
September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

International Journal on Artificial Intelligence Tools
Vol. 15, No. 5 (2006) 725–739
c© World Scientific Publishing Company

EFFECTIVE COMPUTATIONAL REUSE FOR ENERGY

EVALUATIONS IN PROTEIN FOLDING

EUNICE E. SANTOS

Department of Computer Science

Virginia Polytechnic Institute & State University

Blacksburg, VA 24061

santos@cs.vt.edu

EUGENE SANTOS, JR.

Thayer School of Engineering, Dartmouth College

Hanover, NH 03755

Eugene.Santos.Jr@Dartmouth.edu

Predicting native conformations using computational protein models requires a large
number of energy evaluations even with simplified models such as hydrophobic-
hydrophilic (HP) models. Clearly, energy evaluations constitute a significant portion
of computational time. We hypothesize that given the structured nature of algorithms
that search for candidate conformations such as stochastic methods, energy evaluation
computations can be cached and reused, thus saving computational time and effort. In
this paper, we present a caching approach and apply it to 2D triangular HP lattice model.
We provide theoretical analysis and prediction of the expected savings from caching as
applied this model. We conduct experiments using a sophisticated evolutionary algo-
rithm that contains elements of local search, memetic algorithms, diversity replacement,
etc. in order to verify our hypothesis and demonstrate a significant level of savings in
computational effort and time that caching can provide.

Keywords: Protein folding; triangular lattice; HP energy model; caching; reuse; evolu-
tionary algorithms.

1. Introduction

In predicting the native conformation of proteins using various computational pro-

tein models, even the simplified models suffer from computational intractability in

the worst case. For example, optimizing the simple 2-D square lattice hydrophobic-

hydrophilic (HP)1 has been shown to be NP-Complete.2 In the past several years,

numerous algorithms and techniques have been proposed and explored for quickly

determining native conformations based on models such as the HP models. Meth-

ods such as genetic and memetic algorithms,3,4,5 tabu search,6 and ant colony

optimization7 use approximation and randomized search in an effort to find good

solutions in a reasonable amount of time. The fundamental nature of such ap-

proaches relies on heuristics and/or randomization to quickly search large numbers

725

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

726 E. E. Santos & E. Santos, Jr.

of candidate solutions in order to achieve better solutions over time. Hence, the

more computational resources (time) that are provided to these methods, the more

likely a good solution can be found. Clearly, these methods rely on large numbers of

evaluations of the candidate solutions generated. As such, a significant component

of the computational effort rests in the evaluations (often called fitness evaluations).

Instead of exploring new algorithms for determining good protein conforma-

tions, we take existing algorithms and ask the question: Where can we save on

computational effort in order to increase the total number of candidates consid-

ered while fixing total time? Our hypothesis is that there is significant redundancy

among the large numbers of fitness evaluations of which re-use of computations can

drastically reduce computational effort. Intuitively, when we examine the various

methods that generate candidate solutions, new solutions are derived from earlier

solutions already explored, thus new solutions share attributes with those earlier

solutions.

Recently, Santos and Santos (2001)8 proposed a method for caching and re-

using partial fitness evaluation results. They applied their approach to 2D and

3D square lattice HP models and theoretically predicted a 50% savings in fitness

evaluations using their caching approach. Empirical tests using a simple genetic

algorithm (single point crossover and multipoint mutation) for optimization on 2D

and 3D square HP lattice validated the prediction.

