
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 377

Deterministic Approximation of
Marginal Probabilities in Bayes Nets

Eugene Santos, Jr.,Member, IEEE, and Solomon Eyal Shimony

Abstract—Computation of marginal probabilities in Bayes nets
is central to numerous reasoning and automatic decision mak-
ing systems. This paper presents a deterministic approximation
scheme for this hard problem that supplies provably correct
bounds by aggregating probability mass in independence-based
(IB) assignments. The scheme presented refines recent work
in belief updating for Bayes networks: attempts to approxi-
mate posterior probabilities by finding a small number of the
highest probability complete (or perhaps evidentially supported)
assignments. Under certain assumptions, the probability mass in
the union of these assignments is sufficient to obtain a good
approximation. Such methods are especially useful for highly
connected networks, where the maximum clique size or the
cutset size make many existing algorithms intractable. Since IB
assignments contain fewer assigned variables, the probability
mass in each assignment is greater than in the respective complete
assignment. Thus, fewer IB assignments are sufficient, and a
good approximation can be obtained more efficiently. Two classes
of algorithms for finding the high probability IB assignments
are suggested: best-first heuristic search and a special-purpose
integer linear program (ILP). Since IB assignments may be
overlapping events in probability space, accumulating the mass
in a set of assignments may be hard. In the ILP variant, it is easy
to avoid the problem by adding equations that prohibit overlap.
In the best-first search algorithm, other schemes are necessary,
but experimental results suggest that using inclusion–exclusion
(potentially exponential-time in the worst case) in the overlap
cases is not too expensive for most problem instances.

Index Terms—Anytime algorithms, approximate belief updat-
ing, approximating marginal probabilities, Bayesian belief net-
works, decision making systems, probabilistic reasoning.

I. INTRODUCTION

PROBABILISTIC reasoning is a paradigm used in numer-
ous reasoning and automatic decision making systems to

handle uncertain world knowledge, uncertainty of cause and
effect, and other sources of uncertainty [31]. Since probability
theory requires the assignment of a probability measure to
a prohibitively large space, various structuring methods are
used to take advantage of the many independencies in the
world, in hopes of curtailing the combinatorial explosion
in required information. Of particular interest are influence

Manuscript received March 18, 1995; revised October 22, 1997. This work
was supported in part by AFOSR under Project 940006, and by the Paul
Ivanier Center for Robotics Research and Production Management, Ben-
Gurion University.

E. Santos, Jr. is with the Computer Science and Engineering Depart-
ment, University of Connecticut, Storrs, CT 06269-3155 USA (e-mail:
eugene@eng2.uconn.edu).

S. E. Shimony is with the Department of Mathematics and Computer
Science, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
(e-mail: shimony@cs.bgu.ac.il).

Publisher Item Identifier S 1083-4427(98)04359-8.

Fig. 1. Common sense reasoning example.

diagrams [31], [39] which compactly represent large decision
trees, and Bayesian (belief) networks, which are a necessary
element in influence diagrams. In this paper, we focus on the
Bayes network component of influence diagrams.1

Bayes networks are directed acyclic graphs that describe
(probabilistic) cause and effect relationships in the world [30],
[31]. Each effect is a node (also called a variable), and a
distribution of the state of the node given all possible states
of its direct predecessor nodes (its parents, which are the
immediate causes) is provided. See Fig. 1 for an example of
Bayes net for common sense reasoning, and Fig. 2 for a Bayes
net (topology only) for medical diagnosis.

These local distributions, together with the independence
assumptions inherent to Bayes nets, uniquely determine the
joint distribution over the entire sample space

parents

For most applications, this is a marked improvement over
providing the joint probability of an unstructured domain.
Bayes networks and influence diagrams have been used as
the reasoning and decision making core in systems for com-
puter vision [2], natural language understanding [6], planning

1Alternately, we can look at Bayes networks as a special case: as an
influence diagram that contains no value or decision nodes, and thus consisting
only of chance nodes.

1083–4427/98$10.00 1998 IEEE

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

378 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

Fig. 2. Topology of simplified Bayes net for medical diagnosis.

[14], fault detection in electronic circuits [32], and medical
diagnosis [33]. The above is by no means an exhaustive list
of applications; see [31] for pointers.

The most commonly used operation on Bayes networks is
the computation of marginal probabilities, usually after ob-
serving the state of some variables (introduction ofevidence).
For example, we might want to know the probability that the
vase is broken given that a tremor has occurred, in the model
of Fig. 1 (a prediction problem). In the model of Fig. 2, we
might be interested in the probability of lung cancer given
that severe cough and sneezing were observed (a diagnostic
problem). (This operation is also called probability updating,
or belief updating, in the literature.) It is thus unfortunate
that, although a polynomial-time algorithm for computing the
probabilities exists for polytrees [24], the problem was proved
to be NP-hard in the general case in [9]. Several categories of
exact algorithms exist for computing posterior probabilities:
conditioning [10], clustering and junction trees [23], [26], term
evaluation [27], and arc reversal [39]. Several variants of these
algorithms attempt various refinements of these schemes, e.g.,
[15]. All of these algorithms are exponential-time in the worst
case, where the runtime is a function of the topology and the
number of states each variable can assume. (In this paper,
we refer only to networks where each variable has a finite
number of states.)

In the hope of avoiding an exponential runtime, a host
of approximation algorithms have emerged. As it turns out,
theoretically, evenapproximating marginal probabilities in
belief networks is NP-hard, and thus thereis no polynomial-
time (deterministic) approximation algorithm unless
[12]. Most approximation algorithms are less affected by net-
work topology, and are dependent on the actual probabilities
as to their runtimes and quality of approximation. If the
topology of a given network is such that exact algorithms are
expected to take a long runtime, it may be advisable to run
an approximation algorithm and hope that the probabilities
are such that we can get a good approximation in reasonable
time for the problem instance at hand. In addition, most
approximation algorithms have ananytime behavior, which
facilitates trading off time for precision in a graded manner.

Two major categories of marginal probability approximation
algorithms exist: randomized approximation algorithms and
deterministic approximation algorithms. In [21], approxima-
tion is achieved by stochastically sampling instantiations of the
network variables. Later work in randomized approximation

algorithms attempts to increase sampling efficiency [4], and
to handle the case where the probability of the evidence is
very low [17], which is a serious problem for most sampling
algorithms. In what follows, we focus on the second category,
deterministicapproximation algorithms. Inboundedcondition-
ing [22], one uses the conditioning method, but conditions
only on a small, high probability, subset of the (exponential
size) set of possible assignments to the cutset variables. Other
approximation algorithms attempt to simplify the network by
removing arcs between nodes that arealmost independent, to
produce a network that is hopefully tractable topologically.
An exact algorithm is then run on the “approximate” network,
to produce an approximate answer [25]. Another source of
complexity is the large number of states per node in various ap-
plications. To alleviate that problem, an approximation based
on merging states was suggested [45]. The scheme begins by
making all variables unary valued, and successively refining
the states of variables, while performing probability updating
on the approximate network and thus getting a successively
better approximation in each step.

Another category of deterministic approximation algorithms
is based on deterministic enumeration of terms or assignments
to variables in the network. The idea is to enumerate a set of
high-probability complete assignments to all the variables in
the network (but frequently partial assignments suffice, as will
be demonstrated). The probability of each such assignment can
be computed quickly: in O(), or sometimes even (incremen-
tally) in O(1). The probability of a particular instantiation to a
variable (say) is approximated by simply dividing the
probability mass of all assignments which contain by
the total mass of enumerated assignments. If the enumerated
assignments have a sufficiently large probability mass, we get
a good approximation.

Incremental operations for probabilistic reasoning, among
them a suggestion for approximating marginal probabilities
by enumerating high-probability terms, are presented in [13].
Of particular interest is the skewness result: if a network
has a distribution such that every row in the distribution
arrays has one entry greater than , then collecting
only assignments, we also have at least of the
probability mass. Taking the topology of the network into
account, and using term computations, this can presumably be
achieved efficiently. However, the skewness assumption as is
seems somewhat restrictive. The assumption may hold in some
domains, such as circuit fault diagnosis, but not in medical
diagnosis, or in the randomly generated networks on which
we tested our algorithms. Nevertheless, [16] presented initial
theoretical and empirical results that even weak skewness leads
to a favorable overall result (i.e., large probability mass in a
relatively small number of assignments) on the average. This
paper extends the above empirical results to sets of partial
assignments.

In [32], partial assignments to nodes in the network are
created from the root nodes down. The probability of each
such assignment is easily computable. Much saving of com-
putational effort is achieved by not bothering about irrelevant
nodes, i.e., nodes not above some node that is in the query set,
or nodes that are-separated from the evidence nodes. Later

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 379

in that paper, an assumption ofextreme probabilitiesis made.
This is similar to the skewness assumption above. In fact, in
the circuit fault diagnosis experiment in [32], the numbers
actually used are well within the bounds of the skewness
assumption. The algorithm makes use of a conflict scheme
in order to narrow the search.

