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Abstract

Generic expert systems are reasoning systems that can
be used in many application domains, thus requiring do-
main independence. The user interface for a generic expert
system must contain an intelligence in order tomaintain this
domain independence and manage the complex interactions
between the user and the expert system. This paper explores
the uncertainty-based reasoning contained in an intelligent
user interface called GESIA. GESIA’s interface architecture
and dynamically constructed Bayesian network are exam-
ined in detail to show how uncertainty-based reasoning en-
hances the capabilities of this user interface.

1. Introduction

Since generic expert systems are making their way into
mainstream applications and very little research has focused
on such systems, research must be conducted to handle the
generic system’s special challenges. The greatest of all
these challenges is maintaining application domain inde-
pendence, ensuring system performance is not linked to a
specific domain. This challenge centers on the system’s in-
teraction with the domain, namely the system’s user, so be-
comes the primary focus of the system’s user interface.

The user interface for a generic expert system must offer
more than just a pleasing, easy to use work environment.
It must manage the multitude of tasks required to maintain
the system’s domain independence and facilitate communi-
cation between the user and the system [10] [9]. These tasks
include recognizing the system’s application domain, sug-
gesting user implemented adaptations to the interface, and
adapting the interface adaptively to meet the domain and
user’s needs [8].
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In order for an interface to manage these tasks, it must
contain an aspect of intelligence and reasoning capabil-
ity [2], enabling it to act as a user’s intelligent assis-
tant. This is the idea behind the intelligent user inter-
face GESIA (Generic Expert System Intelligent Assistant)
for the generic expert system PESKI (Probabilities, Ex-
pert Systems, Knowledge, and Inference) [1]. This pa-
per discusses the basic architecture and dynamically con-
structed Bayesian network for GESIA, focusing on the use
of uncertainty-based reasoning to maintain the system’s do-
main independence.

2. Interface Reasoning Needs

In order for an interface to perform as an intelligentassis-
tant it must have the ability to reason. This reasoning capa-
bility is enabled by collecting metrics, transitioning metrics
into information, storing information, and inferencing over
the stored information. Together, these actions provide an
environment from which the interface can make intelligent
decisions.

The first step in creating this reasoning environment is
to collect metrics, called interface domain metrics (IDMs),
based on the operations being performed on the system.
IDMs can be just about any type of data that the inter-
face can collect from the domain or the user, including
keystrokes, procedures used to perform tasks, and user pref-
erences. The number and type of IDMs collected are based
on knowledge required for interface reasoning. Information
about the domain can be acquired from a single IDM or
combinations of different types of IDMs.

The collected IDMs then need to be transformed into
some meaningful information. The information format is
based on interface requirements making future decisions.
This step suggests an intermediate reasoning step that de-
velops a meaning for the metric collected. This intermedi-
ate step is contained in a knowledge based transformation
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algorithm used by the interface to convert the metric into
information.

Once the interface domain metric has been transformed,
the information must be stored. The storage medium, usu-
ally a knowledge base, facilitates the reasoning process
when the interface requires knowledge. An uncertainty-
based scheme is a good choice for this task since it allows
for efficient and effective reasoning [11] [4]. When the in-
terface needs to make a decision, the interface will need
to draw upon the knowledge stored in the knowledge base.
The architectural scheme of the knowledge base will deter-
mine how intelligent and dynamic the decisions are as well
as how efficient the reasoning is in terms of processing re-
sources.

3. The Intelligent User Interface GESIA

GESIA has a layered architecture that contains three
main layers: the graphical layer, the system layer, and the
intelligentassistant layer (see Figure 1). The graphical layer
provides the graphical interface environment, or cosmetics,
for the interface, while the system layer provides a coupling
between the expert system’s tools and the user interface.
The intelligent assistant layer is the main focus of this re-
search.

The intelligent assistant layer has a layered architecture
as well. Its layers include an adaptation layer, an adap-
tive layer, and communications layer. The adaptation layer
recognizes particular adaptations that can be made to cus-
tomize the interface to specific domains and users [6]. The
recognized adaptations are then offered to the user, and the
user interface provides help in making the adaptations if the
user so desires. On the other hand, the adaptive layer ac-
tually makes changes to the interface without interaction
or decision from the user [13]. The adaptive layer makes
these changes based on perceived user behavior in a man-
ner that will be explained later in this paper. The communi-
cations layer provides the methods to collect and translate

interactions between the user and the expert system. To-
gether, these three layers use reasoning to control adapta-
tions, maintain domain independence, and assist the user
with utilizing the system’s functionality.