In this paper, we further explore the effectiveness of partial fitness evalua-

tion caching. In particular, we consider triangular lattices (also called Honeybee

lattices)9 which are much harder protein conformation optimization problems even

in the 2D case. The degrees of freedom (6 directions for 2D) impose more com-

putational requirements given the larger conformational space. Because of the ex-

tra difficulty, simple genetic algorithms (GA) and evolutionary approaches have

a difficult time solving 2D triangular lattice HP problems. As researchers have

empirically demonstrated,3 more sophisticated optimization techniques such as hy-

brid local/global search, multi-meme GAs, scatter/gather searching, etc. must be

employed in a variety of ways to improve diversity of the searching space, faster

convergence, and better identification of promising conformations. As it turns out,

each of the methods mentioned here require additional fitness function computa-

tions. Thus, the need for caching to reduce the overall computational effort becomes

even more critical. We focus on providing predictive performance analysis on the

caching approach and validate our predictions for solving 2D triangular lattice

HP problems. In order to demonstrate the validity and utility of our analysis and

caching approach, we implement an evolutionary algorithm for effectively solving

2D triangular HP lattice that incorporates aspects of memetic algorithms and local

search, two-point crossover, random replacement for diversity, and single point mu-

tation with replacement of bad conformations with good conformations, i.e., bad

conformations (non-self avoiding walks) resulting from mutation are replaced by

a randomly generated good conformation which further promotes diversity. As we

can easily see, we have unified elements from various effective optimization algo-

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

Effective Computational Reuse for Energy Evaluations in Protein Folding 727

rithms for determining a good conformation. When combined with benchmark HP

problems, this will allows us to study a fairly realistic testbed to demonstrate the

feasibility of partial fitness evaluation caching. Results in this paper were originally

presented in Santos and Santos (2004).10

2. The 2D Triangular HP Lattice Protein Folding Problem

Currently, a primary concern in biochemistry is the problem of protein native struc-

ture prediction. It is commonly assumed that the sequence of amino acids in the

protein molecule corresponds to the equilibrium minimum free energy state (the

thermodynamic hypothesis) which might help to solve a large number of pharma-

ceutical and biotechnological problems. Therefore, several models have been pre-

sented for the protein folding problem. One of these is the well-known 2D-HP

model.1 The algorithms we presented here are all based on 2D-HP model, that is:

(1) all the type of amino acids are represented by a set A={H,P},

(2) protein instances are represented by a binary sequence,

(3) an energy formula specifying how the conformational energy is computed by

E =
∑

(e(a, b)) ,

where a and b are neighbors in the lattice but not along a chain, and

e(a, b) =

{

−1 if a = b = H

0 otherwise

and

(4) the conformation structure is presented as a self-avoiding walk on a 2D-lattice.

The standard assumption has been that the lattice is square in structure. Under

this assumption, it has been proven that protein folding on the two- dimensional HP

model is NP-complete.2,11 Several methods have been presented to try to solve this

problem, such as the chain growth algorithm,12 fast protein folding approximating

algorithms,13 and genetic algorithm(s).14

However, it has been noted that square or 90-degree angles have serious issues

and drawbacks,15 including the particularly serious parity constraint, i.e. any pair

of amino acids which are an odd-distance apart from each other can never lie on

adjacent square lattice points.

Due to this, triangular lattice structures is a focus of attention.15 In this paper,

we will focus on 2D triangular lattices. These lattices are structures in which any

point in the interior of the lattices has 6 neighbors and are typically denoted by their

direction (NW, NE, SE, SW, EE – straight east, WW – straight west) from the point

in consideration. As such, for any amino sequences of H’s and P’s, there are a variety

of confirmations represented by a string of directions mapped to the appropriate

amino acid. The goal is to determine the string of directions that minimizes the

energy formula given above.

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

728 E. E. Santos & E. Santos, Jr.

The computational issues are the same regardless of which lattice structure is

utilized. The overhead in time due to repetitive energy computations provides a sig-

nificant bottleneck to obtaining a solution in a timely fashion. As stated previously,

if one can cache partial results, it may be possible to reduce overall computation

time. However, in order for this to be applicable to 2D Triangular HP lattice protein

folding, this domain must be shown to be decomposable to the point where partial

results are easily substituted in the process of computing overall energy formulae.

To show that this is in fact the case, we first discuss Divide and Conquer ap-

proaches, which clearly are subproblem decomposable and discuss how our energy

formula can be shown to be a divide and conquer method.