As suggested in [19] and [41], belief networks frequently
have independence structure that is not represented by the
topology.2 Sometimes independence holds given aparticular
assignmentto a set of variables , rather than to all possible
assignments to . In such cases, the topology is no help in
determining independence (e.g.,-separation might not hold),
the actual distributions might have to be examined. In [41],
the idea of independence-based (IB) assignments (see below)
was introduced.

Formally, an assignment is a set of (node, value) pairs,
which can also be written as a set of instantia-
tions. An assignment is consistent if each node is assigned at
most one value. Two assignments are compatible if their union
is consistent. Each assignment denotes a (sample space) event,
and we thus use the assignment and the event it denotes as
synonymous terms whenever this does not lead to ambiguity.
An assignment subsumes assignmentiff . Among
all assignments, we are usually interested only in relevant
nodes—those supported by evidence or query nodes. A node
is supported by a set of nodesif or if is an ancestor
of some node in . An assignment isproperly supported by
a set of nodes if all the nodes in the assignment have a
directed path ofassigned nodesto a node in .

The IB condition holds at a node with respect to an
assignment if the value assigned toby is independent of
all possible assignments to the ancestors ofgiven ,
the assignment made by to the immediate predecessors
(parents) of . An assignment is IB if the IB condition holds
at every span , where span is the set of nodes
assigned by . A hypercube is an assignment to a node
and some of its parents. In this case, we say thatis based
on . is an IB hypercube if the IB condition holds at
with respect to . Theconditional probabilityassociated with
a hypercube is called the hypercube probability [denoted

]. It is not necessarily the same as the prior probability
of the assignment, denoted .

Consider, for example, the network of Fig. 2, and suppose
(for simplicity) that sneezing occurs with probability 1 when-
ever allergy occurs, independent of “Bronchitis.” Then the
assignment Allergy = present, Sneezing = presentis
an IB assignment, because the IB condition holds at every node
in the span of : at the “Sneezing” node because given allergy
the probability of sneezing is 1, independent of any other
ancestor (in this case “Bronchitis” and “Smoking”), and at the
“Allergy” node—vacuously (since “Allergy” has no parents).
Assignment , being an assignment to the “Sneezing” node
and some of its parents, also happens to be an IB hypercube
based on the “Sneezing” node, and its hypercube probability,

, is 1. However, the prior probability , in this case
is equal to the prior probability that allergy is present, which

2This type of independence structure has recently been renamed “context-
specific independence” (CSI) [5].

is usually less than 1. The nodes “Allergy,” “Bronchitis,” and
“Smoking” are supported by the “Sneezing” node, and no other
nodes are supported by “sneezing.” Assignmentis properly
supported by “Sneezing,” as the path (“Allergy,” “Sneezing”)
is completely within the span of .

In [41], IB assignments were the candidates for relevant
explanation. We suggest that computing marginal probabilities
(whether prior or posterior), can be done by enumerating high-
probability IB assignments, rather than complete assignments.
Since IB assignments usually have fewer variables assigned
than complete assignments (as evident from the above exam-
ple), each IB assignment is expected to hold more probability
mass than a respective complete (or even a query and evidence
supported) assignment. The probability of an IB assignment is
also easy to compute [41]

(1)

where is the assignment restricted to the set of nodes.
The terms in the product can each be efficiently retrieved from
the conditional distribution array (or other representation) of
the node conditional distribution.

One might argue that searching for high-probability as-
signments for approximating marginal distributions is a bad
idea, since coming up with the highest-probability assignment
is NP-hard [42]. Thus, we are using the solution to an
NP-hard problem to find an approximate solution to an NP-
hard problem, where we might expect that a polynomial
time algorithm can be sufficient to compute approximations.
However, as noted above, [12] showed that this problem is
also NP-hard. Therefore, using this kind of approximation
algorithm is a reasonable proposition, provided that some
subclasses of the problem that are bad for existing algorithms
can be shown to behave well, either theoretically or by
empirical results that show good behavior on the average.
Since runtimes of our algorithms depend in a complicated
manner on the conditional probabilities, it is very hard to get
any theoretical bounds on the runtime for interesting classes
of networks. In this paper, we take the experimental route to
justify our performance claims.

The rest of the paper is organized as follows. Section II
discusses the details of how to approximate posterior probabil-
ities from a set of high-probability IB assignments. Section III
reviews the IB MAP search algorithm of [41], and discusses
a faster heuristic best-first algorithm for finding the high-
probability IB assignments, based on the cost-sharing heuristic
presented in [7]. Section IV reviews the reduction of IB MAP
computation to linear systems of equations [41], incorporating
improvements that reduce the number of equations. Search-
ing for next-best assignments using linear programming is
discussed, as is a method for avoiding overlaps of IB assign-
ments. Section V presents results of experiments on random
networks: mass distribution, timing of search for the IB MAP,
and handling overlapped IB assignments (for the cost-sharing
algorithm). We conclude with a discussion of related work,
and on applying IB assignments to approximation algorithms
presented in the literature.

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

380 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

II. A PPROXIMATING MARGINAL PROBABILITIES

The probability of a certain node instantiation, , is
approximated by the probability mass in the IB assignments
containing divided by the total mass. If we need
to find the probability of , we call a query node. Nodes
where evidence is introduced are calledevidencenodes. We
also assume that the evidence is conjunctive in nature, i.e., it
is an assignment of values to the evidence nodes. We need to
assume that each enumerated IB assignmentcontainssome
assignment to query node. Otherwise, it might be impossible
to tell which part of the mass of supports . Let us
assume for now that this is indeed the case,3 i.e., we have a set

containing IB assignments, and if then span .
Thus, to approximate the probability of , use

where the probability of a set of assignments is the probability
of the event that is the union of all the events standing for
all the assignments (not the probability of the union of the
assignments). If we are computing the prior probability of

, we can either assume that the denominator is 1
(and not bother about assignments assigninga value other
than), or use as an error bound. If
all IB assignments are disjoint, the probability of the union
is easily computable, and is simply the sum of probabilities
of the IB assignments. However, since IB assignments are
partial, it is possible for the events denoted by two different
IB assignments to overlap. Thus, to compute the probability
of a set, some other method must be used.

Computing the union of the IB assignments in a repre-
sentation that makes computation of the probabilities easy is
nontrivial. It turns out that we can use the inclusion–exclusion
principle, due to the fact that the union of compatible IB
assignment is also an IB assignment [44]. For example, let

be nodes, each with a domain . Then
has an overlap with

. The overlap is also an assignment:
. (Note that for two assignments

, the union of and denotes the event that is the
intersectionof the events denoted by and .)

Despite this property, evaluating the probability of a set of
IB assignments may require the evaluation of an exponential
number of terms. That is due to the equation for implementing
the inclusion–exclusion principle

where is the th event. It is always possible to force all IB
assignments to be nonoverlapping, by using only nonoverlap-
ping hypercubes in the search algorithms [38], [44]. However,
this comes at a cost: the resulting IB assignments will then
have more variables assigned, and thus much less probability
mass. Several other ways exist to overcome this problem, but
the best method depends on the algorithm for generating the

3In subsequent work [38] this assumption was relaxed for special cases,
such as query nodes which are root nodes.

IB assignment. We thus postpone this issue until the following
sections, where the details of the IB assignment generators
are discussed, and assume for the moment that there are no
overlaps.

Given a set of query and evidence nodes, all nodes not
supported by either the query or evidence nodes (redundant
nodes) need never appear in an IB assignment in our search.
A node (properly) supported by the evidence nodes is called
(respectively, properly) evidentially supported, and a node
supported by a query node is called query supported. Before
we start searching for IB assignments, drop all irrelevant
nodes, i.e., evidence nodes that are-separated from the query
nodes by other evidence nodes, as well as all the nodes that
are not either query supported or supported by one of the
remaining evidence nodes.

The basic approximation algorithm is described below. The
existence of ageneratoris assumed. Each time the generator
is called, it returns the next-best (next highest probability) IB
assignment consistent with a set of initial assignments. Some
variants of the algorithm use more than one generator instance.

• Input: A Bayesian belief network , evidence (a
consistent assignment), a query node.

• Output: Successively improved approximations for
, for each value in the domain of node

.

1) Preprocessing

• Sort the nodes of such that no node appears after
any of its ancestors.

• Initialize the IB hypercubes for each node .

2) Initializing: remove redundant nodes, and for eachin
the domain of do:

a) Set up an empty result set for.
b) Add the assignment to the initial

assignment set for the generator.4

3) Repeat until time limit or generator returns null:

a) Get next-best IB assignment from the generator.
b) Add to the result set of , where .
c) Update the posterior probability approximation.

The simplest generator is a best-first search with the current
probability heuristic, which is exactly the inner loop of the
algorithm in [41], (also described in Section III). In this
paper, we also look at two other generators: a best-first search
algorithm based on the cost-sharing heuristic, and an integer
linear program scheme, modified from [41].

