0.9 

F rape 0.9 0.1 

fan 0.2 0.8 

 

B_knows_A_s_adr 
B_relation_with_A T F 

rape 0.7 0.3 

fan 0.7 0.3 

 

B_in_A_s_party_by 
A_hate_Indian B_relation_with_A self invitation 

T rape 0.9 0.1 

fan 0.6 0.4 

F rape 0.5 0.5 

fan 0.4 0.6 
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B_drive_A_home 
B_knows_A_s_adr B_in_A_s_party_by T F 

T self 0.9 0.1 

invitation 0.9 0.1 

F self 0.1 0.9 

invitation 0.1 0.9 

 

A_have_exp_of_prostitution 
T F 

0.8 0.2 

 

cry_for_help 
sex_by T F 

rape 0.8 0.2 

enticement 0.2 0.8 

 

A_is_celebrity 
T  F  

0.8 0.2 

 

A_s_boyfriend__catch_on_the_scene 
T  F  

0.8 0.2 

 

B_refuse_to_pay 
T  F  

0.8 0.2 

 

A_claim_being_raped 
B_refuse_to_pay A_is_celebrity sex_by A_s_boyfriend__catch_on_the

_scene 

T F 

T T rape T 0.6 0.4 

   F 0.6 0.4 

  enticement T 0.7 0.3 

   F 0.6 0.4 

 F rape T 0.8 0.2 

   F 0.8 0.2 

  enticement T 0.9 0.1 

   F 0.7 0.3 

F T rape T 0.6 0.4 

   F 0.6 0.4 

  enticement T 0.5 0.5 

   F 0.1 0.9 

 F rape T 0.8 0.2 

   F 0.8 0.2 

  enticement T 0.8 0.2 

   F 0.2 0.8 
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sex_by 
A_have_drug_from B_drive_A_home A_have_exp_of_prostituti

on 

A_hate_India

n 

rape enticement 

B T T T 0.8 0.2 

   F 0.5 0.5 

  F T 0.9 0.1 

   F 0.6 0.4 

 F T T 0.5 0.5 

   F 0.5 0.5 

  F T 0.5 0.5 

   F 0.5 0.5 

self T T T 0.6 0.4 

   F 0.3 0.7 

  F T 0.7 0.3 

   F 0.4 0.6 

 F T T 0.5 0.5 

   F 0.5 0.5 

  F T 0.5 0.5 

   F 0.5 0.5 
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Appendix E- Sample data from the abortion dataset and the hotel reviews 

 

Abortion data (Mihalcea et al., 2009): 

Abortions should be legal. I think that women have the right to choose what to do with 

their own bodies. A government should not interfere with how a woman deals with her 

pregnancy. Only she knows the truth behind the conception--- there could be birth defects, 

maybe she was raped or had an incestuous relationship. She should be able to decide if 

she wants to terminate her pregnancy. 

 

Hotel review (Ott et al., 2011): 

We stay at Hilton for 4 nights last march. It was a pleasant stay. We got a large room 

with 2 double beds and 2 bathrooms, The TV was Ok, a 27' CRT Flat Screen. The 

coincierge was very friendly when we need. The room was very cleaned when we arrived, 

we ordered some pizzas from room service and the pizza was Ok also.The main Hall is 

beautiful. The breakfast is charged, 20 dollars, kinda expensive. The internet access 

(WiFi) is charged, 13 dollars/day. Pros: Low rate price, huge rooms, close to attractions 

at Loop, close to metro station. Cons: Expensive breakfast, Internet access charged. Tip: 

When leaving the building, always use the Michigan Av exit. Its a great view. 
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Appendix F- A tutorial on Bayesian Networks 

 

A Bayesian Network is an annotated directed acyclic graph (DAG), which is composed 

of nodes and arcs. Nodes store knowledge in the form of random variables, and directed 

arcs connecting two nodes represent a conditional/causal relationship between them. The 

uncertainty of the relationship is encoded in a conditional probability. The conditional 

probabilities between any random variable and its parents are contained in an associated 

conditional probability table (CPT). Under the conditional independence assumption, the 

chain rule, which is also the product of the CPTs, is expressed as  


n

iin XparentsXPXXXP
1

21 ))(|(),...,,(

 
 

This provides a representation of the joint probability distribution, with which a BN is 

able to present the direct relationships between variables and form a structural 

organization of information.  

 

Figure 13 is a simple example of a BN. It represents the relationship between possible 

causes and consequences of committing a crime. Each random variable in the example 

has two states. The arcs between each two nodes denote the causal relationship between 

possible states of the two random variables. For example, if someone is a male, then his 

education level is above high school with a probability of 0.65. The roots of the network 

(Gender and Employment in this case) have prior probabilities instead of conditional 

probabilities, which represent the probability of a person being male and that of a person 

being employed regardless of any evidence.  

 

Reasoning in BKBs comes in two types: belief updating and belief revision. Bayesian 

updating calculates the posterior probability of each node given some evidence. Belief 

revision identifies the most probable instantiation of all random variables with given 

evidence by computing joint probability P(Ak+1=ak+1, …, An=an| A1=a1, …, Ak=ak) where 

Ai denotes the i
th

 node, and A1=a1, …, Ak=ak are evidence through applying the chain rule. 

The most probable instantiation of all random variables is also called the most probable 

explanation (MPE). Taking Figure 13 as an example, after comparing the joint 

probabilities of the two inferences, we find that the instatiations of the nodes 

Gender=male, Education=above high school, Employment=yes and Crime=no have the 

highest joint probability:  

               

                                            

                   

                                                        

                             . 
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Figure 13  A simple BN example 
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