3. Divide and Conquer and Application to Fitness Evaluations in

Genetic Algorithms

The triangular HP lattice problem has as part of its main components, fitness

evaluation using the neighbor energy formula. This evaluation can be viewed as a

divide and conquer method in its fitness value computation. Methods of this type

are defined by their subproblem/instance decomposition. In cases where same or

similar subinstances appear with high regularity, it may be possible to store or

cache partial fitness calculations in order to reduce overall computation time.

In Santos and Santos (2001),8 the approach of caching partial results was in-

troduced. Divide and conquer is a classic algorithm design paradigm. Below is the

skeletal structure of a divide and conquer algorithm:

Algorithm 3.1: DC (I, n, O)

/*I = current problem instance, n = problem size of I , O = output (solution) */

if n < c then

solve directly

else

Divide I into smaller instances I1, I2, · · · Ik

with problem sizes n1, n2, · · ·nk, resp.

For j = 1 to k do

Call DC(Ij , nj , Oj)

Combine O1, O2, · · ·Ok to compute O.

Denote the running time of DC for problem size n by RDC(n). Denote the divide

time of DC for problem size n by DDC(n). Denote the combine time of DC for

problem size n by CDC(n).

Therefore, if n < c then RDC(n)=time to solve directly for size n. Else,

RDC(n) = DDC(n) + CDC(n) +

n
∑

j=1

RDC(nj) .

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

Effective Computational Reuse for Energy Evaluations in Protein Folding 729

Fitness computations that can be decomposed into partial results from subin-

stances can inherently be solved using divide and conquer methods. Thus, caching

partial results from the gene fitness computations can reduce future fitness compu-

tation time. In particular, in GAs, much of a gene is preserved through the various

operations.

We denote AT (k) to be the time to access the cache table to determine whether

a particular substring of size k resides in the cache, and if so, to access its par-

tial fitness value. We denote ST (k) to be the time to store into the cache table a

substring of size k. The notation T refers to the cache table.

Let us assume that the fitness function evaluation can be represented by a divide

and conquer strategy. By taking into account caching, we modify the divide and

conquer scheme for the fitness function evaluation.

Algorithm 3.2: F (I, n, O)

if n < c then

solve directly

else

if I is cached then

output O directly

else

Divide I into smaller instances I1, I2, · · · Ik with

problem sizes n1, n2, · · ·nk, resp.

For j = 1 to k do

if Ij is not fully cached then

Call F (Ij , nj , Oj)

else

Oj ← access(T, Ij)

Combine O1, O2, · · ·Ok to compute O

Analyzing the running time of F , we see that if a partial result is stored in a

cache, we can truncate the amount of recursion occurring in a divide and conquer

method, thereby reducing overall fitness computational time.

Once each function is fully specified then a closed form for RF (n) can be derived.

The original (non-caching) run-time is obviously:

Rorig
F (n) = DF (n) + CF (n) +

k
∑

j=1

Rorig
F (nj) .

If RF (n) < Rorig
F (n) then caching will produce results more efficiently than

non-caching.

Precise comparison/results can be done only after the various functions in the

equations are fully specified. However, it is quite clear that in general, when the

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

730 E. E. Santos & E. Santos, Jr.

access and storage time are comparable or less than the divide and combine times,

caching should be more efficient than non-caching.

4. Triangular HP Lattice: A Cached Divide and Conquer

Approach

In order to design a divide and conquer approach, we must first discuss how a fitness

value is computed from the storage string of directions.

Once a conformation is laid out on the lattice, then all pairs of non-adjacent

amino acids (H’s and P’s) are considered such that each H-H pair decreases the

energy value by 1. This being the case, we can also compute the energy value

as each amino acid is considered linearly. By doing so, each non-neighbor pair is

computed exactly once in order to obtain the correct final value. Either end of the

directional string can be used as the header. Thus energy pairs can be computed

going either left to right or right to left in the directional string.

Regardless of the lattice structure used, the fitness value computation can be

presented as a divide and conquer method due to the linearity of computation.