The posterior probability approximation for given
the evidence is

result set for

result set for

As before, for null evidence, result set for is
the unassigned probability mass, and can be used to bound
the error, as in [32]. For a discussion on how to bound error
probabilities for the nonnull evidence case, as well as how to

4We need to enforce some assignment to the query node, in order to comply
with our assumption.

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 381

generalize the algorithm to handle several query nodes, see
[44]. In [38] and [44], the issue of using several generators is
explored. In particular, we might want to use one generator
for each possible query node instantiation, and an additional
generator for the negation of the evidence. In this case, each
generator would get an initialization set of size 1. Selection
between the generators would be based on a meta-reasoning
mechanism, where the criterion for selection would be to use
the generator where the expected result would provide better
bounds on the conditional probabilities (this is not necessarily
the one providing the IB assignment with the greatest mass),
possibly in a parallelized (or distributed) search scheme.

III. SHARED-COSTS HEURISTIC SEARCH

In this section, we discuss best-first heuristic search gener-
ators for the marginal probability approximation algorithms.
We begin by reviewing the simple, current probability (also
called “cost-so-far”) heuristic algorithm [41], [44], and then
discuss the better cost-sharing heuristic.

A. Review of the Cost-So-Far Heuristic Search

The best-first algorithm keeps a sorted agenda of states,
where a state is an assignment, a node last expanded, and a
probability estimate:

• Input: A Bayesian belief network , a set of consistent
assignments .

• Output: The next best IB assignment that subsumes some

1) Initializing: for each in , push into the agenda the
assignment with a probability estimate of 1.

2) Repeat until empty agenda:

a) Pop assignment with highest estimatefrom the
agenda, and remove duplicate assignments (they will
all be at the top of the agenda).

b) If is IB, return it.
c) Otherwise, expand at , the next node, into a set

of assignments , and for each assignment
do:

i) Estimate the probability of .
ii) Push with its probability estimate and last-

expanded node into the agenda.

When the generator is resumed (i.e., called after it returns
the first time), the resumption point is at step 2. Expanding
a state and the probability estimate is exactly as in [41]:

, where is the th IB hypercube based on
that is maximal with respect to subsumption and consistent

with . The probability estimate is the product of hypercube
probabilities for all nodes where the IB condition holds.

B. Dealing with Overlapping Assignments

One way to deal with overlapping assignments is to ap-
proximate the inclusion–exclusion formula, by ignoring high
order terms in the computation. That makes sense because
low-probability assignments are going to be ignored in the
approximation algorithm anyway. Theoretically, this is a bad
idea. As shown in [28], we need a very large number of terms

(about in the worst case) to get a good approximation of
the inclusion–exclusion formula, in the general case. Still, this
might be feasible in a practical algorithm.

Another way to handle overlap is to use inclusion–exclusion
only for a small set of overlapping assignments, and prevent
the occurrence of sets of overlapping assignments with cardi-
nality strictly greater than some small integer constant. The
exact value of depends on which algorithm variant we use.
In the best-first heuristic search algorithms, it is hard to prevent
an IB assignment from overlapping all other assignments. If
an IB assignment comes up that is not subsumed by some
previously generated IB assignment (in which case it is thrown
out), we can do the following test. If overlaps IB
assignments, we split it into several assignments (which are
not necessarily IB anymore), and toss the new assignments
back into the agenda.

Each “split” assignment is a copy of the current assign-
ment augmented by an assignment to one or more additional
nodes. The node (or nodes) must not be in the span of the
current assignment, but appear in the span of some of the
overlapped assignments. As a result of the split, most of the
new assignments will overlap with less than.

Two questions remain: 1) how to do the split (i.e., which
nodes to select for assignment), and 2) how to evaluate a split
assignment when returning it into the agenda. There are several
possible answers to the first question.

1) Select an unassigned root node, or if none are available
(all root node assignments are equal), a successively
distant unassigned node down the acyclic graph. Such an
unassigned node must exist, or the current assignment is
subsumed by an IB assignment already in the result set,
and should have been thrown out.

2) Select some other node. One possibility is a node as
low down as possible.

In the first case, the resulting “split” assignments will all be IB
assignments, in which case there are two possibilities: 1) try to
use them in the result sets immediately or 2) push them back
into the agenda. In the second case, the resulting assignments
will usually not be IB, and they must be pushed into the
agenda. Intuitively, method 1 will allow us to use the results
faster, but may cause problems if is large. Method 2 will
defer the problem, and is likely to do better in such cases.

Heuristic evaluation of the split assignment requires no
modifications from the standard heuristic function. The only
change in the algorithm needed to handle these split assign-
ments is to change the last expanded node to one less than
the node selected for the split, unless we already know the
assignment to be IB (e.g., when selecting a root node for
the split), in which case no modification is necessary. In our
experiments, however, assignment splitting turned out to be
unnecessary (see Section V).

C. Cost-Sharing Heuristic Search

To improve the performance of the search algorithm, we
need to use a different heuristic than cost-so-far, which gives
little information early on in the search. Including costs that
will be incurred later on in the search (higher up in the

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

382 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

DAG) give us a better estimate. However, one cannot just
add the costs to be incurred in the future, because in mul-
tiply connected networks one node cost (negative logarithm
of probability) would be counted multiple times, and we
would no longer have an admissible heuristic. The idea of
dividing the cost to be incurred by the number of children,
the “cost-sharing” heuristic, was pursued in [7] for weighted
proof graphs (Weighted AND/OR DAG’s).5 The cost sharing
heuristic showed a marked improvement in performance over
the cost-so-far heuristic when applied to graphs generated by
WIMP [6]. Since the above generator is a best-first search
algorithm that uses the cost-so-far heuristic, plugging in the
cost-sharing heuristic ought to give us a great improvement.
In order to take advantage of the cost-sharing heuristic, we
need to reduce the Bayes network into a weighted AND/OR
DAG (WAODAG), such that probabilities are monotonic in
the costs in the WAODAG.

For example, consider the Bayes network of Fig. 3, a part
of the medical diagnosis network that would be relevant if the
evidence is that “High temperature” is present. Each node has
two states: (symptom or disease present), and(symptom
or disease absent). Its corresponding WAODAG appears in
Fig. 4, where a curved arc across a set of edges denote that
the node incident on these edges is an AND node. The number
next to each node is its cost, with zero costs omitted for clarity.
Node names are abbreviated, e.g., “lc” for “Lung cancer.” Each
step number in the figure refer to a construction step as defined
below, and denote that all items (nodes or arcs) at the same
height in the figure are constructed in that step.

1) Constructing the WAODAG:To convert our problem
into the WAODAG formulation, we perform a construction
similar to [8]. The algorithm is given a belief network

, and evidence . (Note that query nodes
essentially become evidence nodes, in the context of searching
for the best IB assignment.) Assume without loss of generality
that all nodes are either evidence or query nodes, or ancestors
of some such node (otherwise they can just be dropped from
the diagram). The construction is as follows (refer to the
examples, Figs. 3 and 4).

1) For each possible node-state
span where is in (domain of), construct

OR node . Note that for each evidence node, only
one state is possible.

2) Construct an AND node , with parents for all
, i.e., all the evidence node-states.

3) For each maximal IB hypercube based on any node
that assigns value to , construct an AND node ,
where is the index of the hypercube among all the
hypercubes that are based onand assign a value to

(the actual order is immaterial). We call the node

5In a weighted proof graph, each nodev has a costc(v). The equivalent
problem in this formalism is to find a least-total-cost proof of the evidence,
a subgraph of least total cost. In such a proof, the evidence nodeS must be
included. Additionally, if an AND node is in the proof, then all its parents
must be in the proof. Similarly, if an OR node is in the proof, one of its parents
must be included. Such a subgraph (a proof) is a complete AND DAG of the
WAODAG.

Fig. 3. Fragment of medical diagnosis network.

image of the hypercube, and use it as a synonym for the
hypercube itself whenever unambiguous.

4) For each maximal IB hypercube as above, construct a
node , the hypercube’s “self cost” node.

5) Construct a directed edge from each hypercube to
.

6) Each hypercube assigns some state to some of a node’s
parents. For each such that ,

construct an edge from node to node .
7) From each self-cost node construct a directed edge

(self-cost edge) to the respective . is
essentially an AND node with no parents.

8) The cost of each self cost node is defined
by the respective hypercube probability:

.
9) The cost of any other node is 0.

2) Admissibility and Edge-Based Search:In order to make
the cost-sharing heuristic admissible, Charniak and Husain had
to define the search in terms of sets ofedges, rather than
nodes. A search state (set of edges) has to obey theminimal
cut property, as follows. A cut of an AND DAG is a set of
edges such that every path from any root node to a leaf
node contains an edge from. A cut is minimal if it is set-
wise minimal, i.e., if no edge can be removed fromsuch
that there is still a cut. (What we call a “minimal cut” here is
called a “cut” in [7].) For an AND/OR DAG, is a cut if there
is contains a complete AND DAG (intuitively: completely
specified proof) for which is a cut. Likewise, for a minimal
cut of an AND/OR DAG. In Fig. 4, would be a
minimal cut of the AND DAG supported by , and thus
a minimal cut of the entire WAODAG. In our reduction, we
need to suggest a search operator that preserves the minimal
cut property, and such that states corresponding to all (properly
supported) IB assignments are reachable. If we do all of the
above, we are assured by the results of [7], that the heuristic
is admissible for our search, and that this algorithm variant
indeed comes up with the highest-probability IB assignment.

