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Deterministic Approximation of
Marginal Probabillities in Bayes Nets

Eugene Santos, Jiember, IEEE and Solomon Eyal Shimony

Abstract—Computation of marginal probabilities in Bayes nets
is central to numerous reasoning and automatic decision mak-
ing systems. This paper presents a deterministic approximation
scheme for this hard problem that supplies provably correct
bounds by aggregating probability mass in independence-based
(IB) assignments. The scheme presented refines recent work
in belief updating for Bayes networks: attempts to approxi-
mate posterior probabilities by finding a small number of the
highest probability complete (or perhaps evidentially supported)
assignments. Under certain assumptions, the probability mass in
the union of these assignments is sufficient to obtain a good
approximation. Such methods are especially useful for highly
connected networks, where the maximum clique size or the
cutset size make many existing algorithms intractable. Since 1B
assignments contain fewer assigned variables, the probability
mass in each assignment is greater than in the respective complete
assignment. Thus, fewer IB assignments are sufficient, and a
good approximation can be obtained more efficiently. Two classes
of algorithms for finding the high probability IB assignments
are suggested: best-first heuristic search and a special-purpose
integer linear program (ILP). Since IB assignments may be
overlapping events in probability space, accumulating the mass
in a set of assignments may be hard. In the ILP variant, it is easy
to avoid the problem by adding equations that prohibit overlap.

In the best-first search algorithm, other schemes are necessary,
but experimental results suggest that using inclusion—exclusion
(potentially exponential-time in the worst case) in the overlap diagrams [31], [39] which compactly represent large decision

cases is not too expensive for most problem instances. trees, and Bayesian (belief) networks, which are a necessary

Index Terms—Anytime algorithms, approximate belief updat- element in influence diagrams. In this paper, we focus on the
ing, approximating marginal probabilities, Bayesian belief net- Bayes network component of influence diagrdms.
works, decision making systems, probabilistic reasoning. Bayes networks are directed acyclic graphs that describe

(probabilistic) cause and effect relationships in the world [30],
|. INTRODUCTION [31]. Each effect is a node (also called a variable), and a
ROBABILISTIC reasoning is a paradigm used in numerq'St.“bUt.'on of the state of the nod_e given all poss_lble states
. . . . of its direct predecessor nodes (its parents, which are the
ous reasoning and automatic decision making systems. to : . . :
. . immediate causes) is provided. See Fig. 1 for an example of
handle uncertain world knowledge, uncertainty of cause aE

effect, and other sources of uncertainty [31]. Since probabili

theory requires the assignment of a probability measure These local distributions, together with the independence

a prohibitively large space, various structuring methods are . . . :
. o ﬁ]ssumptlons inherent to Bayes nets, uniquely determine the
used to take advantage of the many independencies in e

world, in hopes of curtailing the combinatorial explosioﬁomt distribution over the entire sample space
in required information. Of particular interest are influence PV)= H P(v| parent$v)).

P(E=tremor) = 0.01
P(E=severe) = 0.001

P(Ti | E=severe or E=tremor) = (.9
P(TilE=none) = 0.3

P(CITi) = 0.7
P(CI~Ti) = 0.1

P(BlE=severe,C) =1

P(BIE=severe,~C) = P(BIE=tremor,C) = (.9
P(BIE=tremor,~C) = P(BIE=none,C) = 0.8
P(BIE=none,~C) = 0.1

Vase
Broken(B)

Fig. 1. Common sense reasoning example.

ayes net for common sense reasoning, and Fig. 2 for a Bayes

riét (topology only) for medical diagnosis.
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algorithms attempts to increase sampling efficiency [4], and
to handle the case where the probability of the evidence is
very low [17], which is a serious problem for most sampling
algorithms. In what follows, we focus on the second category,
deterministicapproximation algorithms. lhoundedcondition-

ing [22], one uses the conditioning method, but conditions
only on a small, high probability, subset of the (exponential
size) set of possible assignments to the cutset variables. Other

approximation algorithms attempt to simplify the network by

removing arcs between nodes that almostindependent, to

Fig. 2. Topology of simplified Bayes net for medical diagnosis. produce a network that is hopefully tractable topologically.
An exact algorithm is then run on the “approximate” network,
to produce an approximate answer [25]. Another source of

[14], fault detection in electronic circuits [32], and medicatomplexity is the large number of states per node in various ap-

diagnosis [33]. The above is by no means an exhaustive ligications. To alleviate that problem, an approximation based

of applications; see [31] for pointers. on merging states was suggested [45]. The scheme begins by
The most commonly used operation on Bayes networksigking all variables unary valued, and successively refining

the computation of marginal probabilities, usually after olihe states of variables, while performing probability updating

serving the state of some variables (introductioreaifienc  on the approximate network and thus getting a successively

For example, we might want to know the probability that thgetter approximation in each step.

vase is broken given that a tremor has occurred, in the modejnother category of deterministic approximation algorithms

of Fig. 1 (a prediction problem). In the model of Fig. 2, wes pased on deterministic enumeration of terms or assignments

might be interested in the probability of lung cancer givegy variables in the network. The idea is to enumerate a set of
that severe cough and sneezing were observed (a diagnogfifh-probability complete assignments to all the variables in
problem). (This operation is also called probability updatinghe network (but frequently partial assignments suffice, as will
or belief updating, in the literature.) It is thus unfortunatge demonstrated). The probability of each such assignment can
that, although a polynomial-time algorithm for computing thge computed quickly: in G), or sometimes even (incremen-

probabilities exists for polytrees [24], the problem was provegly) in O(1). The probability of a particular instantiation to a

to be NP-hard in the general case in [9]. Several categories\@fiablev (sayv = v1) is approximated by simply dividing the

exact algorithms exist for computing posterior probabilitiegrobability mass of all assignments which contaig= v; by

conditioning [10], clustering and junction trees [23], [26], termthe total mass of enumerated assignments. If the enumerated
evaluation [27], and arc reversal [39]. Several variants of theggsignments have a sufficiently large probability mass, we get
algorithms attempt various refinements of these schemes, esdgood approximation.

[15]. All of these algorithms are exponential-time in the worst |ncremental operations for probabilistic reasoning, among

case, where the runtime is a function of the topology and tfigem a suggestion for approximating marginal probabilities

number of states each variable can assume. (In this papgr.enumerating high-probability terms, are presented in [13].

we refer only to networks where each variable has a finigf particular interest is the skewness result: if a network

number of states.) has a distribution such that every row in the distribution
In the hope of avoiding an exponential runtime, a hosirays has one entry greater than— 1)/n, then collecting

of approximation algorithms have emerged. As it turns ouwnly » + 1 assignments, we also have at leagt of the

theoretically, evenapproximating marginal probabilities in probability mass. Taking the topology of the network into

belief networks is NP-hard, and thus théseno polynomial- account, and using term computations, this can presumably be
time (deterministic) approximation algorithm unleBs= NP achieved efficiently. However, the skewness assumption as is

[12]. Most approximation algorithms are less affected by neteems somewhat restrictive. The assumption may hold in some

work topology, and are dependent on the actual probabilitidgemains, such as circuit fault diagnosis, but not in medical

as to their runtimes and quality of approximation. If theliagnosis, or in the randomly generated networks on which
topology of a given network is such that exact algorithms awe tested our algorithms. Nevertheless, [16] presented initial
expected to take a long runtime, it may be advisable to rtimeoretical and empirical results that even weak skewness leads

an approximation algorithm and hope that the probabilities a favorable overall result (i.e., large probability mass in a

are such that we can get a good approximation in reasonatdtively small number of assignments) on the average. This

time for the problem instance at hand. In addition, mogiaper extends the above empirical results to sets of partial
approximation algorithms have amytime behavior, which assignments.

facilitates trading off time for precision in a graded manner. In [32], partial assignments to nodes in the network are

Two major categories of marginal probability approximatiosreated from the root nodes down. The probability of each
algorithms exist: randomized approximation algorithms arglich assignment is easily computable. Much saving of com-
deterministic approximation algorithms. In [21], approximaputational effort is achieved by not bothering about irrelevant
tion is achieved by stochastically sampling instantiations of tides, i.e., nodes not above some node that is in the query set,
network variables. Later work in randomized approximatioor nodes that ard-separated from the evidence nodes. Later
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in that paper, an assumption extreme probabilitiess made. is usually less than 1. The nodes “Allergy,” “Bronchitis,” and
This is similar to the skewness assumption above. In fact, i8moking” are supported by the “Sneezing” node, and no other
the circuit fault diagnosis experiment in [32], the numbensodes are supported by “sneezing.” Assignméris properly
actually used are well within the bounds of the skewnessipported by “Sneezing,” as the path (“Allergy,” “Sneezing”)
assumption. The algorithm makes use of a conflict schensecompletely within the span af.
in order to narrow the search. In [41], IB assignments were the candidates for relevant
As suggested in [19] and [41], belief networks frequentlgxplanation. We suggest that computing marginal probabilities
have independence structure that is not represented by gWwbether prior or posterior), can be done by enumerating high-
topology? Sometimes independence holds givepaaticular probability IB assignments, rather than complete assignments.
assignmento a set of variable$’, rather than to all possible Since IB assignments usually have fewer variables assigned
assignments td’. In such cases, the topology is no help ithan complete assignments (as evident from the above exam-
determining independence (e.d-separation might not hold), ple), each IB assignment is expected to hold more probability
the actual distributions might have to be examined. In [41fpass than a respective complete (or even a query and evidence
the idea of independence-based (IB) assignments (see belsupported) assignment. The probability of an IB assignment is

was introduced. also easy to compute [41]