In other words, the problem decomposes into one subinstance with a decrease in

size of 1. The divide time is negligible and the combined time relies on merger of

the subinstance result with the main result. Clearly, caching the partial results can

severely truncate the amount of recursion that has to be performed in fitness value

computation and can thus be a major computational time saver.

While conceptually, this is the case, this hinges on the fact that it is important

to determine how best to denote lattice points in such a way that neighbor lattice

points can be quickly identified. We will do this by mapping a 2-D triangular

lattice into a 2-D square lattice. We perform our construction on a lattice with no

boundary conditions (i.e. a wrap-around lattice) however it is easy to see how it

can be adapted to lattices with boundary conditions.

First, we note that the size of a 2-D triangular lattice denoted by n×n will refer

to the fact that no walk can traverse more than n as a max number of steps either

north-south or east-west. For example, a walk consisting of just two neighbor points

with one point NW in direction from the other would be 1 step north and 1 step

west, while a neighbor point WW would denote 0 steps north and 1 steps west.

Our mapping works as follows: Given a triangular n×n lattice LT , we construct

a square lattice LS of size 2n×n such that the set of lattice points in LT are mapped

to LS such that given a point p in LT , if it is mapped to point (x, y) in LS then

the neighbors of p are mapped to:

• North-West (NW) Neighbor : (x− 1, y + 1)

• North-East (NE) Neighbor : (x + 1, y + 1)

• Straight-West (WW) Neighbor : (x− 2, y)

• Straight-East (EE) Neighbor : (x + 2, y)

• South-West (SW) Neighbor : (x− 1, y − 1)

• South-East (SE) Neighbor : (x + 1, y − 1)

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

Effective Computational Reuse for Energy Evaluations in Protein Folding 731

Clearly, it will take O(n2) time to construct and initialize the lattice. However,

we need not re-initialize the whole lattice every time we begin a fitness evaluation.

In fact, instead of a re-occurring O(n2) initialization time, we incur a O(n2) once

and then for every time we lay out lattice points, we erase only those points laid on

the grid (i.e. n points) allowing us to incur a repetitive O(n) time rather than the

quadratic function. Now, we can compute the amount of time a divide and conquer

approach to fitness value computation would take. However, in order to determine

the effect of caching in running time, we must first discuss an appropriate caching

policy, which is discussed in the next subsection.

4.1. A caching policy

We now describe a caching policy that can be appropriately used for the Triangular

2D-HP problem. This is a modification of the one for square lattices in Santos

and Santos (2001).8 However, since for this paper, implementation utilizes 2-point

crossover and the amount of potential neighbors increases to 6, new insights were

gained.

Our approach is to use a tree structure to maintain our necessary gene caching.

Given that the length of our genes is n, our tree will be of height n where level i in

the tree will correspond to the ith index of the gene. We call this tree the left-cache

since the root of the tree corresponds to the leftmost entry in each gene. Each node

in the tree has either n children ordered left-to-right from 1 to n or is a leaf. Also,

each node has a key corresponding to the partial value computed for the substring

formed from indices 1 to h of the gene where h is the level of the node starting at 1.

The right-cache is similarly constructed. A left-cache example is shown in Figure 1.

The primary properties of the left/right-cache are:

• Size of cache is linear with respect to number of genes stored.

• No collisions ever occur in the cache.

• Worst-case access and storage are O(n) for genes as well as any prefix or suffix

of these genes.

For this caching policy: AT (n) = 5n and ST (n) = 9n. In our analysis, we assume

that accessing an item from a memory cell (whether in the cache, directional string,

etc.) requires 1 time unit. Creating or storing an item to a memory cell is double

that time.