Let be a complete AND DAG in our WAODAG, ,
and let be the set of hypercubes in . Define

to be the assignment consisting of the union of all
the hypercubes . Let be a (minimal) cut of
consisting only of the self-cost edges of a set of hypercubes

. As above, define as the assignment consisting of the

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 383

Fig. 4. WAODAG generated from medical diagnosis network.

union of all the hypercubes in . Likewise, if is a set of
edges (not necessarily a cut or a minimal cut), define
to be the union of all the hypercubes that have their self-cost
edge in .

Lemma 1: Let be a complete AND DAG in , and
let , where the set of hypercubes in is . If
is consistent, then it is an IB assignment.

Proof: Let be an arbitrary node in span . It is
sufficient to show that the IB condition holds atwith respect
to . There exists a unique (since is consistent) value
such that . Since is in the assignment, then
there must be a hypercube based on (assigning it
the value). That is because for to be assigned, either the

above holds, or there is some hypercube (for some
) based on some child of , that assigns the value .

In the latter case, is an AND node in , and one of its

parents in is by construction. Since is a complete

AND DAG containing , then . Also, for

to be complete, one parent of must also be in . But
all the parents of are hypercubes of the form by
construction. Thus, for some, is in and thus also

in . Since the IB condition holds at with respect to ,
and assigning other nodes (consistently) cannot affect the IB
condition at , then the IB condition holds at with respect
to .

Lemma 2: Let be a (minimal) cut of consisting only
of the self-cost edges of a set of jointly consistent hypercubes

. Then the assignment is a consistent IB
assignment subsumed by the evidence.

Proof: Let be the complete AND DAG for which
is a cut. contains a WAODAG node for each evidence
node-state, and thus must contain a self-cost edge for
somehypercube based on each evidence node, and
consistent with the node-state of in . Thus, the union
of the above evidence hypercubes subsumes, and is a
subset of , and therefore subsumes . is a consistent
assignment by construction, and it is thus sufficient to prove
that it is IB. We show first that . First, if

then , as otherwise there is a path
in , which obviously has no

edge in (contradiction). Likewise, if , then
, otherwise dropping from does not

create a path from root to sink (contradiction). Now, since

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

384 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

and have the same hypercube sets, then
, and it thus follows immediately from Lemma 1 that

is IB.
Lemma 3: Let be a consistent IB assignment subsumed

by the evidence, and a set of hypercubes whose union is
exactly , and such that contains a hypercube for every
node in span (the fact that such a set exists for every
IB assignment is proved in [40]; this set is not necessarily
unique) then

is a (minimal) cut consisting only of self cost edges of jointly
consistent hypercubes.

Proof: First, our AND DAG of which is a cut is
constructed as follows: a node-state just when

. A hypercube just when . A
self-cost node just when . Clearly,

is a complete AND DAG, as it includes all the sink nodes
(the evidence node-states) and for every OR node in, i.e.,
node-state , one parent node (the) is in .
Likewise, for each hypercube in (an AND node) all of
its parent nodes are in , because the hypercube subsumes

, and its self-cost node is in by construction. For the
self-cost nodes, since they have no parents, all of their parents
are in , vacuously. Thus, is a complete AND DAG.

Also, is a cut, because the only root nodes are self-cost
nodes, and each of them only has one edge, which is inby
construction. is minimal because it consists only of self-cost
edges (by construction), while and all the self cost edges are
incident on root nodes. Thus, removing such an edge
from will allow a path from root node to a sink node.
Thus, is a minimal cut of , which is a complete AND
DAG in , and is thus a minimal cut of .

We now proceed to the computation of the heuristic costs
, which are defined in a manner similar to [7], as follows:

• the heuristic cost of a self-cost edge is the cost of its
source node, i.e., ;

• the heuristic cost of a hypercube is the sum of
the heuristic costs of the incoming edges;

• the heuristic cost of each edge with a hypercube node as
a source is the heuristic cost of its source hypercube;

• the heuristic cost of any other edge is the heuristic cost of
its source node divided by the number of children
that has in ;

• the heuristic cost of a node-state node is the mini-
mum of the heuristic costs of all of its incoming edges.

Since is a DAG, and the above defines costs only in
terms of the belief network or edges and nodes above, this
definition is grounded.

Theorem 1: Let be a (minimal) cut of consisting only
of consistent self-cost-node edges, and . Then is
a consistent IB assignment subsumed by the evidence, and its
probability satisfies

Proof: By Lemma 2, is a consistent IB assignment
subsumed by the evidence. Thus, its probability is a product
of conditional probability terms (1), which we rewrite as
hypercube probability terms

where is the hypercube based onin the set of hyper-
cubes from which was constructed. Taking the logarithm
of both sides and multiplying by 1, we get

But since the sum is over all the nodes in the assignment, and
each node has its hypercube in, which in turn consists of
exactly one hypercube for each self cost edge, we have

3) Algorithm Summary and Correctness Proof:A search
state is a set of edges, a minimal cut. For convenience and
efficiency, we also keep the hypercubes, last expanded node,
current heuristic value, etc., but these can all be computed
from the cut . The heuristic value of a state is the sum of its
heuristic edge costs. Our expansion operatoris a function
from a set of edges to a set of sets of edges, (i.e., essentially
from a state to a set of next states), and is similar to that of
[7]. The generator for next-best IB assignment follows.

• Input: A Bayesian belief network , and evidence (a
consistent assignment).

• Output: IB MAP assignment.

1) Initializing:

a) Remove redundant nodes.
b) Create the WAODAG from the top down, while

computing node and heuristic edge costs.
c) Push the edge set onto the agenda, where is

the set of edges incident on, with heuristic cost
equal to .

2) (Resumption point): Repeat until empty agenda:

a) Pop state with lowest heuristic cost estimate from
the agenda, and remove duplicate states (they will
all be at the top of the agenda).

b) If the assignment is IB (all edges are self cost
edges) return it.

c) Otherwise, find the earliest node which is a
source of an edge in , compute . That is,
expand at (we also call this “expanding at node

”) into a set of states . For each state do
the following:

i) Find if corresponds to a consistent assign-
ment, and if not, discard it.

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 385

ii) Compute the heuristic value for as the sum
of edge costs.

iii) Push into the agenda.

Expanding a state at with source (computation
of) works as follows: Let be the set of edges with
source in . The parents of are with

indegree . Then the new states
indegree are incoming . Note that by
construction, each application of the expansion adds one self-
cost edge to , thereby adding a hypercube to the assignment
defined by the cut. Each of the new states amounts to a
different choice of hypercube at, just like the cost-so-far
algorithm.

A sample run of the algorithm on the Bayes network
of Fig. 2 with evidence “high temperature present,” would
proceed as follows. Removal of the redundant nodes would
result in the network of Fig. 3. The resulting WAODAG
appears in Fig. 4. Push the state , where the singleton
edge set is the state itself, and 3 is its heuristic cost. In the
first pass through the loop, is popped, and the states:

, , and
are pushed. Second iteration pops , and
pushes and .
Third iteration pops and pushes

. Fourth iteration (last one) pops
which consists only of self cost edges, and

returns. The result corresponds to the assignment smoking
T, lung cancer T, high-temperatureT, (with “Bronchitis”
uninstantiated), and a probability of . (Note that
in the last iteration, the equally cheap state
could have been selected instead, causing several more
iterations, but with the same end result).

This algorithm diverges from that of [7] in that when an
edge from an OR node is expanded to include an edge from a
hypercube to , we expand the hypercube node (which
is an AND node) as well in the same expansion step. This does
not affect either the heuristic value or the reachability of final
states, since for all consistent self-cost-only cuts, either is
reachable, or is subsumed by some IB assignment ,
where is reachable. Hence, to prove that this heuristic is
admissible, the results of [7] can be directly applied.

Theorem 2: Let be a consistent IB assignment maximal
with respect to subsumption among all IB assignments that
are subsumed by the evidence. Then there exists a self-cost-
only cut that is reachable from the initial state such that

.
Proof: This theorem was proved for the expansion op-

erator in [41]. We show that the expansion operatoris
equivalent to that of [41], in the following sense: for each
operator application of [41], there is a sequence of one or
more edge expansion () steps.