Formally, an assignment is a set of (node, value) pairs,
which can also be written as a setiofde = value instantia- P(A) = H P(Ap] Aparents('v)) (1)
tions. An assignment is consistent if each node is assigned at vespan(A)

most one value. Two assignments are compatible if their union

is consistent. Each assignment denotes a (sample space) ev@igre A is the assignmentl restricted to the set of nodés
and we thus use the assignment and the event it denotestaé terms in the product can each be efficiently retrieved from
synonymous terms whenever this does not lead to ambiguifiye conditional distribution array (or other representation) of
An assignment4 subsumes assignmeliff A C B. Among the node conditional distribution.
all assignments, we are usually interested only in relevantone might argue that searching for high-probability as-
nodes—those supported by evidence or query nodes. Anod§ignments for approximating marginal distributions is a bad
is supported by a set of nod&sif v € V or if v is an ancestor jdea, since coming up with the highest-probability assignment
of some node int”. An assignment iproperly supported by s NP-hard [42]. Thus, we are using the solution to an
a set of nodesd if all the nodes in the assignment have &jp-hard problem to find an approximate solution to an NP-
directed path ofissigned nodeto a node inV'. hard problem, where we might expect that a polynomial
The IB condition holds at a nodev with respect to an time algorithm can be sufficient to compute approximations.
assignmen# if the value assigned toby A is independent of However, as noted above, [12] showed that this problem is
all possible assignments to the ancestors @iven Ay, cnis(v),  also NP-hard. Therefore, using this kind of approximation
the assignment made hyl to the immediate predecessorsigorithm is a reasonable proposition, provided that some
(parents) ofv. An assignment is IB if the IB condition holds subclasses of the problem that are bad for existing algorithms
at everyv € sparf.A), where spafid) is the set of nodes can be shown to behave well, either theoretically or by
assigned byA. A hypercube} is an assignment to a node empirical results that show good behavior on the average.
and some of its parents. In this case, we say #ias based Since runtimes of our algorithms depend in a complicated
onv. H is an IB hypercube if the IB condition holds at manner on the conditional probabilities, it is very hard to get
with respect td*. The conditional probabilityassociated with any theoretical bounds on the runtime for interesting classes
a hypercube#{ is called the hypercube probability [denotef networks. In this paper, we take the experimental route to
P'(R)]. Itis not necessarily the same as the prior probabilitystify our performance claims.
of the assignment, denoteld(H). The rest of the paper is organized as follows. Section II
Consider, for example, the network of Fig. 2, and suppogiscusses the details of how to approximate posterior probabil-
(for simplicity) that sneezing occurs with probability 1 whenities from a set of high-probability IB assignments. Section III
ever allergy occurs, independent of “Bronchitis.” Then thgaviews the IB MAP search algorithm of [41], and discusses
assignment4d = {Allergy = present, Sneezing = presgrit g faster heuristic best-first algorithm for finding the high-
an IB assignment, because the IB condition holds at every ngsi@bability IB assignments, based on the cost-sharing heuristic
in the span ofA: at the “Sneezing” node because given allergyresented in [7]. Section IV reviews the reduction of IB MAP
the probability of sneezing is 1, independent of any othebmputation to linear systems of equations [41], incorporating
ancestor (in this case “Bronchitis” and “Smoking”), and at thgnprovements that reduce the number of equations. Search-
“Allergy” node—vacuously (since “Allergy” has no parents)ing for next-best assignments using linear programming is
AssignmentA, being an assignment to the “Sneezing” nodgiscussed, as is a method for avoiding overlaps of IB assign-
and some of its parents, also happens to be an IB hyperciyfgnts. Section V presents results of experiments on random
based on the “Sneezing” node, and its hypercube probabilistworks: mass distribution, timing of search for the 1B MAP,
P'(A), is 1. However, the prior probabilit’(4), in this case and handling overlapped IB assignments (for the cost-sharing
is equal to the prior probability that allergy is present, whichigorithm). We conclude with a discussion of related work,

2This type of independence structure has recently been renamed “cont@&]—d on applylng IB_ assignments to approximation algor'thms
specific independence” (CSI) [5]. presented in the literature.
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[I. APPROXIMATING MARGINAL PROBABILITIES IB assignment. We thus postpone this issue until the following
sections, where the details of the IB assignment generators

The probability of a certain node instantiatian,= vy, is !
e discussed, and assume for the moment that there are no

approximated by the probability mass in the IB assignme
containingv = v divided by the total mass. If we need®Verlaps. _

to find the probability ofv, we call v a query node. Nodes Given a set of query and evidence nodes, all nodes not
where evidence is introduced are calleddencenodes. We SUPPorted by either the query or evidence nodes (redundant
also assume that the evidence is conjunctive in nature, i.e.fd€S) need never appear in an IB assignment in our search.

is an assignment of values to the evidence nodes. We need‘tgode (properly) supported by the evidence nodes is called
assume that each enumerated IB assignmenbntainssome (respectively, properly) evidentially supported, and a node

assignment to query node Otherwise, it might be impossible SUPPOrted by a query node is called query supported. Before
to tell which part of the mass ofl supportss = v;. Let us we start searching for IB assignments, drop all irrelevant
assume for now that this is indeed the caise,, we have a set nodes, i.e., evidence nodes that @érgeparated from the query

I containing IB assignments, and.if € I thenw € sparf.A). nodes by other evidence nodes, as well as all the nodes that

Thus, to approximate the probability of= v, use are n_q eithe_r query supported or supported by one of the
remaining evidence nodes.
Pa(v = v1) = PHAA€e In{v=u}€ A} The basic approximation algorithm is described below. The
P{AlA eI} existence of ageneratoris assumed. Each time the generator

where the probability of a set of assignments is the probability called. it returns the next-best (next highest probability) 1B

of the event that is the union of all the events standing f&ssignment consistent with a set of initial assignments. Some

all the assignments (not the probability of the union of th\éariants of the algorithm use more than one generator instance.

assignments). If we are computing the prior probability of * Input: A Bayesian belief networkB, evidence& (a
v = vy, We can either assume that the denominator is 1 Cconsistent assignment), a query nage
(and not bother about assignments assignirg value other ~ * Output: Successively improved approximations for
than 1), or usel — P({A|A € I}) as an error bound. If ~ P(g = @), for each valueg; in the domain of node
all IB assignments are disjoint, the probability of the union 4
is easily computable, and is simply the sum of probabilities 1) Preprocessing
of the IB assignments. However, since IB assignments are
partial, it is possible for the events denoted by two different
IB assignments to overlap. Thus, to compute the probability
of a set, some other method must be used.
Computing the union of the IB assignments in a repre- 2) Initializing: remove redundant nodes, and for eacin
sentation that makes computation of the probabilities easy is the domain ofg do:
nontrivial. It turns out that we can use the inclusion—exclusion a) Set up an empty result set for.
principle, due to the fact that the union of compatible 1B b) Add the assignmenf U {q = ¢} to the initial
assignment is also an IB assignment [44]. For example, let assignment set for the genera‘for_
{u, v, w} be nodes, each with a domaifl, 2, 3}. Then 3)
A = {u = 1,v = 2} has an overlap with3 = {u =
1,w = 1}. The overlapC = AU B is also an assignment:
C={u=1,v=2 w=3}. (Note that for two assignments
A, B, the union of A and B denotes the event that is the . . ) i
intersectionof the events denoted byt and 5.) The §!mplest ge_nerato_r is a best-first sea.rch with the current
Despite this property, evaluating the probability of a set groPability heuristic, which is exactly the inner loop of the
IB assignments may require the evaluation of an exponent®@orithm in [41], (also described in Section 1ll). In this

number of terms. That is due to the equation for implementirpg?‘per’ we also look at two other generators: a best-first search
the inclusion—exclusion principle algorithm based on the cost-sharing heuristic, and an integer

linear program scheme, modified from [41].
The posterior probability approximation far = ¢; given

¢ Sort the nodes oB such that no node appears after
any of its ancestors.
« Initialize the IB hypercubes for each nodec B.