4.2. Theoretical analysis

To recap the design discussion in this section, we can design a divide and conquer

approach to energy computations for Triangular 2D HP protein folding. In this

scheme, there was one subinstance decomposition of one size smaller, a negligible

divide time, and a simple combine procedure which merges the subinstance result

with the neighbor H-H pairs of the current directional string item. Moreover, the

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

732 E. E. Santos & E. Santos, Jr.

5

0

3

4

2

6
42

1

87

7

a

b

c

d

a

b

c

d
106

512

-

*

+

-

*

+

t

f

t

f

t

f

t

f

6d*t

6d-f

1a*t

1a+t

54

308

95

216

79

65

116

51

Index1 Index2 Index3 Index4

Fig. 1. Caching Example. Genes are of length 4. Indices 1 through 4 have range values
{0, 1, . . . , 7}, {a, b, c, d}, {+,−, ∗}, and {t, f} respectively. Assuming we have cached the following
4 genes: (6, d,−, f), (1, a, ∗, f), (6, d, ∗, t), and (1, a, +, t). Each cell consists of a partial fitness
value and a pointer. An x indicates NULL or no value.

protein conformation on the triangular lattice can be mapped and layout out on a

square grid for easier neighbor determination. Furthermore, we laid out a caching

scheme for partial results that saves linearly a left and right substring (prefix or suf-

fix) of each gene. Using such a caching scheme, we can develop a divide and conquer

algorithm that relies on the potential of truncated recursion by cache lookup.

Performing a theoretical analysis, the fitness computation time for one confor-

mation for the Triangular 2D Lattice Protein Folding problem (TPF) for non-

caching has an expected run time of

Rorig
TPF (n) = 78n .

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

Effective Computational Reuse for Energy Evaluations in Protein Folding 733

If caching is used, the fitness evaluation time will be determined by how large a

part of the amino acid string to be computed is found to be cached. If a substring

of length z is cached, then the expected run time is

RTPF (n, z) = 18n + 69(n− z) + 5z .

Comparing caching to non-caching, if z is quite small then the overhead needed

to write to and access the cache will force caching to take more time. Therefore,

caching is worthwhile only when z is sufficiently large.

Clearly, while fitness computation is an important part of GA run-time, it is

just one of many components. Below is the pseudocode for one iteration of our

evolutionary algorithm, i.e., the construction of the new generation of genes from

the previous generation, consists of the following sequence:

Algorithm 4.1: Iteration(Gold, Gnew , k, n, crate, mrate, drate)

/* Gold = array of individuals in the current generation

Gnew = output of new array of individuals

k = length of array Gold

n = problem size (length of gene)

crate = rate of 2-point crossover

mrate= rate of 1-point mutation

drate= rate of diversity replacement */

/* Selection */

Construct Gnew from Gold with roulette wheel selection

/* Crossover */

for i = 1 to k do

if (Rnd() < crate) then

Mark ith individual as crossable

For all consecutive pairs (I1, I2) of crossable individuals

in Gnew do

Do 2-point crossover on I1 and I2 and replace in Gnew

Compute fitness for I1 and I2

Mark I1 and I2 as modified

/* Local Search */

For each modified I in Gnew do

for i = 1 to n do

for j ={EE, WW, NE, NW, SE, SW} do

Construct Ij from I by replace ith element in

I with j

Compute fitness for Ij

Replace I with Ij that has best fitness

/* Mutation */

for i = 1 to k do

if (Rnd() < mrate) then do

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

734 E. E. Santos & E. Santos, Jr.

Do 1-point mutation on Ii in Gnew and replace

Compute fitness of Ii

if Ii is invalid walk then

replace with new randomly generate individual

compute fitness of Ii

/* Diversity Replacement */

Randomly replace up to drate individuals in Gnew with

new randomly generated individuals

Compute fitness for new individual

Analyzing each component of the algorithm, we see that for one generation of

our GA, the expected running time is:

• (3k2/2) + 4k is the time for selection

• k(4+crate(8+82n)) is the time for crossover using non-caching fitness evaluation,

and

k

(

4 + crate

(

4n + 8 + RTPF

(

n,
2n

3

)))

= k(4 + crate(8 + 48.33n))

is the expected time for crossover using caching for fitness evaluation

• crate k(36n + 468n2 + 4) is the time for local search using non-caching fitness

evaluation, and

cratek

(

6n

(

6 + RTPF

(

n,
3n

4

))

+ 4

)

= cratek(36n + 234n2 + 4)

is the expected time for local search using caching in fitness evaluation

• k(2 + mrate(12 + 78n)) is the time for mutation using non-caching fitness evalu-

ation, and

k

(

2 + mrate

(

12 + RTPF

(

n,
3n

4

)))

= k(2 + mrate(12 + 39n))

is the expected time for mutation using caching fitness evaluation

• k(4 + drate(78n)) is the time for diversity replacement using non-caching, and

this is also the worst case possibility if using caching.