Let be an assignment that is-reachable from the
evidence, where node is the last expanded. Sincealways
expands by selecting a hypercube and setting the next state to
be the union of with the hypercube, then is a union of
hypercubes . The order of node expansion usingis such
that children are always expanded before parents [i.e., all nodes

that are descendants ofhave already been expanded, if they
are in span], and we assume the same node ordering here.
Note that always expands the minimal active fringe node,
i.e., the earliest node in span for which the IB condition
does not hold with respect to . Let be the set of edges
defined as in Lemma 3 (is not necessarily a cut, since is
not necessarily an IB assignment). Clearly, . Now,
applying at the next unexpanded nodeselects a hypercube

at , and let . If this occurs, then clearly
for some .

The following assumes thatis indeed the next unexpanded
node in the ordering. (This is not always the case, since it is
possible that there are several nodesin the ordering coming
before , which are not “active,” i.e., the IB condition happens
to hold at with respect to before they are expanded, and
thus will never expand them. We will relax this assumption
presently.) In the cost-sharing algorithm we let the next state
(call it) be with all edges whose source is removed,
and all the arcs whose sink is , including , added.
Thus, we have that , and applying the operator
is equivalent to applying .

Suppose, however, that there are several nodesin the
ordering before that are in span but where the IB
condition holds with respect to . In this case, we apply at
each of the , and since the IB condition holds at, then
at least one IB hypercube is subsumed by . Selecting
these subsumed hypercubes for each assures us that
at the set of edges at end of the series of expansions still
obeys . After this series of expansions, we can
apply the expansion operator to as above, and thus this
series of expansions with the expansion ofcan simulate any
application of . (When is and IB assignment, it may be
necessary to apply several more times, until the only edges
are self-cost edges. This can clearly be done without changing
the assignment, as discussed above.) Thus, for any assignment

that is -reachable from the evidence, there exists a set of
edges that is reachable via, such that , and such
that all nodes in span have been expanded by [thus if

there is some self-cost edge , and since
contains only self-cost edges, it is a minimal cut]. Now,

since all consistent IB assignments maximal with respect to
subsumption (among all IB assignments that are subsumed by
the evidence) are-reachable from the evidence, the theorem
follows immediately.

The algorithm also diverges from [7] in that the cost of an
edge is the cost of its source node divided by the out
degree of in , rather than the out degree of in .
That is permissible because of all the nodes (where is
a child of in , and for any value and hypercube index)
only one appears in any AND DAG, and thus the cost is only
shared among at most out-degree() edges. This argument is
similar to the one presented in the conclusion of [7].

Theorem 3: The algorithm is correct. For example, it will
always return with being the next-probable IB assign-
ment subsumed by the evidence.

Proof: All possible solution states are reachable from the
initial state (Theorem 2), and the heuristic evaluation function

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

386 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

is admissible (Theorem 1 states that the function is exact for
complete AND DAG’s, and it is nonincreasing by a property
shown in [7]). Thus, since we have a best-first heuristic
search with all possible solutions reachable and an admissible
heuristic, the algorithm will return when it finds a lowest cost
consistent self-cost-only (minimal) cut of .
is an IB assignment subsumed by the evidence (Lemma 2),
and since probability is a strictly decreasing function of cost,
it is of maximum probability.

Note that it is possible for an edge with source to
exist in , where actually the IB condition holds at with
respect to . In this case, we still need to expand, but it
does not matter which next state is selected, they all result in
the same assignment (counting only consistent assignments).
In the actual implementation, to prevent the creation of too
many duplicate states, the first one of these that is consistent
is pushed into the agenda, and all the others are discarded.
While the selection of edges may affect the search in that
the cost estimation may be different, it cannot affect the final
result in this case.

4) Handling Overlaps with Cost-Sharing:Essentially, the
same schemes used for the current-cost search algorithms
can be used here. As it turns out, however, if we add an
assignment to some node that is lower numbered than all the
expanded nodes, there is a problem as the heuristic will no
longer be admissible. Theremay be a way to overcome this
problem, but the easy way out is never to reach this case in
the first place. By using the first method in Section III-B, i.e.,
selecting a node proceeding from the root down, the resulting
split assignments are IB and we can use the exact value as
a heuristic value, thus avoiding the problem. In fact, since
inclusion–exclusion turns out to be benevolent in practice (see
Section V), this issue is ignored in the implementation.

IV. IB A SSIGNMENT SEARCH AS INTEGER PROGRAMMING

In [35]–[37], a method of converting the complete MAP
problem to a linear inequality system was shown. In [41] a
similar method that converts the problem of finding the IB
MAP to a linear inequality system was shown. We begin by
reviewing the reduction, modify it to decrease the number of
equations, and discuss the further changes necessary to make
the system find the next-best IB assignments without overlaps.

A. Reduction of IB-MAP’s: Review

The linear system of inequalities has a variable for each
maximal IB hypercube. The inequality generation is reviewed
below. A belief network is denoted by , where

is the underlying graph and the distribution. We usually
omit reference to and assume that all discussion is with
respect to the same arbitrary distribution. For each nodeand
value in (the domain of), there is a set of maximal
IB hypercubes based on(where). We denote that set
by , and assume some indexing on the set. Memberof

is denoted , with .
A system of inequalities is a triple , where

is a set of variables, is a set of inequalities, and is an
assignment cost function.

Definition 1: From the belief network and the evidence
, we construct a system of inequalities as

follows.

1) is a set of variables , indexed by the set of all
evidentially supported maximal hypercubes (the set
of hypercubes such that if is based on , then is
evidentially supported). Thus, .
[The superscript states that node is assigned value

by the hypercube (which is based on), and the
subscript states that this is theth hypercube among
the hypercubes based onthat assign the value to .]

2) , and .
3) is the following collection of inequalities:

a) For each set of two inconsistent hypercubes
, such that

(2)

b) For each evidentially supported node

(3)

c) For each pair of nodes such that
parents , and for each value

(4)

d) For each

(5)

The intuition behind these inequalities is as follows: inequal-
ities of type a) enforce consistency of the solution. Typeb)
inequalities enforce selection of at most a single hypercube
based on each node. Typec) inequalities enforce the IB
constraint, i.e., at least one hypercube based onmust be
selected if is assigned. Typed) inequalities introduce the
evidence.

Following [37], we define an assignmentfor the variables
of as a function from to . Furthermore

1) if the range of is in then is a 0–1 assignment;
2) if satisfies all the inequalities of typesa)–d) then is

a solution for ;
3) if solution for is a 0–1 assignment, then it is a 0–1

solution for .

The objective function to optimize is

(6)

In [41] it was shown that an optimal 0–1 solution to the
system of inequalities induces an IB MAP on the original
belief network.

Note that the number of typea) inequalities is potentially
quadratic in the maximum number of hypercubes per node

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 387

and in the out-degree of the belief network, and linear in the
number of nodes. The number of typeb) inequalities is equal
to the number of supported nodes. The number of typec)
inequalities is linear in the number of arcs between supported
nodes and in the cardinality of the domain size of the nodes.
The number of typed) inequalities is equal to the number of
evidence nodes.

Clearly, the bottleneck is in the number of typea) inequal-
ities. That number can be greatly reduced by collecting a
larger number of mutually inconsistent hypercubes into the
same equation, and eliminating several equations. Note that if
node has children and , then any hypercube based on
assigning some value to is inconsistent with any hypercube
based on assigning some other value to. And since only
one hypercube based onmay be in the solution (because of
the typeb) inequalities), then all of the above hypercubes may
be piled into the same equation, thus standing for a quadratic
number of equations. All in all, the number of modified type
a) inequalities is now linear in the number of (parent, first-
child, second-child) triples and in the maximum cardinality of
the domain of the nodes. Additionally, all typed) inequalities
can be converted to equalities, and the typeb) inequalities for
the evidence nodes can be dropped. All variables standing for
hypercubes inconsistent with the evidence can also be erased.
To cater for a query node, it is necessary to add an equation
forcing an assignment to some hypercube variable based on.
This is like a typeb) inequality, except that we need to use
equality there. We call this a typee) equation. We end up with

, the set of inequalities as follows:

a) For each triple of nodes s.t. and
parents parents , and for each :

(7)

b) For each evidentially supported nodethat is not a query
node and is not in span

(8)

c) For each pair of nodes such that parents ,
and for each value

(9)

d) For each

(10)

e) For each query node

(11)

If the optimal solution of the system happens to be 0–1,
we have found the IB MAP. Otherwise, we need to branch:
select a variable which is assigned a non 0,1 value, and
create two sets of inequalities (subproblems), one with
and the other with . Each of these now needs to be
solved for an optimal 0–1 solution, as in [36]. This branch
and bound algorithm may have to solve an exponential number
of systems, but in practice that is not the case. Additionally,
the subproblems are always smaller in number of equations or
number of variables.

To create a subproblem, is clamped to some value in
. The equations can now be further simplified: a variable

clamped to 0 can be removed from the system. For a variable
clamped to 1, the following reductions take place: Find the
type {b) inequality, the type{d) equation (if any), and all
the type {a) inequalities, in which appears. In each such
inequality clamp all the other variables to 0 (removing them
from the system), and delete the inequality. After doing the
above, check to see if any inequality contains only one
variable, and if so clamp it accordingly. For example, if a
type {d) equation has only one variable, clamp it to 1. Repeat
these operations until no more reductions can be made.