Repeat until time limit or generator returns null;

a) Get next-best IB assignmertt from the generator.
b) Add A to the result set of;, where{q = ¢;} € A.
¢) Update the posterior probability approximation.

m

4 N _1)k+1L k . -
PUigigmBi) =3, (-1) 2. MNict B the evidence is
k=1 1<ar< - <ap<m
) ) _ P(result set fory;)
where E; is theith event. It is always possible to force all IB a = P | : .
assignments to be nonoverlapping, by using only nonoverlap- Z (result set for;)
T

ping hypercubes in the search algorithms [38], [44]. However,

this comes at a cost: the resulting 1B assignments will theks before, for null evidence]l — . P(result set for; ) is

have more variables assigned, and thus much less probability unassigned probability mass, and can be used to bound
mass. Several other ways exist to overcome this problem, I error, as in [32]. For a discussion on how to bound error
the best method depends on the algorithm for generating fhebabilities for the nonnull evidence case, as well as how to

3In subsequent work [38] this assumption was relaxed for special cases?We need to enforce some assignment to the query node, in order to comply
such as query nodes which are root nodes. with our assumption.
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generalize the algorithm to handle several query nodes, $about2v™ in the worst case) to get a good approximation of
[44]. In [38] and [44], the issue of using several generators fise inclusion—exclusion formula, in the general case. Still, this
explored. In particular, we might want to use one generatoright be feasible in a practical algorithm.
for each possible query node instantiation, and an additionalAnother way to handle overlap is to use inclusion—exclusion
generator for the negation of the evidence. In this case, eawsfly for a small set of overlapping assignments, and prevent
generator would get an initialization set of size 1. Selectidhe occurrence of sets of overlapping assignments with cardi-
between the generators would be based on a meta-reasomialiy strictly greater than some small integer consfarnthe
mechanism, where the criterion for selection would be to useact value oft depends on which algorithm variant we use.
the generator where the expected result would provide bettethe best-first heuristic search algorithms, it is hard to prevent
bounds on the conditional probabilities (this is hot necessariy 1B assignment from overlapping all other assignments. If
the one providing the IB assignment with the greatest masah IB assignmen#d comes up that is not subsumed by some
possibly in a parallelized (or distributed) search scheme. previously generated IB assignment (in which case it is thrown
out), we can do the following test. I# overlapsm > k IB
IIl. SHARED-COSTS HEURISTIC SEARCH assignments, we split it into several assignments (which are

In this section, we discuss best-first heuristic search gen%g-i;?ﬁt??sgIiégﬂggymore)’ and toss the new assignments

ators for the marginal probability approximation algorithms. i . . .
. 2 X o Each “split” assignment is a copy of the current assign-
We begin by reviewing the simple, current probability (alsg . »
7 i . : ment augmented by an assignment to one or more additional
called “cost-so-far”) heuristic algorithm [41], [44], and then :
i . - nodes. The node (or nodes) must not be in the span of the
discuss the better cost-sharing heuristic. . X
current assignment, but appear in the span of some of the
overlapped assignments. As a result of the split, most of the
new assignments will overlap with less than
The best-first algorithm keeps a sorted agenda of statesTwo questions remain: 1) how to do the split (i.e., which

where a state is an assignment, a node last expanded, amsbdes to select for assignment), and 2) how to evaluate a split

A. Review of the Cost-So-Far Heuristic Search

probability estimate: assignment when returning it into the agenda. There are several
« Input: A Bayesian belief networl, a set of consistent possible answers to the first question.
assignmentst. 1) Select an unassigned root node, or if none are available
» Output: The next best IB assignment that subsumes some  (all root node assignments are equal), a successively
£ € E. distant unassigned node down the acyclic graph. Such an
1) Initializing: for each& in E, push into the agenda the unassigned node must exist, or the current assignment is
assignment with a probability estimate of 1. subsumed by an IB assignment already in the result set,
2) Repeat until empty agenda: and should have been thrown out.
a) Pop assignment with highest estimatefrom the 2) Select some other_ node. One possibility is a node as
agenda, and remove duplicate assignments (they will 10w down as possible.
all be at the top of the agenda). In the first case, the resulting “split” assignments will all be 1B
b) If Ais IB, return it. assignments, in which case there are two possibilities: 1) try to

c) Otherwise, expand! at v, the next node, into a setuse them in the result sets immediately or 2) push them back
of assignmentsS, and for each assignment/ € S into the agenda. In the second case, the resulting assignments

do: will usually not be IB, and they must be pushed into the

i) Estimate the probability of4’. agenda. Intuitively, method 1 will allow us to use the results

i) Push.4’ with its probability estimate and last-faster, but may cause problemsrif is large. Method 2 will
expanded node into the agenda. defer the problem, and is likely to do better in such cases.

When the generator is resumed (i.e., called after it returnsHeurIStIC evaluation of the split assignment requires no

the first time), the resumption point is at step 2 Expandiﬁ‘c’diﬁcaﬂons from the standard heuristic function. The only

a state and the probability estimate is exactly as in [41]'219€ In the algorithm needed to handle these split assign-
A = AU’ . where ™ is the jth 1B hypercube based on ents is to change the last expanded node to one less than

v that is maximal with respect to subsumption and consistetnf9 node selected for the split, unless we already know the

with A. The probability estimate is the product of hypercubt SS|gnITeqt toh.bi IB (e.g. the.?. S(EIECt.'ng a root nolde for
probabilities for all nodes where the IB condition holds. e split), in which case no modification is necessary. In our

experiments, however, assignment splitting turned out to be

B. Dealing with Overlapping Assignments unnecessary (see Section V).

One way to deal with overlapping assignments is to ap- , o
proximate the inclusion—exclusion formula, by ignoring higip- C0st-Sharing Heuristic Search
order terms in the computation. That makes sense becaus€& improve the performance of the search algorithm, we
low-probability assignments are going to be ignored in theeed to use a different heuristic than cost-so-far, which gives
approximation algorithm anyway. Theoretically, this is a balittle information early on in the search. Including costs that
idea. As shown in [28], we need a very large number of terméll be incurred later on in the search (higher up in the
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DAG) give us a better estimate. However, one cannot just
add the costs to be incurred in the future, because in mul- P(T) = 0.25
tiply connected networks one node cost (negative logarithm

of probability) would be counted multiple times, and we \
would no longer have an admissible heuristic. The idea ofrr) -5
dividing the cost to be incurred by the number of childrenpg) - o 125
the “cost-sharing” heuristic, was pursued in [7] for weighted
proof graphs (Weighted AND/OR DAG’S)The cost sharing
heuristic showed a marked improvement in performance over
the cost-so-far heuristic when applied to graphs generated by
WIMP [6]. Since the above generator is a best-first search P(TIFF) = 0
algorithm that uses the cost-so-far heuristic, plugging in thy 3. Fragment of medical diagnosis network.
cost-sharing heuristic ought to give us a great improvement.
In order to take advantage of the cost-sharing heuristic, we .
need to reduce the Bayes network into a weighted AND/OR ~ iMmage of the hypercube, and use it as a synonym for the
DAG (WAODAG), such that probabilities are monotonic in hypercube itself whenever unambiguous.
the costs in the WAODAG. 4) For each.dmaxmal IB hypercube as above, construct a
For example, consider the Bayes network of Fig. 3, a part hodesSCy, the hypercube’s “self cost” node. .
of the medical diagnosis network that would be relevant if the 5) Construct a directed edge from each hypercafie to
evidence is that “High temperature” is present. Each node has N .
two states?” (symptom or disease present), andsymptom  6) Each hypercube assigns some state to some of a node’s
or disease absent). Its corresponding WAODAG appears in parents. For eaclw, d') € H;‘d such thatw # v,
Fig. 4, where a curved arc across a set of edges denote that construct an edge from node“" to node H;"d-
the node incident Qn_these edges is an AND node. The numbe17 From each self-cost nod& " construct a directed edge
next to each node is its c_ost, with zero costs omitted for clarity. = g Squd (self-cost edge) to the respectiﬂ;"d. Squd is
Node names are abbreviated, e.g., “Ic” for “Lung cancer.” Each
step number in the figure refer to a construction step as define
below, and denote that all items (nodes or arcs) at the same
hellght in the f|gure are construcFed in that step. “log P,(H;_d).
) Constructing the WAODAGTo convert our problem .
into the WAODAG formulation, we perform a construction 9) The.co'st. f)f any other node is 0.
similar to [8]. The algorithm is given a belief network 2) Admissibility and Edge-Based Searchm order to make
B = (V, A, P), and evidencet. (Note that query nodes the cost-sharing heuristic admissible, Charniak and Husain had
essentially become evidence nodes, in the context of searcHipfefine the search in terms of sets erdges rather than
for the best IB assignment.) Assume without loss of generalfipdes. A search state (set of edges) has to obeynthenal
that all nodes are either evidence or query nodes, or ancesfofsproperty, as follows. A cut of an AND DAG is a set of
of some such node (otherwise they can just be dropped fr@f#gesE such that every path from any root node to a leaf
the diagram). The construction is as follows (refer to th@ode contains an edge frofd. A cut is minimal if it is set-
examples, Figs. 3 and 4). wise minimal, i.e., if no edge can be removed fratnsuch
1) For each possible node-stdte d) € £ U {(v, d) | v € that there is ;till a cut. (What we call a “min_imal cu_t" here is
V —sparf€)} whered is in D, (domain ofv), construct palled a ‘.‘cut” in [7].) For an AND/OR D.AG,.E' is a cut if there
)I/S contains a complete AND DAG (intuitively: completely
specified proof) for which¥ is a cut. Likewise, for a minimal
cut of an AND/OR DAG. In Fig. 4{¢ll, ¢12} would be a
minimal cut of the AND DAG supported by#*" , and thus
o2 minimal cut of the entire WAODAG. In our reduction, we
need to suggest a search operator that preserves the minimal
&ut property, and such that states corresponding to all (properly
supported) IB assignments are reachable. If we do all of the
above, we are assured by the results of [7], that the heuristic
is admissible for our search, and that this algorithm variant
indeed comes up with the highest-probability IB assignment.
Let AD be a complete AND DAG in our WAODAGW,