The theoretical run-time for one generation using non-caching is:

T (k, n) =
3

2
k2 + 14k + cratek(12 + 118n + 468n2) + mratek(12 + 78n) + drate78kn .

The expected running time with caching is:

Tc(k, n) =
3

2
k2 + 14k + cratek(12 + 84.33n + 234n2) + mratek(12 + 39n) + drate78kn .

Comparing the ratio of

Tc(k, n)/T (k, n) ,

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

Effective Computational Reuse for Energy Evaluations in Protein Folding 735

we see that the dominating factor is

crate234kn2/crate468n2 = 50% .

Hence we expect a 50% savings in computational time.

5. Experimental Results

Given our theoretical predictions, we now compare them against actual runs. We im-

plemented our evolutionary algorithm according to Algorithm 4.1 with two versions:

(1) without caching of fitness computations, and (2) with left and right caching.

Our goal is to compute the computational effort saved through caching.

HP Sequence Length
Optimal

Soln

100 Generations

Best Soln

1 HHPHPHPHPHPH 12 -11 -11

2 HHPPHPHPHPHPHP 14 -11 -11

3 HHPPHPPHPHPHPH 14 -11 -11

4 HHPHPPHPPHPPHPPH 16 -11 -11

5 HHPPHPPHPHPHPPHP 16 -11 -11

6 HHPPHPPHPPHPPHPPH 17 -11 -11

7 HHPHPHPHPHPHPHPHH 17 -17 -17

8 HHPPHPPHPHPHPPHPHPHH 20 -17 -16

9 HHPHPHPHPHPPHPPHPPHH 20 -17 -15

10 HHPPHPPHPHPPHPHPPHPHH 21 -17 -15

11 HHPHPPHPPHPHPHPPHPPHH 21 -17 -15

12 HHPPHPHPHPPHPHPPHPPHH 21 -17 -16

13 HHPPHPPHPHPHPPHPPHPPHH 22 -17 -16

14 HHHPHPHPHPHPHPHPHPHPHHH 23 -25 -24

15 HHPPHPPHPPHPPHPPHPPHPPHH 24 -17 -15

16 HHHPHPHPPHPHPHPHPHPHPHHH 24 -25 -21

17 HHHPHPHPHPPHPHPHPHPHPHHH 24 -25 -24

18 HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 30 -25 -18

19 HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 30 -25 -20

20 HHHPPHPPHPPHPHPHPPHPPHPPHPPPPPHPHPHHH 37 -29 -21

21 HPHPPHHPHPPHPHHPPHPH 20 n/a -15

22 HHPPHPPHPPHPPHPPHPPHPPHH 24 n/a -14

23 PPHPPHHPPPPHHPPPPHHPPPPHH 25 n/a -16

24 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP 36 n/a -23

25
PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHP

PHPPHHHHH
48 n/a -37

26
HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHH

HHPHPHPHPHH
50 n/a -32

27
PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHH

HHHHHHPPPPHHHHHHPHHPHP
60 n/a -62

28
HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPH

PPHHPPHHPPHPHPHHHHHHHHHHHH
64 n/a -54

29 HHHPPHPHPHPPHPHPHPPH 20 n/a -17

30
PHHHPHHHPPPHPHHPHHPPHPHHHHPHPPHHHHHPHP

HHPPHHP
45 n/a -36

31
HPHHHPHHHPPHHPHPHHPHHHPHPHPHHPPHHHPPHP

HPPPPHPPHPPHHPPHPPH
57 n/a -38

Fig. 2. HP Testbed Proteins. Protein ID #1-20 are from Krasnogor et al. (2002).3 Protein ID
#21-31 are from Santos and Santos (2001).8