Once the optimal 0–1 solution is found, we need to add
an equation prohibiting that solution, in order to prepare the
generator for resumption (in order to get the next-best IB
assignments later on), before returning the assignment induced
by . In [44], the following equation was used:

The above equation rules out any solution which induces an
assignment which assign span variables the same
values as in . However, in order for to be subsumed by

, it must be the case thatspan are assigned the same
values, the equation disallows any assignment subsumed by

, as well as itself.

B. Preventing Overlapped Solutions

After finding a solution to the optimization problem, we
always add an equation disallowing that solution (and ones
subsumed by that solution). It turns out that linear programs
are sufficiently powerful to inhibit overlapping solutions al-
together. The idea is to enforce the constraint that a new IB
assignment be inconsistent with all previously generated IB
assignments.

Theorem 4: Let be an IB assignment corresponding to a
solution to . Then adding the equation

(12)

to , disallows any solution where the induced assignment
overlaps with .

Proof: Given an IB assignment , it is evident, by in-
spection, that (12) enforces at least one hypercube to be chosen
that assigns some variable in differently than in . Thus,
for any new solution to the system, and induced assignment

must have at least one variable assigned differently from

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

388 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

Fig. 5. Ten node networks. States indicate number of complete assignments
per network.

(and thus be inconsistent with). Consequently, this equation
insures that no solution of the system will induce an IB
assignment that overlaps with.

V. EXPERIMENTAL RESULTS

Empirical validation of our results for actually computing
marginal probabilities was pursued in companion papers [38],
[44]. Here we focus on the issue of mass collection, search
efficiency, and the overlap problem.

As mentioned earlier, because they are partial assignments,
each IB assignment is expected to gather more mass per
assignment than the respective complete assignments. We
studied this mass accumulation for IB MAP’s by taking
assignments one at a time in order of probability. By plotting
the percentage of mass accumulated versus the number of
assignments used, we can get a fair idea of mass accumulation
rate. In particular, we extracted the top 50 IB assignments
per problem instance from 50 randomly generated networks,
each having ten nodes.6 Fig. 5 gives a brief summary of our
networks.

Looking at Fig. 6, plotting average mass versus number
of assignments for skewed networks conditional probabilities
generated uniformly form the range and ,
we can see that mass is accumulated fairly quickly and is
contained in a small set of assignments as we expected. After
five IB assignments, we have already obtained (on average)
roughly 85% of the total mass. Significantly greater mass is
collected in a small number of IB assignments than the results
of [16] predict for complete assignments. The latter are plotted,
for a set of ten independentbinary variables, where the prior
probability of the states are 0.95 and 0.05. IB assignments
collect more mass, despite the fact that for our IB multivalued
variables, the additional states tend to disperse the probability
mass.

We believe that this is due mainly to the moderate local
independence in the networks. An assignment containing
uninstantiated variables is equivalent to 2complete instan-
tiations (though not that much more mass, as many of the
participating assignments will have orders of magnitude less
mass). The difference in mass between complete assignments
and IB assignments is expected to grow with network size, as

6Unless specified otherwise, networks were generated as follows. The in-
degree was uniformly distributed between 0 and 3, by selecting first the
number of parents, and adding arcs to nodes already processed. Each node
has two to four states, selected randomly with uniform distribution. In order
to get some local independence, we selected for each child node-state a
parent on which it is always dependent, and then each hypercube was split
along an additional dimension (made dependent on an additional parent)
with probability 0.5, in which case the smaller hypercubes were again split
with probability 0.5, etc., (see [41] for details). The number of hypercubes
generated by this method is on the average more than for pure OR nodes, but
less than for a distribution with conditional probabilities generated uniformly
over the range[0; 1].

corroborated by experiments such as the above for networks of
sizes 5 and 15 (not shown). Furthermore, even if application
networks contain significantly less local independence, an IB
assignment will always contain at least as much mass as
the respective complete assignment. Additionally, finding the
high-probability IB assignments is no harder than finding high-
probability complete assignments, and is typically somewhat
easier. As noted above, overlap problems can be avoidedab
initio, if desired. Thus, at worst, we lose nothing by using IB
assignments in place of complete assignments.

We turn to the cost sharing and linear programming ap-
proaches. Timing results show that our constraints approach
can solve for the IB MAP in networks of up to 2000 nodes
(all our timing results are for a Sparc 2 or equivalent machine).
Fig. 7 compares the timing results of the linear programming
approach on 50 networks each consisting of 2000 nodes, with
the current cost and shared cost methods. In this experiment
evidence was generated for 1 to 3 (uniformly distributed)
evidence nodes selected at random, and evidence state selected
uniformly for each node. Average network size after removing
redundant nodes was about 50. For these problem instances,
cost sharing usually did much better than ILP, which in turn
did much better than current cost. However, we expect that
on larger diagram sizes, ILP will do better than cost sharing,
which we intend to confirm in the near future. For the most
part, we found the ILP solutions relatively quickly. We would
like to note though, that our package for solving integer
linear programs was crudely constructed by the authors with-
out the additional optimizations such as sparse systems, etc.
Furthermore, much of our computational process is naturally
parallelizable and should benefit immensely from techniques
such as parallel simplex [20] and parallel ILP [1], [3].

After running the generators to find the IB MAP, we
turned to actually approximating the probabilities. In [44] the
runtime of the cost-sharing scheme compared favorably with
stochastic simulation (as implemented in CaBeN [11]), and our
runtime was better than the stochastic simulation for 100 node
networks. More importantly, cost-sharing bounds were at least
as good as CaBeN’s (numerically). Additionally, our search-
based schemes aredeterministic approximation algorithms,
and thus our error bounds arecertainbounds, unlike stochastic
simulation, where these are only error estimates. For further
details about the comparison, see [44].

We now focus on the overlap problem. We stated earlier that
just using inclusion–exclusion turned out to work reasonably,
which point we justify empirically. First, note that the approx-
imation algorithm is anytime, and we would like to preserve
that property in evaluating inclusion–exclusion. A recursive
variant of the inclusion–exclusion formula is used, as follows.
The formula looks at two events, one consisting of the new
event (IB assignment), , the second consisting of the
union of all previous events

(13)

In this equation, the first term is immediately available,
while the second has already been computed, when the pre-

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 389

Fig. 6. Mass accumulation for ten node networks.

vious IB assignment () was considered. The last term is
equivalent to the probability of the union of events

(14)

which is computed by a recursive call to the inclu-
sion–exclusion evaluator. Recursive computation levels are
somewhat different, in that both compound terms in (13)
need to be evaluated. Recursive evaluations of (13) therefore
requires two recursive calls, which give rise to a runtime
exponential in the recursion depth (the latter being equal to
the overlap set size in the worst case). To decrease the number
of calls to inclusion–exclusion, a test is first made whether

is subsumed by any of the previous events (in which
case it is discarded). Events not overlapping are ignored
in the recursive call, and events with probability very near
zero (10 in the experiment) are discarded.

We experimented on 20 randomly generated networks of
each size: 50 and 100 nodes. Noting that our previously used
network generation method did not provide a sufficient amount
of assignment overlap, we did an extra pass on each node
with two or more parents, and (with probability 0.5) converted
it into a noisy OR.7 Additionally, conditional probabilities

7Since representing noisy OR with IB hypercubes is not efficient, we
actually represented a noisy OR by a pure OR and additional intermediate
nodes, for which the IB hypercube representation is efficient. This is a
notational variant, with no effect on the network distribution.

were skewed, and picked uniformly from the ranges [0,
0.1] and [0.9, 1]. Average network sizes after removing
redundant nodes was 21 and 24, respectively, (including
intermediate nodes).

For each network, we produced 100 IB assignments by using
cost-sharing heuristic search. (This is much more than usually
required for approximation. For example, in the comparison
to CaBeN, we used 15 IB assignments.) Runtime was not
significantly different from networks generated without the
noisy OR’s in previous experiments. Overlap set sizes were
anywhere from one to 41 assignments (that is,from 0
to 40). We expected the runtime for inclusion–exclusion to
be prohibitive in many cases. For example, if in the above
large overlap set, every subset had an overlap, the recursion
depth would reach 40, and the evaluator would not finish its
computation in many years. Expecting the worst, we have
limited recursion depth artificially to 5 (in which case, the
overlapped mass is computed erroneously, but a bound on
the additional error can be easily found). In about half the
problem instances, overlap sets were small (under 5). In most
remaining cases, even with overlap sets as large as 41, the
recursion depth of 5 was not reached, and the incremental
inclusion–exclusion evaluator ran in time significantly less
than the runtime of the IB assignment search component.
In three problem instances out of 40, recursion depth 5 was

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

390 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

Fig. 7. 2000 node networks.

reached multiple times. This occurred even for relatively small
overlap sets (starting at size 6).