5In a weighted proof graph, each nodehas a cost(v). The equivalent v .
problem in this formalism is to find a least-total-cost proof of the evidencgnd let 7 be the set of hypercube&;” in AD. Define

a subgraph of least total cost. In such a proof, the evidence fadest be a(AD) to be the assignment consisting of the union of all
included. Additionally, if an AND node is in the proof, then all its parentghe hypercubesHl”d € H. Let C be a (minimal) cut ofi¥
must be in the proof. Similarly, if an OR node is in the proof, one of its parents S ’

must be included. Such a subgraph (a proof) is a complete AND DAG of tﬁé)r‘s'Stmg Only of the self-cost edges of a set of hyperCUbes
WAODAG. H. As above, define(C) as the assignment consisting of the

P(TIT) = 0.5
P(TIF) = 1/32

P(TITT) = P(TIFT) = P(FITF) = 0.5

essentially an AND node with no parents.
The cost of each self cost nodéC;‘d is defined
by the respective hypercube probabilitzycSCf) =

OR nodeN*‘. Note that for each evidence node, onl
one state is possible.

2) Construct an AND node5, with parentsN’”d for all
(v, d) € &, i.e., all the evidence node-states.

3) For each maximal IB hypercube based on any nod
that assigns valué to », construct an AND nodéffd,
where is the index of the hypercube among all th
hypercubes that are based orand assign a valué to
v (the actual order is immaterial). We ca‘ﬂ;”d the node
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step 4
step 7
step 3
step 5
step 1

OMITTED (NOT RELEVANT
DUE TO INFINITE COST)
|

step 6: arcs INFINITE

step 4: nodes

ell
step 7: arcs

step 5: arcs

Fig. 4. WAODAG generated from medical diagnosis network.

union of all the hypercubes ifi{. Likewise, if C is a set of in H. Since the IB condition holds at with respect toH;'d,

edges (not necessarily a cut or a minimal cut), defi0¢) and assigning other nodes (consistently) cannot affect the IB

to be the union of all the hypercubes that have their self-cagindition atwv, then the IB condition holds at with respect

edge inC. to A. O
Lemma 1: Let AD be a complete AND DAG in¥, and Lemma 2: Let C be a (minimal) cut ofi¥” consisting only

let A = a(C), where the set of hypercubes.inD is H. If A of the self-cost edges of a set of jointly consistent hypercubes

is consistent, then it is an IB assignment. H. .Then the assignmenyd = q(C) is a consistent IB
Proof: Let v be an arbitrary node in sp@ad). It is assignment subsumed by the evideite _
sufficient to show that the IB condition holds-atvith respect Proof: Let AD be the complete AND DAG for whiclk

to A. There exists a unique (sincd is consistent) valuel is a cut. AD contains a WAODAG node for each evidence
such that(v, d) € A. Since(v, d) is in the assignment, then node-state, and thu€ must contain a _self-cost edge for
there must be a hyperculi’’ € # based o (assigning it SCMehypercubeH (c) based on each evidence nodeand
the valued). That is because fos to be assigned, either theCONSistent with the node-state efin W. Thus, the union

above holds, or there is some hypercdlﬁﬁdl € 'H (for some of the above evidence hypercubes subsgmbsand s a
;. . . subset ofA, and therefored subsumes’. A is a consistent
d’, j) based on some child of v, that assign® the valued.

il . . assignment by construction, and it is thus sufficient to prove
In the latter casel " is an AND node inAD, and one of its -+ it is IB. We show first thatd — a(AD). First, if

parents inW is N** by construction. SincelD is a complete H;‘d € AD then quud € C, as otherwise there is a path
AND DAG containingH;’i , thenN*" € AD. Also, for AD 50;"‘7 ESC;'d, H;‘d, .-, S'in AD, which obviously has no
to be complete, one parent 8f** must also be inAD. But edge inC (contradiction). Likewise, ifESC;‘d € C, then

all the parents ofV** are hypercubes of the forfl}* by H¥" € AD, otherwise droppingESCY" from C does not
construction. Thus, for somg H;‘d is in AD and thus also create a path from root to sink (contradiction). Now, since
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AD and C have the same hypercube sets, ther= a(C) = Proof: By Lemma 2,4 is a consistent IB assignment
a(AD), and it thus follows immediately from Lemma 1 thasubsumed by the evidence. Thus, its probability is a product
Alis IB. O of conditional probability terms (1), which we rewrite as

Lemma 3: Let A be a consistent IB assignment subsumeuypercube probability terms
by the evidence, an@ a set of hypercubes whose union is B P—
exactly A, and such tha#{ contains a hypercube for every P(A) = H PI(H)
node in spaf4) (the fact that such a set exists for every vespan(4)

IB assignment is proved in [40]; this set is not necessarijjhere H* is the hypercube based anin the set of hyper-
unique) then cubesH from which A was constructed. Taking the logarithm
of both sides and multiplying by-1, we get

C={BSC’ |H" € H} ‘
' | ' —log P(4)= —log [ P&H)

is a (minimal) cut consisting only of self cost edges of jointly vEspan(A)

consistent hypercubes. _ Z “log P’(H}'d)
Proof: First, our AND DAG AD of which C is a cut is vespan(A)

constructed as follows: a node-stdte d) € AD just when o

(v,d) e A A hypercubeH;‘d € AD just whenH;‘d eH.A - Z (SC;)-

self-cost nodeESC;‘d € AD just whenH;‘d € H. Clearly, vCspan(.A)

AD is a complete AND DAG, as it includes all the sink nodeBut since the sum is over all the nodes in the assignment, and
(the evidence node-states) and for every OR nodéiih i.e., €ach node has its hypercube? which in turn consists of
node-statgv, d), one parent node (thgivd € H) is in AD. exactly one hypercube for each self cost edge, we have
_Likewise, for each h)_/percube idnD (an AND node) all of _log P(A) = Z c(SOfd) _ Z o(e).

its parent nodes are iAD, because the hypercube subsumes

vEspan(A ecC
A, and its self-cost node is idlD by construction. For the Sopan(A) ©
self-cost nodes, since they have no parents, all of their parents _ 0
are in AD, vacuously. ThusAD is a complete AND DAG.  3) Algorithm Summary and Correctness Prodf: search

Also, C' is a cut, because the only root nodes are self-cd¥gte is a set of edges, a minimal ¢t For convenience and
nodes, and each of them only has one edge, whichigirby ~€fficiency, we also keep the hypercubes, last expanded node,
construction' is minimal because it consists only of self-cosgurrent heuristic value, _et_c., but these can_all be compl_Jted
edges (by construction), while and all the self cost edges ;y@m_th_e cutC'. The heuristic value_of a state is the sum of its
incident on root nodes. Thus, removing such an eBge?*  heuristic edge costs. Our expansion operatas a function

b 1 T . .
from C will allow a path from root nodesC*" to a sink node. from a set of edges to a set of sets of edges, (i.e., essentially
Thus. C is a minimal cut ofAD. which isza complete AND from a state to a set of next states), and is similar to that of