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

736 E. E. Santos & E. Santos, Jr.

0.10

1.00

10.00

100.00

Protein

Id #

Protein Id #

C
P

U
T

im
e

(s
e
c
s
)

w/o caching

w/ caching

Predicted w/

caching

Fig. 3. Average CPU Time (in seconds) of w/o caching vs. w/caching over 10 runs per protein
at 100 generations. Predicted CPU Time also plotted.

We implemented both versions in C++ on a Pentium IV 2GHz machine with

1G RAM running Linux. The testbed proteins we employ are drawn from Krasno-

gor (2002)3 for triangular 2D-HP and from Santos and Santos (2001)8 which have

yet to be computed in triangular 2D-HP. Figure 2 contains the HPs used in our

experiments. We note again that our goal in this experiment is to determine savings

from cache re-use. Hence, we limited our number of generations applied to our evo-

lutionary algorithms to 100. Clearly, as can be seen from Figure 2, 100 generations

is sufficient for short proteins but not for longer proteins. However, this will allow

us to demonstrate the utility of caching by allowing us to extend the number of

generations that can be computed using the same amount of time needed with-

out caching. Our theoretical prediction results in a 50% savings. As such, for our

caching runs, we allow the algorithm to continue for another 100 generations.

To determine reasonable parameters for our evolutionary algorithm, we con-

ducted some pre-trial runs. For our experiment, we used a crossover rate of 0.7,

a mutation rate of 0.05, and a diversity replace rate of 10%. For our evolution-

ary algorithms with caching, we gathered results after 100 generations and then

again after 200 generations. Each protein was run 10 times with each evolutionary

algorithm.

We computed the average CPU time (in seconds) over 10 runs per protein

on each evolutionary algorithm. Figure 3 shows the comparison of times with the

predicted time in a logarithmic plot. Our predicted runtimes are very close to our

actual runtimes. For predicted runtime, we simply factored our predicted savings

with the actual runtime w/o caching.

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

Effective Computational Reuse for Energy Evaluations in Protein Folding 737

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Protein Id #

A
b

s
o

lu
te

E
n

e
rg

y
Im

p
ro

v
e
m

e
n

t

Average Solution Improvement

Fig. 4. Average absolute energy value improvement.

Next, we allowed our algorithm with caching to run to 200 generations. In 9 out

of the 31 proteins, the algorithm was able to find a better solution out of its 10 runs.

Furthermore, the average solution found were better when given the additional time

(see Figure 4). We note that this is especially significant since our energy values

are simply negative integers.

Finally, we examine the average hit rate in our caching technique in Figure 5. In

general, we find that we are achieving on average an 80% hit rate which translates

to reusing nearly 80% of fitness computations. One primary factor that resulted in

such a high rate is the local search that has been employed.

6. Conclusion

Determining native conformations using computational protein models requires a

large number of energy evaluations especially with stochastic search algorithms that

rely on diversity of the search in order to find a good solution. Such evaluations

clearly consume a significant amount of available computational resources. In this

paper, we have examined a caching approach that exploits divide and conquer to

re-use past energy evaluations for partially recomputing the quality of new candi-

date solutions. We have provided theoretical analyses and predictions on the savings

that can be gained through our caching approach. We then compared our theoreti-

cal analysis against a real-world testbed of 2D triangular lattice HP proteins using

a sophisticated evolutionary algorithm that consists of local search, memetic ele-

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

738 E. E. Santos & E. Santos, Jr.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11121314 151617 18192021 22232425 26272829 3031

Protein Id #

R
a
ti
o

to
T

o
ta

l
L
e
n
g
th

Average Hit Length Remainder

Fig. 5. Ratio of cache hit to total length.

ments, and diversity factors. Our comparisons demonstrated the promising savings

through our caching approach and matches our predicted analysis. Furthermore,

we applied the savings gained from caching towards more search which resulted in

better solutions.