Two conclusions follow from the latter experiment. 1) In
many cases, it isnotworthwhile to use any elaborate scheme to
handle overlap (such as splitting assignments, or even avoiding
overlaps in the ILP generator). 2) Overlap set size is not a
good indicator of inclusion–exclusion runtime in this special
case. Granted, it provides an upper bound on complexity,
but a very poor one in practice. A better idea is to run
the recursive inclusion–exclusion evaluator, and to resort to
other methods (assignment splitting, reinitializing hypercubes
to avoid overlaps altogether, etc.) only if the recursion depth
exceeds a certain value,and the probability of the overlap at
the maximum depth is significant compared to the rest of the
probabilities and the current error bound.

VI. DISCUSSION

We begin by discussing related work, and then suggest that
converting complete assignments to IB assignments may make
this scheme applicable to algorithms appearing in related work.

A. Related Work

The work on term computation [13] and related papers are
extremely relevant to this paper. The skewness assumption
made there, or a weaker version of it, also make our method

applicable. In a sense, these methods complement each other,
and it should be interesting to see whether IB assignments (or
at least maximal IB hypercubes) can be incorporated into a
term computation scheme.

This paper enumerates high probability IB assignments
using a backward search from the evidence. Reference [32]
also enumerates high probability assignments, but using a top
down (forward) search. Backward constraints are introduced
through conflicts. It is clear that the method is efficient
for the example domain (circuit fault analysis), but it is
less than certain whether other domains would obey the
extreme probability assumption that makes this work. If that
assumption does not hold, it may turn out that backward search
is still better. On the other hand, it may still be possible
to take advantage of IB hypercubes even in the forward
search approach, as shown later on in this section. Note that
among the algorithms presented here, the current probability
heuristic ignores forward constraints, while the shared-cost
heuristic does employ some form of forward reasoning by
incorporating the costs from the top-down initialization. The
ILP method uses global constraints that also include the
top-down constraints, but what role the top-down constraints
play in the search is unclear.

In [44], the deterministic algorithms were compared to
stochastic simulation. Another class of randomized algorithms

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 391

computes the MAP (belief revision) rather than marginal
probabilities (belief updating). For example, in [18] simulated
annealing is used. It is not clear, however, how one might use
it to enumerate a number of high-probability assignments.

A genetic algorithm for finding the MAP is presented in
[34], with an experiment showing that the total probability
mass of the population rises during the search and converges
on some value. The authors do not say whether assignments in
the population include duplicates, however, and make no men-
tion of the possibility of approximating marginal probabilities
with that population. It seems likely that if the algorithm can be
modified to handle IB assignments, then the fact that a whole
populationis used, rather than a single candidate, may provide
a ready source of near-optimal IB assignments. Of course, we
are not guaranteed to get IB assignments in decreasing order
of probability, so slightly different methods would have to be
used to approximate the marginal probabilities. In addition,
this method will change the algorithm from a deterministic
approximation algorithm into a randomized approximation
algorithm, with all that entails.

Finally, it should be possible to modify the algorithms
presented in this paper to work on GIB assignments and-IB
assignments, where an even greater probability mass is packed
into an assignment [41], [43]. Some theoretical issues will have
to be dealt with before we can do that, however.

B. Converting Complete Assignments to IB Assignments

Given a complete assignment (i.e., one that assigns values to
all the variables), can we generate a compatible IB assignment
from it? The answer to that is vacuously “yes,” since a
complete assignment is also IB. The interesting question is
whether we can drop as many variables from the assignment
as possible, such that the resulting assignment is still IB. That
is, can we efficiently compute a compatible IB assignment
that is maximal with respect to subsumption. A variant of
this is to find a compatible IB assignment that has maxi-
mum probability (for strictly positively distributed networks,
such an assignment is always also maximal with respect to
subsumption).

It is clear that the maximal IB assignment compatible
with a complete assignment is not unique, and that several
of these maximal IB assignments may be much better than
others (i.e., have higher probability). It thus appears better
to find the highest probability IB assignment compatible
with a complete assignment. Nevertheless,any maximal IB
assignment with several variables unassigned is potentially
better than a complete assignment. It is easy to find a maximal
with respect to subsumption IB assignment, and we outline
below one polynomial-time algorithm. Whether a maximum
probability IB assignment compatible with a complete assign-
ment can be found in polynomial time is an open question.
The problemseemseasier than finding the IB MAPwithout
forcing compatibility with a certain complete assignment, but
our current intuitions are that it is still NP-hard.

If we assume a constant in-degree, then the following
algorithm modifies complete assignment to a maximal
with respect to subsumption IB assignment that subsumes the

evidence and is consistent with the originalin polynomial
time.

1) Make all nonevidentially supported nodes unassigned in
.

2) Repeatedly, try to make nodes unassigned in, until
no further modifications are possible, according to the
following rule:

• If is not an evidence node, and for each child of
of , either of the following conditions hold, then

make unassigned in :

a) is not assigned in .
b) There exists a maximal hypercube based on

, such that , and span .

The resulting assignment is consistent with the given
assignment, by construction. is also maximal with respect
to subsumption (while still assigning a value to each evidence
node), since if the assignment to any nodecan be removed,
then the IB condition must hold at each of its assigned
children after it is removed. Thus there must be a maximal
IB hypercube that does not assign a value to, and is a
subset of , for every child of in span(). That is exactly
the condition checked in the loop. As to the runtime of the
algorithm, since in every pass (except for the last pass) at
least one node is removed from the assignment, then at most

passes are made. Each pass looks at every node at most a
constant number of times, and thus the algorithm terminates
in time . [Selecting hypercubes, checking consistency,
membership, etc., are , given reasonable indexing and
the constant in-degree assumption.] In fact, it is possible to
decrease the runtime significantly [29], but this issue is beyond
the scope of this paper.

Finding maximal IB assignments consistent with a complete
assignment is potentially useful in at least two types of al-
gorithms for approximating marginal probabilities. In Poole’s
top-down algorithm, (nearly) complete assignments are scored
(deterministically) to approximate marginal probabilities. If
each complete assignment is converted to a maximal IB assign-
ment before scoring, each assignment scored will contain more
mass, and thus the approximation method will converge faster.
Another application for converting complete assignment to
IB assignments is in using genetic algorithms to approximate
marginals. For example, use the same search algorithm as in
GALGO [34], but convert complete assignments to maximal
IB assignments, and score them deterministically. The “fit-
ness” value of each complete assignment is the probability of
the maximal IB assignment generated from it. We intend to
pursue these issues in forthcoming papers.

VII. SUMMARY

Computing marginal (prior or posterior) probabilities in
belief networks is hard. Approximation schemes are thus of in-
terest. Several deterministic approximation schemes enumerate
terms, or assignments to sets of variables, of high probability,
such that a relatively small number of them contain most
of the probability mass. This allows for an anytime approx-
imation algorithm, whereby the approximation improves as

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

392 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

a larger number of terms is collected. IB assignments are
partial assignments that take advantage of local independencies
not represented by the topology of the network, to reduce
the number of assigned variables, and hence the probability
mass in each assignment. Empirical results show that this
mass accumulation is indeed much faster than predicted for
complete assignments. In any case, there is nothing to lose by
using IB assignments: finding a most probable IB assignment
is typically easier than finding the most-probable complete
assignment, and an IB assignment will always have at least as
much mass as the corresponding complete assignment.

What remains to be done is to come up with these IB
assignments in a decreasing order of probability. This is
also a hard problem in general, unfortunately. The factors
contributing to complexity, however, are not maximum clique
size or loop cutset, but rather the number of hypercubes.
Under probability skewness assumptions, the search for high
probability IB assignments is typically more efficient, and
the resulting approximation (collecting a small number of
assignments) is better.

Three algorithms for approximating marginal algorithms are
presented: a modification of a node-based best-first search
algorithm for finding the IB MAP, an edge-based best-first
search algorithm with a cost-sharing heuristic, and an algo-
rithm based on linear systems of inequalities. Experimental
results show that using the cost-sharing heuristic improves
performance of the best-first search algorithm by more than
one order of magnitude. The problem of assignment overlaps,
which is another source of possible exponential runtime, turns
our to be benevolent in practice, when using the recursive
version of inclusion–exclusion with the cost-sharing generator.
In the ILP version of the algorithm, overlaps can be easily
avoided altogether.

REFERENCES

[1] P. D. Bailor and W. D. Seward, “A distributed computer algorithm
for solving integer linear programming problems,” inProc. 4th Conf.
Hypercubes, Concurrent Computers Applications, 1989, pp. 1083–1088.

[2] T. O. Binford, T. S. Levitt, and W. B. Mann, “Bayesian inference in
model-based machine vision,” inProc. AAAI, Uncertainty AI Workshop,
July 1987.

[3] R. L. Boehning, R. M. Butler, and B. E. Gillett, “A parallel integer linear
programming algorithm,”Eur. J. Oper. Res., vol. 34, pp. 393–398, 1988.

[4] R. R. Bouckaert, “A stratified simulation scheme for inference in
Bayesian belief networks,” inUncertainty Artificial Intelligence, Proc.
10th Conf., July 1994, pp. 110–117.