DAG in W, and is thus a minimal cut dfv’. g [7]. The generator for next-best IB assignment follows.
We now proceed to the computation of the heuristic costs® Input: A Bayesian belief networls, and evidence (a
h, which are defined in a manner similar to [7], as follows: consistent assignment).
« the heuristic cost of a self-cost edge is the cost of its* OUIPUL IB MAP assignment.
source node, i.eh(ESCY") = ¢(SC"Y; 1) Initializing:
« the heuristic cost of a hypercullg H*") is the sum of a) Remove redundant nodes.
the heuristic costs of the incoming edges; b) Create the WAODAG from the top down, while
« the heuristic cost of each edge with a hypercube node as computing node and heuristic edge costs.
a source is the heuristic cost of its source hypercube; c) Push the edge s¢t} onto the agenda, whe® is
« the heuristic cost of any other edge is the heuristic cost of the set of edges incident ofl, with heuristic cost
its source nodeV*" divided by the number of children equal toh(E).
that v has in B; 2) (Resumption point): Repeat until empty agenda:
+ the heuristic cost of a node-state naié” is the mini- a) Pop stat& with lowest heuristic cost estimate from
mum of the heuristic costs of all of its incoming edges. the agenda, and remove duplicate states (they will
Since W is a DAG, and the above defines costs only in all be at the top of the agenda).
terms of the belief network or edges and nodes above, this b) If the assignment(C) is IB (all edges are self cost
definition is grounded. edges) return it.
Theorem 1:Let C be a (minimal) cut o#¥ consisting only ¢) Otherwise, find the earliest nods*" which is a
of consistent self-cost-node edges, afid= a(C). Then A is source of an edge in C, computes(C). That is,
a consistent IB assignment subsumed by the evidence, and its expandC ate (we also call this “expanding at node
probability satisfies v") into a set of state€. For each stat€” < C do
the following:
—log P(A) =Y c(e) =Y _ h(e). i) Find if C’ corresponds to a consistent assign-
e€C ecC ment, and if not, discard it.
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i) Compute the heuristic value fa?’ as the sum that are descendants othave already been expanded, if they
of edge costs. are in spaf4)], and we assume the same node ordering here.
. Note thatr always expands the minimal active fringe node,
iiiy Push C* into the agenda. i.e., the earliest node in spad) for which the 1B condition
Expanding a state” at ¢ with source N** (computation does not hold with respect ta. Let C' be the set of edges
of ) works as follows: Let& be the set of edges with defined as in Lemma 3X(is not necessarily a cut, sincé is
source N** in C. The parents ofV*" are HY" with 1 < not necessarily an IB assignment). Cleardy() = .A. Now,
i < mdegreéNZP ). Then the new state€’;, 1 < ¢ < applyingr at the next unexpanded nodeselects a hypercube
indegreéN’”d) areC; = C—E+incoming(H;'d). Note that by H;Ld atw, and letB = AU H;“d. If this occurs, then clearly
construction, each application of the expansion adds one sélf; d) € A for somed € D,,.
cost edge ta’, thereby adding a hypercube to the assignmentThe following assumes thatis indeed the next unexpanded
defined by the cut. Each of the new states amounts tonade in the ordering. (This is not always the case, since it is
different choice of hypercube at, just like the cost-so-far possible that there are several nodgsn the ordering coming
algorithm. beforew, which are not “active,” i.e., the IB condition happens
A sample run of the algorithm on the Bayes networlo hold atw; with respect ta4 before they are expanded, and
of Fig. 2 with evidence “high temperature present,” woulehus+ will never expand them. We will relax this assumption
proceed as follows. Removal of the redundant nodes woigesently.) In the cost-sharing algorithm we let the next state
result in the network of Fig. 3. The resulting WAODAGcall it ¢*) be C with all edges whose source &+ removed,
appears in Fig. 4. Push the stafe}, 3), where the singleton anq gl the arcs whose sink B¢, including ESC**, added.
edge sef¢} is the state itself, and 3 is its heuristic cost. In thehus, we have that(C") = B, and applying ther operator
first pass through the loog{c}, 3) is popped, and the states;g equivalent to applying-.
({ell, €12}, 4), ({e21, €22}, 3), and ({e31, €32, €33}, 00)  gyppose, however, that there are several ndtfein the
are pushed. Second iteration pofige21, 622} 3), and  ordering beforew that are in spapd) but where the IB
pushes ({c22, edl, 42}, 3) and ({e22, €31, €52}, 6.2).  condition holds with respect ta.. In this case, we apply at
Third iteration pops ({¢22, edl, 42}, 3) and  pushes gaoh of thay € W, and since the IB condition holds af then
({€22, ed2, c6}, 4). Fourth iteration (last one) PoOPSyt |east one IB hypercubH " is subsumed byd. Selecting
({22, ed2, e6}, 4) which consists only of self cost edges, anghase subsumed hypercubes for eacke W assures us that
returns. The result corresponds to the assignment SMekingy he set of edge€’; at end of the series of expansions siil
T, lung cancer= T, high-temperatureT, (with "Bronchitis” - ,pevs () = A. After this series of expansions, we can
_unmstanhat_ed), gnd a probability @f* = 1/16. (Note that apply the expansion operator to as above, and thus this
in the last iteration, the equa!ly cheap Sta{?‘ill’ cl2}, 4) series of expansions with the expansioruafan simulate any
FOUId. have be(_en selected instead, causing several mgﬁ%llcatlon ofr. (When A is and IB assignment, it may be
iterations, but with the same end result). necessary to apply several more times, until the only edges
This algorithm diverges from that of [/] in that when an are self-cost edges. This can clearly be done without changing

Edge frognel?? ?R]\?f)de IS expanddtehd tﬁ mCIUdE an eddge fr:o 2 assignment, as discussed above.) Thus, for any assignment
ypercu 0 we expand the hypercube node (w 'CA that is7-reachable from the evidence, there exists a set of

is ?n ?N? n;)hde)tas Vt\:e” mtthe s?me e)EEaHSIonhStgil)tTh:chdO &gedj that is reachable via, such that:(C) = A, and such
not aflect either the heuristic vaile or the reachabliity ot gk 1+ a1 nodes in spdmi) have been expanded hy [thus if
states, since for all consistent self-cost-only atif®itherC is Athere is some self-cost ed C,Ud C. and since
reachable, ou(C") is subsumed by some IB assignmet€”’), (v, d) € 65 <

(g contains only self-cost edges, it is a minimal cut]. Now,

where C’ is reachable. Hence, to prove that this heuristic I tent IB ¢ | with (t
admissible, the results of [7] can be directly applied. since all consisten assignments maximal with respect to
§ubsumptlon (among all IB assignments that are subsumed by

Theorem 2:Let A be a consistent IB assignment maxim
with respect to subsumption among all IB assignments t gﬁewdence) are-reachable from the evidence, the theorem

are subsumed by the evidence. Then there exists a self- cOgtoOws immediately. ) . O
only cut C that is reachable from the initial state such that | "€ @lgorithm also diverges from [7] in that the cost of an
A = a(0). edge is the cost of its source nodé&” divided by the out
Proof: This theorem was proved for the expansion ogfi€gree ofv in B, rather than the out degree of" in W,
erator in [41]. We show that the expansion operatois That is permissible because of all the nod&s” (wherew is
equivalent to that of [41], in the following sense: for each child ofv in B, and for any valuel’ and hypercube inde#
operator application of [41], there is a sequence of one opnly one appears in any AND DAG, and thus the cost is only
more edge expansior) steps. shared among at most out-degrgeédges. This argument is
Let 4 be an assignment that is-reachable from the similar to the one presented in the conclusion of [7].
evidence, where node is the last expanded. Sineealways = Theorem 3: The algorithm is correct. For example, it will
expands by selecting a hypercube and setting the next stataltgays return withe(C) being the next-probable 1B assign-
be the union of4 with the hypercube, then! is a union of ment subsumed by the eviden€e
hypercubesH. The order of node expansion usifagis such Proof: All possible solution states are reachable from the
that children are always expanded before parents [i.e., all nodl@tial state (Theorem 2), and the heuristic evaluation function
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is admissible (Theorem 1 states that the function is exact forDefinition 1. From the belief networkB and the evidence
complete AND DAG's, and it is nonincreasing by a propert§, we construct a system of inequalitiés= L;p(B, £) as
shown in [7]). Thus, since we have a best-first heuristfollows.

search with all possible solutions reachable and an admissible)
heuristic, the algorithm will return when it finds a lowest cost
consistent self-cost-only (minimal) cdt of W (B, &). a(C)

is an IB assignment subsumed by the evidence (Lemma 2),
and since probability is a strictly decreasing function of cost,

it is of maximum probability. O

Note that it is possible for an edge with sourcewv to
exist in C, where actually the IB condition holds atwith
respect taz(C). In this case, we still need to expandbut it 2
does not matter which next state is selected, they all result ing)
the same assignment (counting only consistent assignments).
In the actual implementation, to prevent the creation of too
many duplicate states, the first one of these that is consistent
is pushed into the agenda, and all the others are discarded.
While the selection of edges may affect the search in that
the cost estimation may be different, it cannot affect the final
result in this case.