In conclusion, caching is a promising approach for better utilizing computational

time and resource. Given that the search for candidate solutions are relatively

structured by nature, caching should have a tremendous impact in a variety of

domains. One future direction would be to examine more general decomposition

approaches towards caching in order to handle even more specific energy models.

Acknowledgements

This work was supported in part by the National Science Foundation, Sun Micro

Systems, and Air Force Office of Scientific Research.

References

1. K. A. Dill, S. Bomberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S.
Chan, Principles of protein folding: A perspective from simple exact models. Protein
Sci, 4:561–602, 1995.

2. B. Berger and T. Leighton, Protein folding in the hydrophobic-hydrophilic (hp) model
is np-complete. Journal of Computational Biology, 5(1):27–40, 1998.

3. N. Krasnogor, B. Blackburnem, J. D. Hirst and E. K. Burke, Multimeme algorithms

September 19, 2006 17:57 WSPC/Guidelines-IJAIT 00290

Effective Computational Reuse for Energy Evaluations in Protein Folding 739

for protein structure prediction. In Lecture Notes in Computer Science: Proceedings
of Parallel Problem Solving From Nature, 2002.

4. E. Santos Jr., K. J. Kim and E. E. Santos, Effective search of the energy landscape
for protein folding. In Proceedings of the Genetic and Evolutionary Computing Con-
ference, GECCO 2003, Springer-Verlag Lecture Notes in Computer Science (LNCS),
Vol. 2723, 2003.

5. E. Santos Jr., K. J. Kim and E. E. Santos, Local minima-based exploration for off-
lattice protein folding. In Proceedings of the IEEE Computer Society Computational
Systems Boinformatics Conference, 2003.

6. M. Milostan, P. Lukasiak, K. Dill and J. Blazewicz, A tabu search strategy for finding
low energy structures of proteins in hp-model. In RECOMB Poster Proceedings, 2003.

7. A. Shmygelska, R. Aguirre-Hernndez and H. H. Hoos, An ant colony optimization
algorithm for the 2d hp protein folding problem. In Proceedings of the Third Inter-
national Workshop, ANTS 2002, Springer-Verlag Lecture Notes in Computer Science
(LNCS), Vol. 2463, 2002.

8. E. E. Santos and E. Santos Jr, Effective and efficient caching in genetic algorithms.
International Journal of Artificial Intelligence Tools, 10(1-2):273–301, 2001.

9. B. P. Blackburne and J. D. Hirst, Evolution of functional model proteins. J of Chem-
ical Physics, 115(4):1934–1942, 2001.

10. E. E. Santos and E. Santos Jr., Reducing the computational load of energy evaluations
for protein folding. In Proceedings of the Fourth IEEE Symposium on Bioinformatics
and Bioengineering BIBE ’04, pages 79–88, 2004.

11. P. Crescenzi, D. Goldman, C. Piccolboni and M. Yannakanis, On the complexity of
protein folding. Journal of Computational Biology, 5(3):423–465, 1998.

12. E. Bornberg-Bauer, Simple folding model for hp lattice proteins. In Proceedings of
Bioinformatics German Conference on Bioinformatics GCB ’96, pages 125–136, 1997.

13. W.E. Hart and S. Istrail, Fast protein folding in the hydrophobic-bydrophilic model
within three-eighths of optimal. In Proceedings of Twenty-seventh Annual ACM Sym-
posium on Theory of Computing, pages 157–168, 1995.

14. R. Unger and J. Moult, Genetic algorithms for protein folding simulations. Journal
of Molecule Biology, 231:75–81, 1993.

15. R. Agarwala, S. Batzoglou, V. Dancik, S. Decatur, M. Farach, S. Hannenhali,
S. Muthukrishnan and S. Skiena, Local rules for protein folding on a triangular lattice
and generalized hydrophobicity in the hp model. Journal of Computational Biology,
4(2):275–296, 1997.