[5] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, “Context-
specific independence in Bayesian networks,” inUncertainty Artificial
Intelligence, Proc. 12th Conf., Aug. 1996, pp. 115–123.

[6] E. Charniak and R. P. Goldman, “A Bayesian model of plan recogni-
tion,” Artif. Intell. J., 1994.

[7] E. Charniak and S. Husain, “A new admissible heuristic for minimal-cost
proofs,” in Proc. AAAI Conf., 1991, pp. 446–451.

[8] E. Charniak and S. E. Shimony, “Cost-based abduction and MAP
explanation,”Artif. Intell. J., vol. 66, no. 2, pp. 345–374, 1994.

[9] G. F. Cooper, “The computational complexity of probabilistic inference
using Bayesian belief networks,”Artif. Intell. J, vol. 42, nos. 2/3, pp.
393–405, 1990.

[10] , “NESTOR: A computer-based medical diagnosis aid that inte-
grates causal and probabilistic knowledge,” Ph.D. dissertation, Stanford
Univ., Stanford, CA, 1984.

[11] S. B. Cousins, W. Chen, and M. E. Frisse, “CABeN: A collection
of algorithms for belief networks,” Tech. Rep. WUCS-91-25, Dept.
Comput. Sci., Washington Univ., St. Louis, MO, 1991.

[12] P. Dagum and M. Luby, “Approximating probabilistic inference in
Bayesian belief networks is NP-hard,”Artif. Intell., vol. 60, no. 1, pp.
141–153, 1993.

[13] B. D’Ambrosio, “Incremental probabilistic inference,” inUncertainty
Artificial Intelligence, Proc. 9th Conf., July 1993.

[14] T. Dean and K. Kanazawa, “A model for reasoning about persistence
and causation,”Comput. Intell., vol. 5, no. 3, pp. 142–150, 1991.

[15] F. J. Diez, “Local conditioning in Bayesian networks,” Tech. Rep.
R-181, Cognitive Syst. Lab., Dept. Comput. Sci., Univ. Calif., Los
Angeles, July 1992.

[16] M. Druzdzel, “Some properties of joint probability distributions,” in
Uncertainty Artif. Intell., Proc. 10th Conf., July 1994, pp. 187–194.

[17] R. Fung and B. Del Favero, “Backward simulation in Bayesian net-
works,” in Uncertainty Artificial Intelligence, Proc. 10th Conf., July
1994, pp. 227–234.

[18] S. Geeman and D. Geeman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 6, pp. 721–741, 1984.

[19] D. Geiger and D. Heckerman, “Advances in probabilistic reasoning,” in
Proc. 7th Conf. Uncertainty Artificial Intelligence, 1991.

[20] B. E. Gillett, Introduction to Operations Research: A Computer-Oriented
Algorithmic Approach. New York: McGraw Hill, 1976.

[21] M. Henrion, “Propagating uncertainty in Bayesian networks by prob-
abilistic logic sampling,” inProc. Uncertainty Artificial Intelligence,
1988, pp. 149–163.

[22] E. J. Horvitz, H. J. Suermondt, and G. F. Cooper, “Bounded condi-
tioning: Flexible inference for decisions under scarce resources,” in5th
Workshop Uncertainty Artificial Intelligence, Aug. 1989.

[23] F. V. Jensen, K. G. Olsen, and S. K. Andersen, “An algebra of Bayesian
belief universes for knowledge-based systems,”Networks, vol. 20, pp.
637–660, 1990.

[24] J. H. Kim and J. Pearl, “A computation model for causal and diagnostic
reasoning in inference systems,” inProc. 6th Int. Joint Conf. Artificial
Intelligence, 1983.

[25] U. Kjaerulff, “Reduction of computational complexity in Bayesian net-
works through removal of weak dependencies,” inUncertainty Artificial
Intelligence, Proc. 10th Conf., July 1994, pp. 374–382.

[26] S. L. Lauritzen and D. J. Speigelhalter, “Local computations with
probabilities on graphical structures and their applications to expert
systems,”J. R. Stat. Soc., vol. 50, pp. 157–224, 1988.

[27] Z. Li and B. D’Ambrosio, “An efficient approach to probabilistic
inference in belief nets,” inProc. Annu. Can. AI Conf., May 1992.

[28] N. Linial and N. Nisan, “Approximate inclusion–exclusion,”Combina-
torica, vol. 10, pp. 349–365, 1990.

[29] A. A. Melkman and S. E. Shimony, “Algorithms for parsimonious
complete sets in directed graphs,”Inf. Process. Lett., vol. 59, pp.
335–339, 1996.

[30] R. E. Neapolitan,Probabilistic Reasoning in Expert Systems.New
York: Wiley, 1990, ch. 8.

[31] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[32] D. Poole, “The use of conflicts in searching Bayesian networks,” in
Uncertainty Artificial Intelligence, Proc. 9th Conf., July 1993.

[33] H. Pople, “The formation of composite hypotheses in diagnostic problem
solving: An exercise in synthetic reasoning,” inProc. IJCAI 5, 1977,
pp. 1030–1037.

[34] C. Rojas-Guzman and M. A. Kramer, “GALGO: A genetic algorithm
decision support tool for complex uncertain systems modeled with
Bayesian belief networks,” inUncertainty Artificial Intelligence, Proc.
9th Conf., 1993.

[35] E. Santos, Jr., “Cost-based abduction, linear constraint satisfaction, and
alternative explanations,” inProc. AAAI Workshop on Abduction, 1991.

[36] , “On the generation of alternative explanations with implications
for belief revision,” inProc. 7th Conf. Uncertainty Artificial Intelligence,
1991, pp. 339–347.

[37] , “A linear constraint satisfaction approach to cost-based abduc-
tion,” Artif. Intell. J., vol. 65, no. 1, pp. 1–27, 1994.

[38] E. Santos, Jr., S. E. Shimony, and E. Williams, “Sample-and-accumulate
algorithms for belief updating in Bayes networks,” inUncertainty
Artificial Intelligence, Proc. 12th Conf., Aug. 1996, pp. 477–484.

[39] R. D. Shachter, “Evaluating influence diagrams,”Oper. Res., vol. 34,
no. 6, pp. 871–882, 1986.

[40] S. E. Shimony, “A probabilistic framework for explanation,” Tech. Rep.
CS-91-57, Brown Univ., Providence, RI, 1991.

[41] , “The role of relevance in explanation I: Irrelevance as statistical
independence,”Int. J. Approx. Reas., vol. 8, pp. 281–324, June 1993.

[42] , “Finding MAP’s for belief networks is NP-hard,”Artif. Intell.
J., vol. 68, pp. 399–410, Aug. 1994.

[43] , “The role of relevance in explanation II: Disjunctive assignments

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

SANTOS AND SHIMONY: MARGINAL PROBABILITIES IN BAYES NETS 393

and approximate independence,”Int. J. Approx. Reas., vol. 13, no. 1,
pp. 27–60, July 1995.

[44] S. E. Shimony and E. Santos, Jr., “Exploiting case-based independence
for approximating marginal probabilities,”Int. J. Approx. Reas., vol. 14,
no. 1, pp. 25–54, Jan. 1996.

[45] M. P. Wellman and C.-L. Liu, “State-space abstraction for anytime eval-
uation of probabilistic networks,” inUncertainty Artificial Intelligence,
Proc. 10th Conf., July 1994, pp. 567–574.

Eugene Santos, Jr.(M’93) received the B.S. degree
in mathematics and computer science and the M.S.
degree in mathematics, both from Youngstown State
University, Youngstown, OH. He received the Sc.M.
and Ph.D. degrees in computer science from Brown
University, Providence, RI.

He is currently an Associate Professor of Com-
puter Science and Engineering in the Computer
Science and Engineering Department, University of
Connecticut, Storrs. He is also an Adjunct Profes-
sor in the Department of Electrical and Computer

Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH,
where he also served as an Assistant Professor. His research interests include
artificial intelligence, neural networks, automated reasoning, natural language
processing, probabilistic reasoning and knowledge acquisition, and verification
and validation.

Solomon Eyal Shimonyreceived the B.S.E.E. de-
gree from the Technion, Israel Institute of Tech-
nology, Haifa, Israel, in 1982, the M.Sc. degree
in mathematics and computer science (computer
graphics) from Ben-Gurion University, Beer-Sheva,
Israel, in 1996, and the Sc.M. and Ph.D. degrees
in computer science (artificial intelligence) from
Brown University, Providence, RI, in 1989 and
1992, respectively.

He is currently a Senior Lecturer in the Com-
puter Science Division, Mathematics and Computer

Science Department, Ben-Gurion University. His areas of research include ar-
tificial intelligence, probabilistic reasoning, knowledge discovery in databases,
computer vision, robotics, and constraint satisfaction problems.

Authorized licensed use limited to: Dartmouth College. Downloaded on April 30, 2009 at 17:09 from IEEE Xplore. Restrictions apply.