4) Handling Overlaps with Cost-Sharingessentially, the
same schemes used for the current-cost search algorithms
can be used here. As it turns out, however, if we add an
assignment to some node that is lower numbered than all the
expanded nodes, there is a problem as the heuristic will no
longer be admissible. Themay be a way to overcome this
problem, but the easy way out is never to reach this case in
the first place. By using the first method in Section IlI-B, i.e.,
selecting a node proceeding from the root down, the resulting
split assignments are IB and we can use the exact value as
a heuristic value, thus avoiding the problem. In fact, since
inclusion—exclusion turns out to be benevolent in practice (see
Section V), this issue is ignored in the implementation.

IV. IB A SSIGNMENT SEARCH AS INTEGER PROGRAMMING

lfd

V' is a set of variables; , indexed by the set of all
evidentially supported maximal hypercubHg (the set
of hypercubed? such that ifH is based onv, thenw is
evidentially supported). Thus/ = {hv“|H*" € H¢}.
[The superscript? states that node is assigned value
d by the hypercube (which is based aef), and the
subscripti states that this is théh hypercube among
the hypercubes based erthat assign the valué to v.]
e(h¥, 1) = —log (P(HY")), andc(hY*, 0) = 0.

I is the following collection of inequalities:

a) For each set of two inconsistent hypercubes

H;fd, ijd € He, such thatw # v

et et <1 2
b) For each evidentially supported node
kvd
PODIIEEST 3)

deD, i=1

c) For each pair of nodesv, v such thatv €
parent$w), and for each valu€ € D,

kud ’
3
i=1 d'eDwA(’U:d)erd,
d) For each(v, d) € &
kud
4
Zh; > 1 ©)
=1

The intuition behind these inequalities is as follows: inequal-

In [35]-[37], a method of converting the complete MAPties of typea) enforce consistency of the solution. Typg
problem to a linear inequality system was shown. In [41] igequalities enforce selection of at most a single hypercube
similar method that converts the problem of finding the |#ased on each node. Typg inequalities enforce the IB
MAP to a linear inequality system was shown. We begin pgonstraint, i.e., at least one hypercube basedvanust be
reviewing the reduction, modify it to decrease the number &¢lected ifv is assigned. Typel) inequalities introduce the
equations, and discuss the further changes necessary to nfdence.

the system find the next-best IB assignments without overlapsFollowing [37], we define an assignmentor the variables
of L as a function fromV to R. Furthermore

A. Reduction of IB-MAP’s: Review 1)

The linear system of inequalities has a variable for eachz)
maximal IB hypercube. The inequality generation is reviewed
below. A belief network is denoted b = (G, D), where )
G is the underlying graph anf® the distribution. We usually
omit reference toD and assume that all discussion is wit
respect to the same arbitrary distribution. For each noded
value in D,, (the domain ofv), there is a set ok, maximal
IB hypercubes based an(whered € D,). We denote that set
by H*", and assume some indexing on the set. Membef
H s denotedH'f, with k.« > j > 1.

A system of inequalitied. is a triple (V, I, ¢), whereV

if the range ofs is in {0, 1} thens is a 0-1 assignment;
if s satisfies all the inequalities of typ@$—d) thens is

a solution for Z;

if solution s for L is a 0-1 assignment, then it is a 0-1
solution for L.

rhe objective function to optimize is

Orn(s) = = 3 s(h") log(P(H}")).

h“d
i

(6)

In [41] it was shown that an optimal 0-1 solution to the
system of inequalities induces an IB MAP on the original
belief network.

is a set of variables/ is a set of inequalities, and is an
assignment cost function.

Note that the number of typa) inequalities is potentially
guadratic in the maximum number of hypercubes per node
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and in the out-degree of the belief network, and linear in thelf the optimal solution of the system happens to be 0-1,
number of nodes. The number of typginequalities is equal we have found the IB MAP. Otherwise, we need to branch:
to the number of supported nodes. The number of tgpe select a variable: which is assigned a non 0,1 value, and
inequalities is linear in the number of arcs between supportertate two sets of inequalities (subproblems), one Witk 1
nodes and in the cardinality of the domain size of the nodemd the other withh = 0. Each of these now needs to be
The number of typal) inequalities is equal to the number ofsolved for an optimal 0-1 solution, as in [36]. This branch
evidence nodes. and bound algorithm may have to solve an exponential number
Clearly, the bottleneck is in the number of tyaginequal- of systems, but in practice that is not the case. Additionally,
ities. That number can be greatly reduced by collecting the subproblems are always smaller in number of equations or
larger number of mutually inconsistent hypercubes into theimber of variables.
same equation, and eliminating several equations. Note that iffo create a subproblent, is clampedto some value in
nodew has childrenz andy, then any hypercube based on {0, 1}. The equations can now be further simplified: a variable
assigning some value tois inconsistent with any hypercubeclamped to 0 can be removed from the system. For a variable
based ony assigning some other value to And since only clamped to 1, the following reductions take place: Find the
one hypercube based anmay be in the solution (because oftype {b) inequality, the type{d) equation (if any), and all
the typeb) inequalities), then all of the above hypercubes mdfe type{a) inequalities, in whichi appears. In each such
be piled into the same equation, thus standing for a quadrdfiequality clamp all the other variables to 0 (removing them
number of equations. All in all, the number of modified typ&om the system), and delete the inequality. After doing the
a) inequalities is now linear in the number of (parent, firstbove, check to see if any inequality contains only one
child, second-child) triples and in the maximum cardinality ofariable, and if so clamp it accordingly. For example, if a
the domain of the nodes. Additionally, all tyjpg inequalities type{d) equation has only one variable, clamp it to 1. Repeat
can be converted to equalities, and the tppénequalities for these operations until no more reductions can be made.
the evidence nodes can be dropped. All variables standing foonce the optimal 0-1 solutios is found, we need to add
hypercubes inconsistent with the evidence can also be eragdt€quation prohibiting that solution, in order to prepare the
To cater for a query node, it is necessary to add an equatiofgenerator for resumption (in order to get the next-best IB
forcing an assignment to some hypercube variable based o@ssignments later on), before returning the assignment induced
This is like a typeb) inequality, except that we need to us®y - In [44], the following equation was used:
equality there. We call this a typs equation. We end up with ot
1, the set of inequalities as follows: Z Z hi > 15l

vES v
a) For each triple of node$v, x, ) s.t. + # y and HE I, ey

v € parentézr) N parent$y), and for eachl € D,;: The above equation rules out any solution which induces an
assignmenis which assigr|.S| = |sparf.4)| variables the same
Z hE + Z hgf < 1. (7) Vvalues as ind. However, in order for3 to be subsumed by
(v, d)eH?* €D, (v, d)cHY | D, ded A, it must be the case théspar{.A)| are assigned the same

values, the equation disallows any assignment subsumed by

b) For each evidentially supported nogthat is not a query A, as well asA itself.

node and is not in spa&f)
B. Preventing Overlapped Solutions

& e After finding a solution to the optimization problem, we
Mo m<L (8) o . .
always add an equation disallowing that solution (and ones
subsumed by that solution). It turns out that linear programs
c) For each pair of nodes, v such thatv € parentéw), are sufficiently powerful to inhibit overlapping solutions al-
and for each valuel € D, together. The idea is to enforce the constraint that a new 1B
assignment be inconsistent with all previously generated 1B
assignments.

dcD, i=1

kod

v

v wd’
Z hi = Z hi 2 0. () Theorem 4:Let A be an IB assignment corresponding to a
=1 dED, A, d)eH Y solution toL = Lg(B, &, Q). Then adding the equation
d) For each(v, d) € £ 3 SN2 (12)
kg vES=E (1" (v, )z A)
’I/‘d . . . .
Z hi =1. (10) to L, disallows any solution where the induced assignnfent
=1 overlaps with A.
e) For each query node Proof: Given an IB assignment, it is evident, by in-
N spection, that (12) enforces at least one hypercube to be chosen
¢ 4 that assigns some variable$h- E differently than inA. Thus,
Z Zhi =1L (11)  for any new solution to the system, and induced assignment
deDy i=1 BB must have at least one variable assigned differently from
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corroborated by experiments such as the above for networks of
sizes 5 and 15 (not shown). Furthermore, even if application
“ States [4096 | 221184 l 63922 ] 62M networks contain significantly less local independence, an 1B
assignment will always contain at least as much mass as
e respective complete assignment. Additionally, finding the
high-probability IB assignments is no harder than finding high-
probability complete assignments, and is typically somewhat
(and thus be inconsistent with). Consequently, this equationgasier. As noted above, overlap problems can be avaited
insures that no solution of the system will induce an IBjtio, if desired. Thus, at worst, we lose nothing by using IB

| | Min | Max | Avg | Med |

Fig. 5. Ten node networks. States indicate number of complete assignm
per network.