4. Intelligent Interface Reasoning

The basic model for representing GESIA’s knowledge
is a Bayesian network [7] [11] [4] [5]. User behavior
is not deterministic, so representing user behavior in an
uncertainty-based architecture is appropriate. This repre-
sentation has the ability to portray a large amount of in-
formation based on the collection of only a small number
of IDMs, making this representation important for inter-
face reasoning efficiency. There are three types of nodes
in GESIA’s Bayesian network: interface learning nodes
(ILNs), interface information nodes (IINs), and uncertainty
support nodes (USNs).

ILNs are used by GESIA to integrate and store the mean-
ing of collected metrics into the Bayesian network. These
nodes not only hold a specific semantic meaning but also
have a set of probabilistic values attached to the mean-
ing. The actual structure of these nodes consists of a node-
unique update algorithm and a table of probabilities. The
node-unique update algorithm at each node is specially de-
signed to alter node probabilities based on the type and use
of the metric received. The table of probabilities holds an
entry for every user of the system plus an entry for each of
the four basic user types: application user, application ex-
pert, knowledge engineer, and computer scientist. The spe-
cific semantics of each ILN combined with its probabilistic
values allows the ILN to represent degrees of uncertainty in
the learned information.

IINs represent the many states of the world within
GESIA. These nodes feed off ILNs, USNs, and other IINs to
determine probabilistic values for the states they represent.
While the ILNs are the primary gateway for which learn-
ing enters the network, IINs represent the application of the
networks learned knowledge. Interface elicitation of knowl-
edge targets the states represented by the ILNs, allowing the
interface to make intelligent decisions concerning potential
adaptations.

Finally, the USNs store information concerning the un-
certainty that the user interface will make a correct deci-
sion about a particular IIN. The structure of these nodes is
much like the structure of the ILNs, and there exists exactly
one USN for each and every IIN. The probabilities stored in
each of these nodes represents all the instances when the in-
terface is wrong about inferencing over the IIN it supports.
This uncertainty is applied to it’s parent IIN to alter it’s par-
ent’s probability when it’s parent is targeted for knowledge
elicitation by the interface. In this way, the interface deci-
sions of the future will be affected by it’s incorrect infer-



ences of the past.

5. GESIA Metrics and Nodes

GESIA employs a minimum set of metrics necessary
to assist the user with employing system functions while
maintaining the system’s domain independence. All of
GESIA’s IDMs, ILNs, USNs, and IINs fall within one of
three general classifications based on the information col-
lected: functional execution, communication modes, and
output styles. Together, these classifications of information
provide GESIA with a considerable amount of knowledge
about the world.

5.1. Functional execution

The metrics and nodes used to support the functional
execution classification are used to collect, learn, and use
information answering the question ”What functionality of
the system will this user most likely use?” Every time one
of the main expert system functions (knowledge acquisition,
knowledge extraction, and data mining) are executed, a met-
ric is instantiated representing that execution. This metric
is sent to the appropriate functional execution classification
ILN and is applied to each ILNs probability that is asso-
ciated with the current user. Using each node’s individual
update algorithm, a new probability is produced and stored
in the node’s user table for the current user. Later, when the
interface needs to question a functional execution IIN, the
probabilities of the subordinate ILNs and IINs are applied.
The information collected for the functional execution clas-
sification is used by the interface to perform interface ini-
tiated abstraction of seldom used functions and to support
decisions for the communication modes classification.

5.2. Communication modes

The metrics and nodes used to support the communi-
cation modes classification are used to collect, learn, and
use information to answer the question ”What type of com-
munication does this user prefer when utilizing the pow-
ers of the expert system?” A metric is collected each time
a communication mode (natural language, structured text,
or graphical manipulation) of the interface is used to per-
form an expert system task. This metric must be collected
each time a communication mode is activated to translate
between the user and the expert system and is processed
much like the functional execution metrics. An example of
the use for this information is if the user has a high prob-
ability of using a particular communication mode and the
user starts an expert system function, the interface can auto-
matically bring up that communication mode. If the proba-

bilities are close between two modes, the system initiates a
query to the user asking which mode the user wants.

5.3. Output styles

The metrics and nodes used to support the output styles
classification are used to collect, learn, and use informa-
tion to answer the question ”How many of the best matches
from a query will this user prefer?” The IDM is collected
by obtaining how many outputs the user requests, or how
many outputs the user accepts if a reasoned number of out-
puts is returned by the interface. Again, this metric is pro-
cessed much like the function execution metrics. The output
styles information is especially useful when the user fails to
specify what style of output is required for a specific execu-
tion of an expert system query. As with the communication
modes, if the interface finds probabilistic tendencies toward
a particular output style, the interface will automatically re-
turn the most probable desired output style. If the proba-
bilities are close, the user interface will query the user for
clarification.