assignment that overlaps with. U assignments in place of complete assignments.
We turn to the cost sharing and linear programming ap-
V. EXPERIMENTAL RESULTS proaches. Timing results show that our constraints approach

Empirical validation of our results for actually computingcann solve for the :B MA': In nsetworl;s of up tol 2000 ”?f'es
marginal probabilities was pursued in companion papers ng 0;" timing resuhts are fora plarcf %r elquwa ent mac me).
[44]. Here we focus on the issue of mass collection, searcl?: compares the timing results ol t_e Inear programming

approach on 50 networks each consisting of 2000 nodes, with

efficiency, and the overlap problem. 4 shared hods. In thi '
As mentioned earlier, because they are partial assignmemg, Current cost and shared cost metho S.In e ,eXPe“me”t
ence was generated for 1 to 3 (uniformly distributed)

each IB assignment is expected to gather more mass g'}d .
g P 9 ﬁ ence nodes selected at random, and evidence state selected

assignment than the respective complete assignments. : X

studied this mass accumulation for IB MAP's by takin niformly for each node. Average network size after removing

assignments one at a time in order of probability. By plotting:aundant nodes was about 50. For these problem instances,
Qut sharing usually did much better than ILP, which in turn

the percentage of mass accumulated versus the number” h b h h
assignments used, we can get a fair idea of mass accumulaﬂ!ﬂ\muc etter than current cost. However, we expect that
arger diagram sizes, ILP will do better than cost sharing,

rate. In particular, we extracted the top 50 IB assignmer&?j;_ h . q tem in th ‘ For th
per problem instance from 50 randomly generated networ nich we Intend to con Irm in the near utur'e. or the most
part, we found the ILP solutions relatively quickly. We would

each having ten nodésFig. 5 gives a brief summary of our
g g->9 y like to note though, that our package for solving integer

networks. . :
Looking at Fig. 6, plotting average mass versus numbgrpear programs was crudely constructed by the authors with-

of assignments for skewed networks conditional probabiliti%’t Lhe additional r?pt]:muatlons such asl sparse systems, itc'
generated uniformly form the rang®, 0.1] and [0.9, 1], Furthermore, much of our computational process is naturally

we can see that mass is accumulated fairly quickly and Rglrallelizable and should benefit immensely from techniques

contained in a small set of assignments as we expected. AﬁZHFh as parallel simplex [20] and parallel ILP [1], [3].

five IB assignments, we have already obtained (on average fter running the generat_ors to find th_e, ,IB MAP, we
roughly 85% of the total mass. Significantly greater mass%é ned to actually approximating the probabilities. In [44] the

collected in a small number of IB assignments than the resdititime of the cost-sharing scheme compared favorably with

of [16] predict for complete assignments. The latter are plotte%t,OChaStiC simulation (as implemented in CaBeN [11]), and our

for a set of ten independebinary variables, where the prior runtime was better than the stochastic simulation for 100 node

probability of the states are 0.95 and 0.05. IB assignmerﬂgtworks' More importantly, c.ost-sharing. pounds were at least
collect more mass, despite the fact that for our IB multivalue\%sgOOd as CaBeN's (numerically). Additionally, our search-

variables, the additional states tend to disperse the probabifigSed Schemes ameterministic approximation algorithms,
mass and thus our error bounds arertainbounds, unlike stochastic

We believe that this is due mainly to the moderate Ioc%

independence in the networks. An assignment contaiing e\t;'ls abofut the corr:wparlsoln, seeb[|44]. Wi d earlier th
uninstantiated variables is equivalent tb Gomplete instan- e now focus on the overlap problem. We stated earlier that

tiations (though not that much more mass, as many of t”f‘ft using inclusion—exclusion turned out to work reasonably,
participating assignments will have orders of magnitude le¥: 'C_h point W.EJUS.tIfy empmcally. First, note that the approx-
mass). The difference in mass between complete assignmé tion algorithm is anytime, and we would like to preserve

and IB assignments is expected to grow with network size, Bt Property in evaluating inclusion—exclusion. A recursive
variant of the inclusion—exclusion formula is used, as follows.

SUnless specified otherwise, networks were generated as follows. The The formula looks at two events, one consisting of the new
degree was uniformly distributed between O and 3, by selecting first t ; ot
number of parents, and adding arcs to nodes already processed. Each r%/qeent (IB aSSIQn,rnent)E"’+1’ the second consisting of the
has two to four states, selected randomly with uniform distribution. In ordétNion of all previous events
to get some local independence, we selected for each child node-state a
parent on which it is always dependent, and then each hypercube was split  p(j. _. EN=P(E PlUjcicn E.
along an additional dimension (made dependent on an additional parent) (Uigi<m+1£i) (Em41) + P(Ur<icm Bi)
with probability 0.5, in which case the smaller hypercubes were again split — P(Enp1 NUi<icmEs). (13)
with probability 0.5, etc., (see [41] for details). The number of hypercubes
generated by this method is on the average more than for pure OR nodes, but hi . he fi - di I ilabl
less than for a distribution with conditional probabilities generated uniformly n this equation, the first term Is immediately availaole,

over the rangdo, 1]. while the second has already been computed, when the pre-

imulation, where these are only error estimates. For further
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Mass Accumulation
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0.98 Ww«::
0.96 S

0.94 — - — e

Beenereerensensnnnsansznsnaznnnnenn:

Independent 0.95

092 1 e e T -
0.90
0.88

0.86
0.84 b -

0.82 -
0.80 :

H
0.76 i
0.74 - /» i - - -
0.72 H :

0.70

0.68 ‘
0.66 #

0.64

0.62 —| o
0.60 |4

0.58 Number of assignments
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Fig. 6. Mass accumulation for ten node networks.

vious IB assignmentk,,) was considered. The last term isvere skewed, and picked uniformly from the ranges [O,
equivalent to the probability of the union et events 0.1] and [0.9, 1]. Average network sizes after removing

P(Eppt NUrcicmBs) = PlUrcicm(Emr N )] (14) irr?gl:rr:]dezr:;t:%(izzs\;\./as 21 and 24, respectively, (including
which is computed by a recursive call to the inclu- For each network, we produced 100 IB assignments by using
sion—exclusion evaluator. Recursive computation levels arest-sharing heuristic search. (This is much more than usually
somewhat different, in that both compound terms in (13gquired for approximation. For example, in the comparison
need to be evaluated. Recursive evaluations of (13) thereftseCaBeN, we used 15 IB assignments.) Runtime was not
requirestwo recursive calls, which give rise to a runtimesignificantly different from networks generated without the
exponential in the recursion depth (the latter being equal f@isy OR’s in previous experiments. Overlap set sizes were
the overlap set size in the worst case). To decrease the numii®fwhere from one to 41 assignments (that Asfrom 0
of calls to inclusion—exclusion, a test is first made whethes 40). We expected the runtime for inclusion—exclusion to
E,41 is subsumed by any of the previous events (in whighe prohibitive in many cases. For example, if in the above
case it is discarded). Events not overlappifig., are ignored |arge overlap set, every subset had an overlap, the recursion
in the recursive call, and events with probability very neafepth would reach 40, and the evaluator would not finish its
zero (10°%° in the experiment) are discarded. computation in many years. Expecting the worst, we have

We experimented on 20 randomly generated networks ghiteq recursion depth artificially to 5 (in which case, the
each size: 50 and 100 nodes. Noting that our previously usgthrjanned mass is computed erroneously, but a bound on
networ_k generation method d|c_j not provide a sufficient amouts additional error can be easily found). In about half the
Of_ assignment overlap, we did an extra pass on each n Bblem instances, overlap sets were small (under 5). In most
W'Fh two or more pa7rents,_ r_;md (with prop§b|llty 0.5) co_n_v_erte maining cases, even with overlap sets as large as 41, the
it into a noisy OR! Additionally, conditional probabilities . .

recursion depth of 5 was not reached, and the incremental

’Since representing noisy OR with 1B hypercubes is not efficient, winclusion—exclusion evaluator ran in time significantly less

actually represented a noisy OR by a pure OR and additional |ntermed|a§ean the runtime of the IB assignment search component.

nodes, for which the IB hypercube representation is efficient. This is . "
notational variant, with no effect on the network distribution. In three problem instances out of 40, recursion depth 5 was
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2000 Nodes (Timing)
CPU Seconds
= ILP
2 s Best-First
le+04 = o Best-First (fatled)
5 * Cost-Sharing

Problem Instance
0.00 10.00 20.00 30.00 40.00 50.00

Fig. 7. 2000 node networks.

reached multiple times. This occurred even for relatively smalpplicable. In a sense, these methods complement each other,
overlap sets (starting at size 6). and it should be interesting to see whether IB assignments (or
Two conclusions follow from the latter experiment. 1) Irat least maximal IB hypercubes) can be incorporated into a
many cases, it inotworthwhile to use any elaborate scheme t@erm computation scheme.
handle overlap (such as splitting assignments, or even avoidingrhis paper enumerates high probability 1B assignments
overlaps in the ILP generator). 2) Overlap set size is notuging a backward search from the evidence. Reference [32]
gOOd indicator of inclusion—exclusion runtime in this SpeCi%'SO enumerates h|gh probabmty assignmentsi but using a top
case. Granted, it provides an upper bound on complexityown (forward) search. Backward constraints are introduced
but a very poor one in practice. A better idea is to rufhrough conflicts. It is clear that the method is efficient
the recursive inclusion—exclusion evaluator, and to resort {& ihe example domain (circuit fault analysis), but it is
other methods (assignment splitting, reinitializing hypercub@sss than certain whether other domains would obey the
to avoid overlaps altogether, etc.) only if the recursion depflyreme probability assumption that makes this work. If that
exceeds_ a certain Va_'“a‘_“d t_h_e probability of the overlap at assumption does not hold, it may turn out that backward search
the maximum depth is significant compared to the rest of ‘Fbe still better. On the other hand, it may still be possible
probabilities and the current error bound. to take advantage of IB hypercubes even in the forward
search approach, as shown later on in this section. Note that
among the algorithms presented here, the current probability
We begin by discussing related work, and then suggest tiluristic ignores forward constraints, while the shared-cost
converting complete assignments to 1B assignments may mai&iristic does employ some form of forward reasoning by
this scheme applicable to algorithms appearing in related Wopkeorporating the costs from the top-down initialization. The
ILP method uses global constraints that also include the
A. Related Work top-down constraints, but what role the top-down constraints
The work on term computation [13] and related papers apéay in the search is unclear.
extremely relevant to this paper. The skewness assumptioin [44], the deterministic algorithms were compared to
made there, or a weaker version of it, also make our methsthchastic simulation. Another class of randomized algorithms

VI. DISCUSSION
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computes the MAP (belief revision) rather than marginavidence and is consistent with the origin&lin polynomial
probabilities (belief updating). For example, in [18] simulatetime.
annealing is used. It is not clear, however, how one might use1) Make all nonevidentially supported nodes unassigned in
it to enumerate a number of high-probability assignments. A.

A genetic algorithm for finding the MAP is presented in 2) Repeatedly, try to make nodes unassigneddjnuntil

[34], with an experiment showing that the total probability  no further modifications are possible, according to the
mass of the population rises during the search and converges following rule:

on some value. The authors do not say whether assignments in ] ) )
the population include duplicates, however, and make no men-  * If v is not an evidence node, and for each child of

tion of the possibility of approximating marginal probabilities u of v, either of the following conditions hold, then
with that population. It seems likely that if the algorithm can be make v unassigned inA:

modified to handle IB assignments, then the fact that a whole a) u is not assigned inA.

populationis used, rather than a single candidate, may provide b) There exists a maximal hyperculig based on
a ready source of near-optimal IB assignments. Of course, we u, such thatd C A4, andv ¢ spartH).

are not guaranteed to get IB assignments in decreasing orde.Fhe resulting assignment is consistent with the given
of probability, so slightly different methods would have to be . ) . . .

X . -~ .. assignment, by constructiond is also maximal with respect
used to approximate the marginal probabilities. In addmo?

this method will change the algorithm from a deterministlc(j subsumption (while still assigning a value to each evidence

I . . : .~ node), since if the assignment to any nadean be removed,
approximation algorithm into a randomized approxmaﬂo&en the 1B condition must hold at each of its assigned
algorithm, with all that entails.

Finally, it should be possible to modify the algorithm children after it is removed. Thus there must be a maximal

S . B hypercube that does not assign a valuewtoand is a
presented in this paper to work on GIB assignments &itsi léaset ofA, for every child ofv in spand). That is exactly

gs&gnmenﬁs, where an even greater proba_blllty mass 15 pacﬁ]e condition checked in the loop. As to the runtime of the
into an assignment [41], [43]. Some theoretical issues will hav

to be dealt with before we can do that, however. a?gonthm, since in every pass (except _for the last pass) at
least one node is removed from the assignment, then at most

n passes are made. Each pass looks at every node at most a
constant number of times, and thus the algorithm terminates

in time O(n?). [Selecting hypercubes, checking consistency,

Given a.complete assignment (i.e., one tha_t assigns Yalue?ﬁé?mbership, etc., aré(1), given reasonable indexing and
all the variables), can we generate a compatible IB assignmgii constant in-degree assumption.] In fact, it is possible to
from it? The answer to that is vacuously "yes,” since gecrease the runtime significantly [29], but this issue is beyond

complete assignment is also IB. The interesting question jg, scope of this paper.

whether we can drop as many variables from the assignmenknding maximal IB assignments consistent with a complete
as possible, su_c_h that the resulting aSS|gn.ment is st|II.IB. Th.‘?ésignment is potentially useful in at least two types of al-
IS, can we gﬁlCleqtly compute a compatlblle B assignme brithms for approximating marginal probabilities. In Poole’s
that is maximal with respect to subsumption. A variant gh,_qown algorithm, (nearly) complete assignments are scored
this is to find a compatible IB assignment that has maXeterministically) to approximate marginal probabilities. If
mum probability (for strictly positively distributed networks,e4ch complete assignment is converted to a maximal 1B assign-
such an assignment is always also maximal with respect i« hefore scoring, each assignment scored will contain more
S“bSPmpt'O”)- i . . mass, and thus the approximation method will converge faster.
It is clear that the maximal IB assignment compatiblg noiher application for converting complete assignment to
with a complete assignment is not unique, and that sevefglyqgignments is in using genetic algorithms to approximate
of these maximal B assignments may be much better than, inals. For example, use the same search algorithm as in
others (i.e., have higher probability). It thus appears betlgin| Go [34], but convert complete assignments to maximal
to find the highest probability 1B assignment compatiblgs sssignments, and score them deterministically. The “fit-
with a complete assignment. Nevertheleasy maximal 1B negq” value of each complete assignment is the probability of

assignment with several variables unassigned is potentiadis maximal 1B assignment generated from it. We intend to
better than a complete assignment. It is easy to find a max"B%'rsue these issues in forthcoming papers.
with respect to subsumption IB assignment, and we outline

below one polynomial-time algorithm. Whether a maximum
probability IB assignment compatible with a complete assign-
ment can be found in polynomial time is an open question. Computing marginal (prior or posterior) probabilities in
The problemseemseasier than finding the 1B MARvithout belief networks is hard. Approximation schemes are thus of in-
forcing compatibility with a certain complete assignment, buerest. Several deterministic approximation schemes enumerate
our current intuitions are that it is still NP-hard. terms, or assignments to sets of variables, of high probability,
If we assume a constant in-degree, then the followirguch that a relatively small number of them contain most
algorithm modifies complete assignmept to a maximal of the probability mass. This allows for an anytime approx-
with respect to subsumption IB assignment that subsumes tmation algorithm, whereby the approximation improves as

B. Converting Complete Assignments to IB Assignments

VIl. SUMMARY
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a larger number of terms is collected. IB assignments ane]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

P. Dagum and M. Luby, “Approximating probabilistic inference in

partial assignments that take advantage of local independencies Bayesian belief networks is NP-hardjttif. Intell., vol. 60, no. 1, pp.

not represented by the topology of the network, to redu
the number of assigned variables, and hence the probability
mass in each assignment. Empirical results show that tité!
mass accumulation is indeed much faster than predicted fog)
complete assignments. In any case, there is nothing to lose by
using IB assignments: finding a most probable 1B assignme[rfg]
is typically easierthan finding the most-probable complete
assignment, and an IB assignment will always have at least(&8
much mass as the corresponding complete assignment.

What remains to be done is to come up with these IBS]
assignments in a decreasing order of probability. This is
also a hard problem in general, unfortunately. The factofsy
contributing to complexity, however, are not maximum clique
size or loop cutset, but rather the number of hypercubde’]
Under probability skewness assumptions, the search for highy
probability IB assignments is typically more efficient, and
the resulting approximation (collecting a small number %2]
assignments) is better.

Three algorithms for approximating marginal algorithms are
presented: a modification of a node-based best-first sea%ﬂ
algorithm for finding the IB MAP, an edge-based best-first
search algorithm with a cost-sharing heuristic, and an algg#!
rithm based on linear systems of inequalities. Experimental
results show that using the cost-sharing heuristic improves]
performance of the best-first search algorithm by more than
one order of magnitude. The problem of assignment overlaps)
which is another source of possible exponential runtime, turns
our to be benevolent in practice, when using the recursi}@]
version of inclusion—exclusion with the cost-sharing generator.
In the ILP version of the algorithm, overlaps can be easilys]
avoided altogether. [29]
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