5.4. GESIA’s Bayesian network

The interface domain metrics, ILNs, USNs, and IINs are
combined to dynamically construct the GESIA Bayesian
network [3]. This network represents the knowledge that
the user interface collects dynamically, as the user utilizes
the expert system. As previously mentioned, the ILNs oc-
cupy the fringe of the structure and offer a means to aquire
newly learned information. These ILNs lend dependencies
to corresponding

These dependencies can also be passed to other IINs.
In GESIA’s network functional execution IINs, ILNs,
and USNs all feed dependencies into the communication
mode IINs. Likewise, communication mode IINs, ILNs,
and USNs feed dependencies into the output style IINs.
Together, these relations add probabilities as they trace
through the network to influence the final probability of the
IIN being questioned.

5.5. Example of interface information node query

An example of a simple network will now be presented.
This example demonstrates how the network learns and
how the learned data can be used to create a probability
for a possible state. Figure 2 depicts the network used in
this example. Notice there is only one IIN, named ”User
is Using Graphical Communication” (UGC). There is also
the supporting USN, named ”Uncertainty User is Using
Graphical Communication”(UUGC). Finally, there are two
ILNs, named ”User’s Class Prefers Graphical Communi-
cation”(CPGC) and ”User Prefers Graphical Communica-
tion”(UPGC). For this example, let’s say a user, login TOM,
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Figure 2. A partial network for query example

has logged onto PESKI through GESIA. GESIA’s network
recovers all the learned data about TOM from storage and
sends the data to the appropriate ILNs and USNs in the net-
work.

With the network loaded, TOM begins to use GESIA.
As TOM performs actions through the interface, the inter-
face records TOM’s behavior by updating network ILNs
and USNs. For example, in Figure 2, if TOM chooses
to use graphical communication from the communication
mode menu of the interface, the interface will update CPGC
and UPGC. Thus, TOM’s behavior is captured.

Later, if the interface wants to guess what communica-
tion mode TOM will choose, the interface will query the
UGC for the node’s probability. This probability is calcu-
lated by combining the probabilities of CPGC, UPGC, and
UUGC. The probabilities are combined using the follow-
ing method. First, a truth table is constructed that lists all
the possible combination of the truthfulness of CPGC and
UPGC. Therefore,

P(UGC=T — CPGC=T, UPGC=T):=1.00,
P(UGC=T — CPGC=T, UPGC=F):=0.65,
P(UGC=T — CPGC=F, UPGC=T):=0.65, and
P(UGC=T — CPGC=F, UPGC=F):=0.00.

Notice if the probabilities that CPGC and UPGC are both
true then the probability of UGC being true is 1.00, and if
the probabilities that CPGC and UPGC are both false then
the probability of UGC being true is 0.00. In cases when
the probability of an IIN is not absolute, the uncertainty of
the truthfulness of the IIN must be supported by it’s USN.
Once the truth table is constructed, the probabilities may be
combined using Bayes theorem [7] [11] [4] [5]:
P(UGC=T) = P(UGC,CPGC,UPGC)

+ P(UGC,not(CPGC),UPGC)
+ P(UGC,CPGC,not(UPGC))
+ P(UGC,not(CPGC),not(UPGC)).

= (1.00*0.82*0.44) + (0.65*0.18*0.44)

+ (0.65*0.82*0.56) + (0.00*0.18*0.56).

Therefore, UGC-T=0.7108 or 71 percent. Given this
result, the interface has acquired a mathematically sound
method to capture user behavior and convert it into a repre-
sentation from which the interface may reason about future
user intent.

6. Results and Conclusions

Including a reasoning architecture in a user interface to
facilitate intelligent interface decision making can be per-
formed using Bayesian networks. Uncertainty-based prin-
ciples enhance the ability of intelligent interfaces to adapt
to application domains and users. Emphasis on generic ex-
pert system user interface design, and the reasoning archi-
tecture behind it, is important to keep generic expert sys-
tems generic.

There are still some shortfalls that must be overcome
such as metric collection and information storage. The col-
lection of too many metrics too often overburdens the tasks
the user is trying to perform, reducing the value of the in-
terface’s intelligent adaptations. The collection of metrics
must be controled to ensure the IINs are accessed and up-
dated in a deterministic fashion much like the process con-
trol schemes operating systems designers utilize [12]. the
user’s probabilities at each of the IINs is relatively trivial
when only few users employ the expert system. However, as
the system gains users, more records will have to be stored
at each IIN. This storage must be managed to avoid over-
taking storage memory resources.
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